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Spatio-temporal evolution and future scenario prediction of karst
rocky desertification based on CA–Markov model
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Abstract
Although the cellular automata (CA) model has been extensively applied in the simulation of ground cover changes, but it is
rarely applied in the simulation of the driving forces of karst rock desertification (KRD). KRD has become one of the most
serious ecological disasters in southwest China. Thus, it is necessary to accurately identify the driving factors affecting the
occurrence and development of KRD. Accurately predicting the future development trend of KRD has great significance for
quantitative evaluation of ecological environment governance and restoration in karst areas. We used the actual interpretation of
KRD data in 2011 and 2016, based on the geographical detector to select the driving factors for the occurrence and development
of KRD, and used the CA model to simulate the spatial and temporal changes of KRD. Results show that (1) the kappa
verification accuracy for all types of KRD was above 0.5 when the CA model was used for the simulation of the spatial
distribution of KRD and thus the theoretical requirements for accurate identification of the distribution of KRD were met. (2)
Driving factors can be accurately screened by using the geodetector model to analyze the driving factors of KRD. The strengths
of the factors follow the order lithology (0.35) > population density (0.30) > slope (0.21) > soil erosion (0.16) > altitude (0.05).
(3)The combination of geodetector and the CA–Markov model results in the accurate prediction of the evolution of KRD and
reduction in the arbitrariness of artificial subjective selection factors and the possibility of misjudgement. (4) From 2011 to 2021,
the total area of KRD in the study area decreased at a rate of 29.96 km2·a−1, and KRD land indicated an overall trend of
improvement. (5) Under the trend of overall improvement of KRD, some areas remain in which KRD increased and worsened.
In the process of governance and protection, the impact of such deterioration on ecological environment must be considered.
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Introduction

South China Karst represents the most typical tropical–
subtropical karst contiguous area in the world (Wang et al.
2003). Karst rocky desertification (KRD) is widely distributed
and has become the most serious ecological disaster (Wang
et al. 2004; Wang 2002; Bai et al. 2013; Xiong et al. 2009),
which seriously affecting the living environment and stan-
dards of the local people, causing a series of social problems
(Yuan 2008; Li et al. 2006).

In view of the importance and harmfulness of KRD, many
researchers studied the temporal and spatial evolutions of KRD.
Yang et al. based on the rock bare rate and vegetation cover
(Yang et al. 2011). Zuo et al. used the visual interpretation meth-
od by the nudity of rock, and the spatial and temporal evolution
of KRD in the karst area of northern Guangxi was studied (Zuo
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et al. 2014). However, most of the research periods selected in
previous studies were mostly before 2015. Thus, it is difficult to
evaluate the effect of the rocky desertification control project
implemented in the past 5 years. Previous studies have signifi-
cantly contributed to the historical process of the evolution of
KRD, but in the quantitative level owing to limited research data
and computational ability. The cellular automata (CA) was pro-
posed by Von Neumann J. and Stanislaw M. Ulam in the late
1940s for the simulation of the future scenarios of surface cover-
up (Neumann 1996). For instance, many interconnected turing
machines may be placed in a grid. Wolfram proved that the CA
model can simulate complex natural phenomena and establish
the basis of the CA theory (Wolfram 1984; Wolfram 2002). In
previous studies, CA are widely employed in land use change
(Lambin and Geist 2006; Geist 2006;Wang and Li 2011), urban
expansion simulation (Arsanjani et al. 2013; Sun et al. 2012;
Long et al. 2009; Qiu and Chen 2008), fire simulation (Berjak
and Hearne 2002; Perry 1998; Quartieri et al. 2010; Yassemi
et al. 2008), ecology (Muci et al. 2012; Rasmussen and
Hamilton 2012; Perez and Dragicevic 2012; Yang et al. 2009)
and traffic flow simulation (Han and Ko 2012; Jin and White
2012; Lárraga and Alvarez-Icaza 2010), and other fields. The
above research indicates that the application of cellular automa-
ton is mainly applied in the field of land use simulation, but the
research in the field of KRD simulation remains scarce.

In this study, we used the remote sensing and geographic
information technology to interpretation of KRD, and based
on geodetector screen the main driving factors, and predict the
spatial pattern and evolutionary trajectory of KRD in 2016
and 2021 by using CA. We use two methods to verify the
prediction results accurately, and the results show that all pass
the test. The results of this study will serve as bases for gov-
ernment decision-makers and environmental managers for the
mitigation of the negative impact of KRD disasters on society
and economy.

Materials and methods

Study area

The Yinjiang County is located in Tongren, Guizhou
Province, China, the northeast Guizhou plateau. Yinjiang riv-
ers of Wujiang river water system in the Yangtze river basin
watershed areas (Fig. 1). The geographical position is 108°17′
to 108°48′E, 26°35′ to 28°28′N. The main peak of the Wuling
Mountains Fanjingshan is located in the east of Yinjiang
County, forming a high east and west low, southeast to north-
west tilt topography, the relative elevation of 2000 m, with
average elevation of 2493.8 m.

Fig. 1 The location of study area. (We make this map by ArcGIS9.3 (http://www.esri.com/arcgis/about-arcgis))
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The main tectonic line in Yinjiang County is Northeast-
Southeast distribution and well-developed karst trough is de-
veloped in the country. It is a typical area of KRD research.
The main lithology in the territory is mainly carbonate rock,
accounting for 51.74% of the total carbonate rock, mainly
limestone clastic rocks and interbedded layers. The climate
is subtropical humidmonsoon climate, with an average annual
temperature of 16.8 °C and an annual rainfall of about 1100
mm. The slope of the study area is mainly in the range of 5–
25°, and soil erosion is dominated by mild erosion. The total
population of the study area is about 437,600, but in recent
years, the number of go-outside labors has increased, and the
resident population is 221,000.

Data and preprocessed

KRD interpretation data sources from Landsat TM 2011 and
Landsat OLI 2016 remote sensing images with a resolution of
30 m from the Geospatial Data Cloud (http://www.gscloud.cn/).

The 1:50,000 geological map used to excise non-karst
areas in remote sensing images is from the Karst Scientific
Data Centre.

The land use type map data for extracting water bodies,
construction, and other plots in remote sensing images are
obtained by performing band extraction and using the remote
sensing images of each year.

DEM data for altitude and slope for geodetic analysis of the
main drivers of KRD are derived from Geospatial Data Cloud
with average annual precipitation from the Karst Scientific
Data Centre and soil erosion data from Southern Karst
Desertified professional database (Table 1).

Research ideas

Prediction method of KRD using CA model and geodetector,
including the four stages, preprocessing and inputting, subsys-
tem parameter correction and decision-making, and output of
land-based change. The research framework is shown in Fig. 2.

The preliminary data preparation stage mainly includes the
data of KRD in 2011 and 2016 and the six KRD type

occurrences, such as lithology, elevation, slope, annual aver-
age precipitation, soil erosion, and resident population densi-
ty. Factors data are as follows: data preprocessing and input
stage, processing of KRD data, and impact factors data to
obtain a comprehensive geographic information database with
a consistent data structure and geographical coordinates.
Subsystem calibration is used in obtaining the parameters of
the model system application, which are a matrix of calcula-
tion of influence factors based on geodetector, probability of
land use transfer probability matrix predicted byMarkovmod-
el and calculation of each using the multi-criteria evaluation
land use driver weight matrix. On the basis of the KRD map,
the optimum transition rule is used in determining the types of
CULs (Fig. 2).

Selection of driving factors of KRD based on geodetector

KRD is an embodiment of the contradiction between human-
ity and nature. Therefore, the driving factors for the occur-
rence and evolution of KRD should include two parts, natural
factors and social and human factors.

In this paper, we use a factor detector in the geodetector
mechanism analysis method to calculate the influence of each
factor and determine the main factors that affect KRD (Fig. 3).
Geodetector is mainly based on the spatial distribution of geo-
graphical differences, by economic and social or natural fac-
tors; exploring its mechanism is an important part of geogra-
phy. The model is as follows:

q ¼ 1−
1

NS2
∑L

h¼1NhS2h ð1Þ

where q is the detection index of the influencing factors of
KRD. NS2 is the number of samples in the entire area. L is the
number of samples in the entire area. h is the number of sec-
ondary areas. NS2 is the overall variance of the entire area.
NhSh is the sub-level area variance. Assuming that q ≠ 0, the
model is established and the interval of q is [0, 1]. When q = 0,
the distribution of KRD indicates a random distribution. The
larger q value indicates a greater impact of zoning on KRD.

Table 1 The main data source
Data name Data sources Website link

Remote sensing image Geospatial Data Cloud http://www.gscloud.cn/

1:5 million geological map Karst Science Data Center http://www.karstdata.cn/

DEM data Geospatial Data Cloud http://www.gscloud.cn/

Average annual rainfall Karst Science Data Center http://www.karstdata.cn/

Soil erosion data Karst Science Data Center http://www.karstdata.cn/

Resident population density data Statistical Yearbook People’s Government
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CA–Markov model

Markov forecasting is a means for predicting the probability
of an event. The main components of the CA model include

cell, state, rules, and neighbors. Each cell is one of a finite
number of states, and the states of all the cells are updated at
the same time based on the transfer rule. The state of a cell at
any one time depends on itself and its neighbors of its previous

Fig. 2 Technical road map of
KRD change based on the cellular
automaton model and geodetic
detectors

Fig. 3 Geographic detector
schematic
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moment. The use of the CA model can explicitly and directly
simulate the evolution of spatial landscape pattern. The CA–
Markov model simulates each cell in the spatial distribution
pattern of KRD as a single cell, and the type of KRD of each
cell is the state of the cell. The logistics module is used to
obtain the suitability distribution set and the simulation oper-
ation is completed under the CA–Markov module in simulat-
ing the change of the spatial pattern of the KRD.

In the research of KRD change, the CA–Markov module
process of KRD type and the ratio of the number of transition-
al areas between KRD types are the state transition probabil-
ities. We predict the change of KRD structure as follows:

S Tð Þ ¼ Pij þ S T0ð Þ ð2Þ

In the formula, S (T) and S (T0) are the state of KRD at T
and T0, respectively, and Pij is the KRD transition matrix,
which can be expressed by Eq. (3):

Pij ¼
P11 P12 … P1n

P21 P22 … P2n

… … … …
Pn1 Pn2 … Pnn

2
664

3
775 ð3Þ

Results

Driving force factors selection analysis

The occurrence and development of KRD are affected by the
combination of natural and social factors. Six influencing fac-
tors (altitude, slope, lithology, soil erosion, precipitation, and
population density) are selected based on geodetector method
(Formula (1)) in identifying the main driving force of the
development of KRD. The factor forces calculated by the
factor detector in the geodetector survey determine the main
factors that affect KRD. The results are as follows: lithology
(0.35) > population density (0.30) > slope (0.21) > soil erosion
(0.16) > precipitation (0.09) > altitude (0.05) (Table 2).

Overall characteristics of temporal and spatial
evolution of KRD

Based on the CA–Markov model, the prediction of KRD
change is simulated. Through KRD transition matrix

(Table 2) from 2011 to 2016 to establish the conversion rule,
the distribution pattern of KRD after 5 years was simulated by
the CA–Markov model, and the simulated maps of 2016 and
2021 are obtained (Fig. 4).

Features of KRD in time

Table 3 indicates that the total area of KRD land has
changed from 487.12 to 187.57 km2 from 2011 to 2021,
with a net area change of 299.55 km2 and a reduction rate
of 29.955 km2·a−1. The total area of KRD land is signif-
icantly reduced, and the overall KRD land indicates a
trend of improvement. At the same time, as can also be
seen from Table 3, the area without KRD has increased
from 557.19 to 924.54 km2 in 2011 to 2021 with no
significant increase in the area of KRD, thereby indicating
other types of KRD. The transfer to non-Karst rock de-
sertification (NKRD) types also reflects the improvement
of KRD (Table 3).

Features of spatial evolution of KRD

The spatial distribution of KRD from 2011 to 2021 is
shown in Fig. 5. At the start of the study period (Fig.
5a), the KRD in the entire study area was characterized
by moderate KRD (MKRD) and medium stone. The two
types of KRD account for the vast majority of the space in
space even in some areas in which MKRD and extremely
severe KRD (ESKRD) occur. The state has invested con-
siderable funds in the management of KRD since the
twenty-first century but need 2–3 years to great improve-
ment effect.

The actual interpretation of the distribution of KRD in
2016 (Fig. 5b) indicates that the serious situation of KRD
has been greatly improved. The entire study area is dom-
inated by no KRD (NKRD) and potential KRD (PKRD).
In the central part of the study area where the trough is
flat, minimal distribution of MKRD occurs, and seeing
the existence of the types of KRD above severe KRD
(SKRD) is difficult. KRD greatly improved from 2011
to 2016.

Based on the distribution of simulative KRD in 2016
by the CA–Markov model (Fig. 5c), compared with the
actual interpretation distribution in 2016 (Fig. 5b), the
predicted distribution map is mainly light KRD (LKRD)
and MKRD. However, it should be noted that the

Table 2 Karst rock
desertification main driving force
of influence

Lithology Altitude Slop Population density Average annual precipitation Soil erosion

q 0.35 0.05 0.21 0.3 0.09 0.16
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Fig. 4 The influencing factors of KRD. (We make this map by ArcGIS9.3 (http://www.esri.com/arcgis/about-arcgis))
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simulation results show that the area of SKRD is increas-
ing compared with 2011. It is because the predicted re-
covery rate of KRD is slower than the real recovery rate.

Based on the distribution of predictions KRD in 2021 (Fig.
5d), we conclude that in most areas of the study area, mainly
MKRD to LKRD, LKRD to PKRD, and PKRD to NKRD
gradually improve. Overall, KRD has been effectively im-
proved. At the same time, very few SKRD occur in the eastern
part of the study area possibly because people in the valley
area have increased their intensity of farming, thereby
resulting in an increase in excessive desertification in rare
areas.

Dynamic characteristics of the temporal and spatial
evolution of KRD

From 2011 to 2016, 540.31 km2 of land with unchanged
KRD area and 10.80 km2 of LKRD to NKRD accounted
for 64.17% of the same change area (Table 4). LKRD to
PKRD was 8.41 km2, thereby accounting for 72.72% of
the same change area. At this stage of the period from
2011 to 2016, the area of KRD declined, the proportion
of NKRD increased, and the KRD indicated a turnaround
(Fig. 6a).

Table 5 shows the following estimated areas and their
corresponding changes from 2016 to 2021: 548.91 km2,
unchanged KRD; 103.51 km2, changed from PKRD to
NKRD; 213.79 km2, changed from PKRD to NKRD;
14.30 km2, unchanged PKRD; 34.80 km2, transition from
LKRD to PKRD; 95.08 km2, unchanged LKRD, and
32.22 km2, changed from MKRD to LKRD. It is not dif-
ficult to see from the area of the above transfer changes
that from 2016 to 2021, the KRD is improving strongly,
showing a shift from the more serious type to the lighter
type (Fig. 6b).

The evolution of KRD, the area of specific improve-
ment, or deterioration is unclear in previous studies. On
the basis of the intensity change (Fig. 6), we calculated
the spatial distribution of the areas with improvement and

deterioration (Fig. 7) so as one important reference con-
dition for the following relevant measures.

Figures 7 a and b indicate that in 2011–2016, the area
with improved KRD is obviously larger than the deterio-
rating area. The area with the most obvious improvement
is the study area. The northern and central regions also
indicate a deteriorating region at this stage, mainly in the
areas along the valley. The worsening area increases in
2016–2021 relative to 2011–2016 (Fig. 7d), but the im-
provement in KRD is also evident in the improved areas
(Fig. 7c).

Discussion

Prediction accuracy verification

Change of KRD is an extremely complicated geographical
process. Accurately simulating the change of KRD is very
difficult due to many factors such as natural conditions,
human factors, and social economy (Tian et al. 2017).
Therefore, the overall pattern of the change of KRD is
even more important. Figs. 5 b and c compare actual
KRD and simulated KRD in 2016. The key of model
simulation is whether the simulation results are accurate.
To solve this key issue, this study uses the following two
approaches in model verification.

Pixel-based KRD probability verification

Basing on Fig. 8, we can conclude that the probability distri-
bution of various types of KRD is spatially distributed. The
larger the value of a certain area is, the greater the probability
of KRD. For instance, in Fig. 8a, the larger the figure in the
map is, the greater the probability that the region will develop
into NKRD. We combine this figure with the predicted 2016
map of the analysis of the spatial distribution of KRD (Fig.
5c), and we can draw the 2016 NKRD forecast results (Fig.
5c) correctly.

Table 3 Area and ratio of
different types of KRD in the
study area (2011–2021) (unit:
km2)

Types of KRD land NKRD PKRD LKRD MKRD SKRD ESKRD KRD

2011 Area (km2) 557.19 132.65 371.63 84.48 21.05 9.96 487.12

Proportion 47.34 11.26 31.57 7.18 1.79 0.85 41.39

2016 Area (km2) 911.32 62.09 184.79 1.45 16.12 1.99 204.35

Proportion 77.43 5.28 15.7 0.12 1.37 0.17 17.36

2021 Area (km2) 924.54 61.48 159.55 1.54 24.09 2.39 187.57

Proportion 78.78 5.24 13.60 0.13 2.05 0.20 15.98

Note: KRD, karst rocky desertification; NKRD, no KRD; PKRD, potential KRD; LKRD, light KRD; MKRD,
moderate KRD; SKRD, severe KRD; ESKRD, extremely severe KRD
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Kappa coefficient test

In order to verify the accuracy of the simulation results
quantitatively, kappa coefficient test is carried out on the
simulated and the actual interpreted KRD maps. The test

results are shown in Table 6. The kappa coefficients are
0.889, 0.541, 0.682, 0.592, 0.766, and 0.504 with NKRD,
PKRD, LKRD, MKRD, SKRD, and ESKRD, respective-
ly. These values indicate a certain degree of credibility.

Fig. 5 The distribution of KRD in
different periods of the study area.
(Wemake this map by ArcGIS9.3
(http://www.esri.com/arcgis/
about-arcgis))
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Temporal and spatial evolution of KRD

Since the start of the twenty-first century, the total area of
KRD in the study area has obviously changed, and KRD
has indicated a trend of improvement. Analysis of the
causes, evolution pattern of KRD is a combination of
natural factors and human activities (Li et al. 2017; Li
et al. 2018; Chen et al. 2018). During the period of
2011–2021, the main reason for the strong improvement
of KRD is that with the continuous development of ur-
banization, a large number of rural labor force is liberated
from the land to other work. The deterioration trend of
KRD will be slowed down even began to improve.
Meanwhile, the implementation of the ecological environ-
ment control project will promote the improvement of

KRD, but it has a certain delay (Wu et al. 2017; Zhang
et al. 2013). After the implementation of the project, there
will be 2 or 3 years to see that the KRD is obviously
improved.

Deficiencies and prospects

The change of KRD is a complex system, and cellular
automata is an important tool that is suitable for the sim-
ulation of complex systems. The model indicates a strong
spatial self-organization ability and a great advantage for
simulated KRD. In recent years, one aspect of research is
mainly focused on the use of artificial intelligence for
obtaining the transformation rules in improving the qual-
ity of the simulation. However, the artificial intelligence

Table 4 KRD intensity rank transfer matrix in the study area (2011–
2016) (unit: km2)

Types NKRD PKRD LKRD MKRD SKRD ESKRD 2011

NKRD 540.31 108.03 219.01 30.75 5.87 6.1 910.07

PKRD 3.85 15.44 38.19 4.12 0.26 0.19 62.05

LKRD 10.8 8.41 109.03 46.47 7.95 1.83 184.49

MKRD 0.12 0.18 0.61 0.41 0.1 0.03 1.45

SKRD 1.89 0.42 3.18 2.42 6.41 1.78 16.1

ESKRD 0.17 0.06 1.05 0.24 0.44 0.03 1.99

2016 557.14 132.54 371.07 84.41 21.03 9.96 1176.15

Fig. 6 Change trend of KRD
intensity in different periods of
the study area

Table 5 KRD intensity grade transfer matrix in 2016–2021(unit: km2)

Types NKRD PKRD LKRD MKRD SKRD ESKRD 2021

NKRD 548.91 5.90 15.31 0.54 4.41 0.31 575.38

PKRD 103.51 14.30 10.72 0.13 2.63 0.37 131.66

LKRD 213.79 34.80 95.08 0.30 2.91 1.01 347.89

MKRD 42.36 5.50 32.22 0.51 1.91 0.23 82.73

SKRD 13.32 0.69 4.59 0.03 9.96 0.42 29.01

ESKRD 6.21 0.22 1.52 0.02 2.23 0.03 10.24

2016 928.09 61.42 159.43 1.55 24.06 2.37 1176.15
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method is mostly a black box model, which is not condu-
cive to the discovery of the rules hidden under the change
of spatial pattern. By contrast, in all types of cellular
automata expansion models that do not use AI, most of
them can only simulate one type of target class and sim-
ulate and explore many types of land classes. In future
research, the improvement of the ability to analyze and
simulate models in the comprehensive relationship is es-
sential to ensuring that the simulation results are nearer
the real situation of future development.

Conclusion

(1) The CA model is used for the simulation of the spatial
distribution of KRD. The kappa coefficient of all types of

KRD is over 0.5, thereby meeting the theoretical require-
ments and accurately representing the future distribution
of KRD.

(2) Analysis of KRD driving factors that used the
geodetector model can accurately screen the driving
factor, factor intensity for lithology (0.35) > popula-
tion density (0.30) > slope (0.21) > soil erosion
(0.16) > the annual precipitation (0.09) > altitude
(0.05).

(3) The compound use of geographic detector and CA–
Markov model compound use can more accurately
predict the future evolution trend of KRD, reduce
the subjective factor of randomness, and reduce er-
rors in the prediction of KRD scenarios in the future,
thereby ensuring accuracy.

Fig. 7 Spatial distribution map of
KRD improvement and
deterioration in the study area
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(4) From 2011 to 2021, the total area of KRD in the study
area decreased at a rate of 29.96 km2·a−1, and KRD land
indicated an overall trend of improvement. Under the
trend of overall improvement of KRD, a few areas re-
main in which KRD increased and deteriorated. In the
process of governance and protection, we focus on the
deterioration of the ecological environment.

Fig. 8 Spatial distribution of probability of occurrence of various types of KRD in 2016 forecast results

Table 6 Kappa coefficient test

True interpretation data Predicted data Kappa

2016r-NKRD 2016s-NKRD 0.889
2016r-PKRD 2016s-PKRD 0.541
2016r-LKRD 2016s-LKRD 0.682
2016r-MKRD 2016s-MKRD 0.592
2016r-SKRD 2016s-SKRD 0.766
2016r-ESKRD 2016s-ESKRD 0.504
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