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HIGHLIGHTS GRAPHICAL ABSTRACT

Distribution of soil microbiome across
land-use types in mining area was ex-
amined.

Land-use types effects on soil bacterial
communities and keystone OTUs
Nutrient contents dominantly predicted
changes of soil microbiome across land-
use types.

Soil microbiome maintains nutrient func-
tioning for soil ecological restoration.
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little attention. Here, we collected soils from replicated plots representing three land-use types (forest, grass, and
farmland soil) in a mining area to study the distributional pattern of soil microbiome across land-use types and
their roles in soil ecological restoration. The results demonstrated that the specific sets of OTUs were divided into
three distinct microbial sub-communities, which were thriving across the land-use types, and that this pattern
was explained by the nutrient status of the soil samples. We demonstrated that land-use type had a marked in-
fluence on the microbial co-occurrence network. We observed that nutrient and metal(loid) parameters, i.e., Tl,
Sb, K, P, and Ca, were the main determinants of keystone OTUs, which were linked to network stability. The dis-
tribution of microbial taxa is in line with their putative lifestyles, thereby maintaining nutrient cycling across
land-use types. This study provides important information on the occurrence and distribution of the soil
microbiomes in mining areas and their potentially beneficial roles in soil restoration.
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degradation. To alleviate such deleterious effects, ecosystem restora-
tion, which aims to establish diverse plant communities that contribute
to the recovery of ecosystem functions, has become an essential strategy
for mitigating adverse ecological consequences (Barber et al., 2017).
Nonetheless, the establishment of diverse plant communities was
constrained by soil functions. Microorganisms that inhabit soil ecosys-
tems contribute substantially to a wide range of services, including nu-
trient cycling (Jing et al,, 2020), organic matter decomposition (Shiet al.,
2020; Hu et al., 2020), and metal(loid) cycling (Sun et al., 2019; Xiao
et al.,, 2019; Zhang et al., 2019), and thereby influence soil functions.
However, there is still unclear about the effects of land use types on
soil microbial communities and their beneficial roles on soil restoration.
In general, the quality and quantity of carbon supplied by plant litter
and root exudates differ across the soils of different land-use types,
which results in measurable changes in a set of edaphic factors, such
as soil pH, nutrient status, and metal(loid) content (Banerjee et al.,
2019; Sun et al., 2020b; Wei et al.,, 2020). Usually, these factors are iden-
tified as strong regulators that are able to alter soil microbial communi-
ties (Ma et al., 2020; Poncelet et al., 2014). However, few studies have
focused systematic attention on the effect of land-use type-induced
changes in these edaphic factors on microbial communities. The main
regulator that drives the soil microbial community across land-use
types is not clear. For example, are there relationships between changes
in edaphic factors introduced by land-use types and the enrichment of
specific soil microorganisms across land-use types? If so, what do
these relationships have to do with soil restoration functions? There-
fore, this study provided a fine-scale dissection of the microbial compo-
sition across land-use types to gain an important insight into the
distributional pattern of microbial assemblages and their potential
roles in soil ecological restoration.

The structure of soil microbiome is important to its ecological func-
tioning (Strogatz, 2001). However, it is challenging to study soil
microbiome structures due to the complex and numerous interrelation-
ships among microbial taxa (de Menezes et al., 2014). Recently, works
have established that keystone taxa could be a useful tool for gaining in-
sights into the structure of the soil microbiome and its response to envi-
ronmental changes (de Menezes et al., 2014). It is now well established
that the responses of soil microbiomes to environmental factors are fa-
cilitated via keystone taxa in mining impacted environments (Agler
etal., 2016). However, studies conducted on the distribution of the key-
stone taxa across land-use types and their responses to soil ecological
restoration in mining area remain unexplored.

Here, we examined the difference in the soil microbial community
across three land-use types to investigate the microbial community re-
sponses on land-use types and their potential roles in soil restoration.
We aimed to address the following questions: (a) Do soils harbor unique
bacterial communities across land-use types? (b) Which factor drives the
distributional pattern of soil microbiomes across land-use types? (c) Do
the dominant taxa have beneficial roles in soil ecological restoration?

2. Materials and methods
2.1. Soil sampling

The sampling site is located a typical TI—Hg mining area in Guizhou
Province, Southwest China. We applied a randomized field design and
chose 9 sampling sites with heavily (4 sampling sites) and moderate
mining disturbances (5 sampling sites) according to our previous stud-
ies (Ning et al., 2020; Ma et al., 2020). At each sampling site, we col-
lected a total of 6 samples from 3 land-use types (farmland soil, forest
soil, and grass soil) at different depths (surface (0-10 cm) and bottom
(10-20 cm) samples). A total of 54 samples were collected. Each sample
was divided into two parts according to their use: one part was used for
chemical analysis, and another part was used for microbial analysis. The
samples for the chemical and microbial analyses were stored at 4 °C
and — 40 °C, respectively.
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2.2. Chemical analysis

The freeze-dried samples were thoroughly ground and then passed
through a 200-mesh sieve before chemical analysis. Using an elemental
analyzer (Vario MACRO cube, Elementar, Hanau, Germany), we tested
the contents of total sulfur (TS), total carbon (TC), and total organic car-
bon (TOC) according to our previous study (Xiao et al., 2016). The sam-
ples were digested by using concentrated HF and HNOs (1:5, v:v) before
trace element analysis (Edgell, 1989). After digestion, an inductively
coupled plasma mass spectrometry (ICP-MS, Agilent, 7700x, California,
USA) was used to measure the contents of metal(loid)s. To increase the
reliability of the measurements, the certified reference materials includ-
ing SLRS-5 (National Research Council, Canada) and GBW07310 (Chi-
nese soil reference) were used (Xiao et al., 2016).

2.3. Analysis of soil bacterial communities

We employed the FastDNA® spin kit (MP bio, Santa Ana, USA) to ex-
tract total genomic DNA from the samples according to the manufactur-
er's protocol. The bacterial V4-V5 regions were amplified with primers
515f/907r (Kuczynski et al., 2012). High-throughput sequencing was
performed on an Illumina MiSeq platform at Ecogene Bioinformatics
Company (Shenzhen, China). Using FLASH, the raw reads were merged
(Magoc and Salzberg, 2011) and then filtered by QIIME (Quantitative
Insights into Microbial Ecology) (V1.7.0) (Bokulich et al., 2013). The
raw sequence was obtained by comparing with the GOLD database.
Next, we used UCHIME (http://www.drive5.com/usearch/manual/
uchime_algo. html) to remove chimeric sequences (Haas et al., 2011).
Using UPARSE with a criterion of 97% similarity, we obtained the oper-
ational taxonomic units (OTUs). The phylogenetic taxonomy of OTUs
was assigned by using the RDP classifier and Greengenes (Wang et al.,
2007).

2.4. Statistical analysis

With the packages “tidyverse” and “DESeq2” in R software, we ana-
lyzed the enrichment of the differentially abundant OTUs in farmland,
forest, and grass soils (Robinson et al., 2010). OTUs with relative abun-
dances >0.5% were chose to construct three co-occurrence networks
across the farmland soil, forest soil, and grass soil samples (Xiao et al.,
2021). The procedures for constructing co-occurrence network were
followed previous studies conducted by Barberan et al. (2014) and
Delgado-Baquerizo et al. (2018). The visualization of co-occurrence net-
works was performed in Gephi software (Bastian et al., 2009). Finally,
the properties of the network were obtained from Gephi with default
parameters. Keystone taxa, i.e., taxa that have a large influence in a com-
munity (Barberan et al., 2012; Lauber et al., 2013), confer high connec-
tivity and thus can be indicators of microbial community shifts (Herren
and McMahon, 2018). In the current study, the keystone species were
classified as those that accounted for the highest average degree (top
1%) (Fan et al., 2018; Fisher and Mehta, 2014). To determine the relative
importance of environmental predictors for microbial attributes such as
diversity and keystone species, we employed random forest analysis
with the randomForest package (version 3.0.2) (http://cran.r-project.
org/) (Breiman, 2001; Trivedi et al., 2016) and rfPermute package
(Delgado-Baquerizo et al., 2018) in R statistical software. The indicator
taxa across three land-use types were identified by using the
indicspecies package in R statistical software (Team, 2013).

3. Results
3.1. Geochemical parameters
In the current study, the results showed that edaphic factors demon-

strate distinct ranges across land-use types. For example, metal(loid)s,
such as Hg, Tl, and As, were significantly enriched in the farmland and
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Fig. 1. Distributional pattern of geochemical parameters across land-use types.

grass soil samples compared with the forest soil samples (Fig. 1). Nutri-
ent parameters, such as total C, TOC, total S, and C/N, were significantly
enriched in the farmland soil and grass soil samples compared with the
forest soil samples (Table S1). In addition, total N was significantly
enriched in the farmland soil samples compared with the forest soil
samples. Notably, we also identified diverse associations between
edaphic factors. For example, the metal(loid)s (Hg, T, and As) were sig-
nificantly correlated with the total C, TOC, total S, C/N, Ba, Al, total S, and
total Fe (p < 0.05) (Fig. S2). In addition, Hg was significantly correlated
to total N and Ca; As was correlated with total Mn and P; and Ca was
correlated with total N, total C, and TOC (p < 0.05) (Fig. S2).

3.2. Microbial diversity and dominant phyla across land-use types

According to the random forest analysis, edaphic factors, including
Ca, K, total N, Mg, C/N, and total S, were important predictors of bacterial
diversity (Fig. 2). Specifically, Ca was the most important predictor of
the microbial diversity indices including Chao1 and Shannon. In addi-
tion, total N, Mg, C/N, and total S were the most important predictors
of these diversity indices. In this study, we found diverse and significant

associations between edaphic factors and diversity indices (Fig. 2). For
example, the Shannon index was significantly correlated with As, total
N, total S, Ca, and Mg; the Chaol and ACE indices were significantly re-
lated to total S, C/N, Ca, and Mg (Fig. S3).

3.3. Taxonomic features across land-use types

The taxonomic assignments revealed that Proteobacteria,
Acidobacteria, and Firmicutes were the dominant phyla in the current
study (Fig. 3). We used a linear model analysis to examine microbial
diversification and identify significantly enriched OTUs across the
land-use types. There were 47, 42, and 50 enriched OTUs in the farm-
land, forest, and grass soil samples, respectively (Fig. 4A). The
phylum-level taxonomic assignments revealed that the bacteria in the
farmland soil samples were consisted to Acidobacteria, Proteobacteria,
and Actinobacteria. The samples from the forest soils were dominated
by Proteobacteria, Chloroflexi, and Actinobacteria. The samples from the
grass soil were dominated by Acidobacteria, Actinobacteria, and
Verrucomicrobia (Fig. 4B). PERMANOVA showed that the distributional
pattern of the microbial composition was significantly altered by mining
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Fig. 2. Random Forest analysis of microbial diversity indices (Chao1 and Shannon) predicted by nutrients and metal(loid)s.
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disturbance (Fig. 4C). Consistently, the distributional patterns of these
phyla were influenced by mining disturbance. For example, we found
that in the forest soils, Chloroflexi was significantly enriched in
areas with heavy mining disturbances compared to areas with less dis-
turbance. Furthermore, in the farmland soils, Proteobacteria was signifi-
cantly enriched in areas with heavy mining disturbances compared to
areas with less disturbance. Acidobacteria and Proteobacteria in the
grass soil samples were significantly enriched in the surface soil com-
pared with the lower soil (Fig. 4D).

3.4. Bacterial co-occurrence network structures and keystone taxa across
land-use types

In the current study, we constructed three bacterial networks (one
for each land-use type). The constructed networks displayed distinct
differences in their topological parameters. The farmland, forest, and
grass soil networks consisted of 41,535, 47,851, and 43,270 edges (asso-
ciations between taxa), respectively (Fig. 5). The average degree and
closeness centrality parameters appeared to be higher in the forest
soil network than in the other two networks. In contrast, the between-
ness centralization and diameter appeared to be lower in the forest soil
network than in the other two networks (Fig. 5). We identified 9 key-
stone OTUs for each land-use type in this study. These OTUs
were taxonomically affiliated with different phyla. Specifically,
Acidobacteria and Proteobacteria were dominant in the farmland

Farmland

Edges: 41535
Average degree: 98.47

Closness centrality: 0.507
Betweeness centrality: 420.13

Clustering:0.475

Forest soil

Edges: 47851
Average degree:113.15

Closness centrality: 0.514
Betweeness centrality:407.97

Clustering:0.501
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and grass soil network structures, and Acidobacteria, Proteobacteria,
Chloroflexi, and Firmicutes were dominant in the forest soil network
(Fig. 5). The random forest analysis revealed that the environmental
parameters of K, P, Mn, Mg, and Sb best explained the distributional
pattern of the keystone taxa in the farmland soil ecosystems; K, P,
Mn, and Sb best explained the occurrence of the keystone taxa in
the forest soil ecosystems; and TI, total N, total C, and Ca best ex-
plained the distributional pattern of the keystone taxa in the grass
soil ecosystems (Fig. 6).

3.5. Distributional pattern of indicator genera across land-use types

Prior study showed that indicator taxa could be useful for predicting
microbial community responses to specific environmental conditions
(Bier et al., 2015). In the current study, we identified indicator species
to study their responses to different land-use types. For the farmland
soil ecosystems, the indictor genera consisted of Aquincola,
Rickettsiaceae, and Roseococcus (Fig. 7). The indicator genera of the
grass soil ecosystem were Chthoniobacter, Pedosphaera, Labrys,
Bradyrhizobium, Sorangium, and Proteiniborus. The indicator genus of
the forest soils was Paracoccus. Notably, we found that the distributional
patterns of these genera were also influenced by mining disturbance.
Aquincola was significantly enriched in heavily disturbed soils, whereas
Proteiniborus was significantly enriched in moderately disturbed mining
areas (p < 0.05) (Fig. 7).

Grass soil

Edges: 43270
Average degree: 102.51

Closness centrality: 0.495
Betweeness centrality: 440.98
Clustering:0.569
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Fig. 6. Random Forest analysis of dominant OTUs (Listed on Fig. 5) predicted by nutrients and metal(loid)s parameters.

4. Discussion
4.1. Land-use type effects on microbial communities

The specific sets of OTUs (with relative abundances >0.05%) were
divided into three distinct microbial subcommunities, which thrived
across the land-use types. This observation indicates that land-use
type exerted a crucial role in recruiting soil microorganisms. The dis-
tinctiveness of the soil microbiome was also found in prior studies
across land-use types (Dassen et al., 2017; Schlatter et al., 2015).
Existing evidence indicates that the distinctive distributional patterns
of soil microbial communities are likely to be related to differences in
plant species across land-use types (Dassen et al., 2017; Schlatter
et al,, 2015). Generally, root exudates secreted from plants can change
the status of edaphic factors, and microbial communities can be sensi-
tive to these changes (Broeckling et al., 2008; Shahzad et al., 2015).
We identified distinctly different nutrient statuses across the three
land-use types studied, with a significantly higher relative concentra-
tion of nutrients, such as TC, TOC, and C/N, in the farm and grass soils
than in the forest soils (Fig. 1). We assume that variations in the nutrient
status of the soil samples could explain the differential responses of soil
microbiomes to the land-use types. We see support for this idea, as
there is a significant relationship between the microbial diversity indi-
ces and measured nutrient parameters (Fig. S2). Furthermore, the

random forest analysis demonstrated that bacterial community compo-
sition is mainly predicted by nutrient parameters, such as Ca, K, total N,
total C, TOC, and Mg (Fig. 2). Likewise, the prevalence of the dominant
bacterial taxonomic groups is reflected in the changes in soil nutrient
status occurring across land-use types. For example, the taxonomic as-
signments of the dominant OTUs at the phylum level revealed that
Acidobacteria was significantly enriched in both the farmland and
grass soil samples compared with the forest soil samples, whereas
Proteobacteria was enriched in the forest soil samples (Fig. 4B). The
phyla Acidobacteria and Proteobacteria are considered abundant and
ubiquitous bacterial phyla and are typically found in diverse mining im-
pacted environments, such as agricultural soils (Zhang et al., 2020a),
forest soils (Shi et al., 2015), peat soils (Sun et al., 2014), tailing soils
(Xiao et al., 2019), and river system (He et al., 2020; Wang et al.,
2020). Acidobacteria has been reported to be a versatile heterotroph
with an oligotrophic (more K-selected) lifestyle (de Castro et al., 2013;
Yao et al., 2017), whereas Proteobacteria has been reported to be a
fast-growing bacterium with the ability to utilize a variety of carbon
sources (i.e., a copiotroph) (Yao et al., 2017). The enrichment of
Acidobacteria in the farmland and grass soil samples was consistent
with its capacity to colonize nutrient-limited soils, in which this phylum
contributes to enhancing soil nutrients (de Castro et al., 2013; Yao et al.,
2017). In this study, we hypothesized that across land-use types, soil
microbial community structure would change with soil depth and

EE high [ low 95% confidence intervals
Aquincola | ——i I 0.022
Proteiniborus | Ih 0.034
Rickettsiaceae | o 0.140
Labrys | e 0170 §
Paracoccus | ] 0.187 §
Pedosphaera § 00— 0.210 5
= )
Roseococcus | ® 0.289 3
Chthoniobacter | —e— 0.787 &
Bradyrhizobium [ F —@ ! 0.873
Sorangium [ } O { 0.989
L ! L 1 I | 1 1 ! 1
0.0 71.5 -3 -2 -1 0 1 2 3 4

Mean proportion (%)

Difference in mean proportions (%)
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mining-induced disturbances, which involve several soil perturbations
(Kane et al., 2020; Zhao et al., 2019). Using PERMANOVA, we tested
the contributions of soil depth and mining disturbances to the distribu-
tional patterns of the bacterial communities within three land-use types
(Fig. 4C). The results showed that the microbial communities were
strongly driven by mining disturbance within land-use types, irrespec-
tive of the soil depth. Consistently, we found that Proteobacteria, and
Chloroflexi were significantly enriched from sites heavily disturbed by
mining (Fig. 4D). This variation is consistent with the soil chemistry
data, which shows that there are higher metal(loid)s and lower nutrient
contents in areas with heavily mining disturbances than in areas with
moderate mining disturbances. Taken together, these results raise the
possibility that mining disturbance-induced environmental stresses in-
fluence the selective enrichment of soil microbiota within each land-
use type.

4.2. Land-use type effects on the microbial co-occurrence network

Soil microorganisms form complex association networks, which are
important for understanding the structure of microbial communities
and their responses to environmental changes (de Menezes et al.,
2014). Given the differences in the edaphic factors among the three
land-use types, it is reasonable to suggest that the network structures
are distinct across the land-use types. Indeed, we observed that the
samples from the forest soil ecosystem have many more highly con-
nected taxa (nodes) than the farmland or grass soil samples, which in-
dicates that the forest soil ecosystem harbors a more complex
microbial network (de Vries et al,, 2018). Evidence has shown that com-
plex networks are more robust than simple networks to environmental
perturbations (Anje-Margriet et al., 2007; Shade et al., 2012). Therefore,
we deduced that the microbial communities in the forest soil ecosys-
tems, which had more complex networks, are more resilient than
those in the other ecosystems to environmental stresses. This deduction
is rational because the nutrient contents in the farmland and grass eco-
systems were higher than that in the forest ecosystem (Fig. 1). Typically,
elevated nutrient contents foster the growth of some microbes and re-
sults in lower selection pressure for other microbes (Button, 1985). In
contrast, low nutrient contents could act as a selective force on the as-
sembly of the soil microbiome and increase the chance for coevolution
(Button, 1985).

Keystone taxa are thought to frequently interact with other taxa,
thereby playing critical roles in maintaining the stability of co-
occurrence networks (Herren and McMahon, 2018). We found that
the distributional patterns of the keystone OTUs differed among the
land-use types. Therefore, it is reasonable to suggest that land-use
type can manipulate the assembly of microbes in soil ecosystems. This
is consistent with prior studies conducted across 10 landscapes
(Barnett et al., 2019). Importantly, we observed that nutrient and
metal(loid) parameters, i.e., Tl, Sb, K, P, and Ca, were the main determi-
nants of keystone OTUs, which are linked to network stability (Fig. 6).
Given that mining disturbances could significantly influence the sta-
tuses of soil nutrients and metal(loid)s within land-use types (Fig. 1),
it is reasonable to propose that mining disturbances can modulate the
soil co-occurrence networks in each land-use type. Intriguingly, we
demonstrated that the relative abundance of the individual OTUs is in-
consistent with their importance in the soil microbial network. For
instance, OTU_88, OTU_50, and OTU_64 were characterized as having
the highest degrees in the farmland, forest, and grass soil samples, re-
spectively; however, none of these OTUs were among the top 20 most
abundant OTUs in any of the networks. A similar pattern has previously
been observed in human (Tapio et al., 2017) and plant (van der Heijden
and Hartmann, 2016) microbiome networks. These facts remind us that
low-abundance microorganisms should not be neglected in ecological
restorations. Interestingly, we found that OTU_64 was the most well-
connected node in both the forest soil and grass soil ecosystems. The
consistent identification of OTU_64 as a keystone OTU across land-use
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types suggests its vital roles in manipulating the soil microbiome. The
taxa in OTU_64 belong to the Solibacterales order, which was also char-
acterized as a keystone group by Xue et al. (2017) in karst rocky desert-
ification areas. Members of the Solibacterales in soils are considered
indicators of soil degradation (Soman et al., 2017) and they can partici-
pate in the biogeochemical cycling of phosphorus (P) in alpine soil eco-
systems (Sun et al., 2020a). Solibacterales is also capable of chitin
degradation, which is involved in carbon and nitrogen cycling in
soil ecosystems (Hui et al., 2020). The capacity of Solibacterales spe-
cies to perform key biogeochemical nutrient processes may explain
their central role as keystone species in the microbial networks of
areas with mining disturbances. Nonetheless, it is important to
bear in mind that the identification of the keystone OTUs was
based on the analysis of correlations (associations) among the
OTUs. Future studies are now needed to verify the impact of keystone
taxa on microbiome composition and functioning (Herren and
McMahon, 2018; Paine, 2010).

4.3. Distribution of indictor genera and their roles in nutrient cycling

Recent evidence recognized that microbial indicators could repre-
sent specific environmental settings and the responses of the taxa to en-
vironmental conditions (Chen et al., 2020; Guo et al., 2018). The
indicator genera identified herein overlap with those identified in previ-
ous studies of diverse land-use types, such as forest (Sun et al., 2014),
tailing (Xiao et al., 2019), and agricultural soils (Zhang et al., 2020a),
suggesting that factors driving the assembly of the soil microbiome
may be common across diverse land-use types. Although the taxonomy
of the indicator genera changed greatly across the three land-use types,
we found that most of these indicator genera were involved in nutrient
cycling. For example, members of Paracoccus, an indicator genus of the
forest soil, have been widely identified as aerobic denitrifying bacteria
(Zhang et al., 2020b) and therefore participate in nitrogen recycling in
terrestrial ecosystems. In addition, Paracoccus can also perform
chemolithotrophic carbon fixation (Ye et al., 2020). Similarly, some in-
dicator genera from grass and farmland soils, including Labrys and
Bradyrhizobium, are assigned to the phylum Proteobacteria and have
been suggested to be involved in nutrient cycling. Bradyrhizobium was
found to minimize oxidative stress and enhance nitrogen fixation in
particular plants (Rodrigues et al., 2013). Labrys has been suggested
to solubilize phosphate minerals and improve IAA production activ-
ities from soils under sugarcane cultivation (Rosangela et al., 2012).
These examples suggest that the distribution of soil taxa across land-
use types is in line with their putative lifestyles, which helps to main-
tain nutrient cycling in nutrient-poor soil ecosystem disturbed by
mining.

5. Conclusion

Soil microorganisms contribute substantially to a wide range of ser-
vices and thereby improve recovery in ecosystem restoration. However,
there is relatively limited information on how microbial communities
respond to land-use types with different intensities of mining distur-
bance and their potential roles in supporting soil restoration in mining
areas. Here, we examined the distributional patterns of soil bacterial
communities across three land-use types. We showed that land-use
types strongly regulated microbial attributes, including diversity indi-
ces, dominant taxa, co-occurrence network structure, and keystone
OTUs. We found that the occurrence of soil taxa is in line with their pu-
tative lifestyles, which thereby maintains soil nutrient functioning for
ecological restoration. This study provides important information on
the occurrence and distribution of the soil microbiome across land-
use types in mining areas and their potential beneficial roles in soil
restoration.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2021.145753.
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