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Effect of crustal porosity on lunar magma ocean solidification
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Abstract The lunar ferroan anorthosites, formed by pla-

gioclase flotation from the crystallization of the lunar

magma ocean, have an age span of over * 200 Ma.

However, previous thermal models predicted a much

shorter time range. We propose that a much smaller ther-

mal conductivity of anorthositic crust due to its high

porosity may have delayed the solidification of the lunar

magma ocean. Our thermal simulation results, using the

thermal conductivity of porous lunar crust, show that

crystallization of a 1000 km deep magma ocean could be

prolonged to tens of millions of years, and up to 180 Ma

under some extreme conditions. The porous crust alone

can’t explain the large crustal age span, however. Other

circumstances must be taken into consideration, such as a

thick lunar soil.

Keywords Porosity � Thermal evolution � Ferroan
anorthosites

1 Introduction

The Moon is believed to be a product of a giant impact

between proto-Earth and a Mars-sized impactor (Hartmann

and Davis 1975; Cameron and Ward 1976). Consequently,

at least a majority of the infant Moon could be melted,

which is known as the lunar magma ocean (thereafter,

LMO) hypothesis (Smith et al. 1970; Wood et al. 1970),

due to highly energetic collision and rapid accretion

(Canup and Asphaug 2001). Samples from Apollo missions

provide solid evidence that lunar anorthositic crust is a

primary product of LMO differentiation (Taylor 2016), and

its solidification extends from 4.47 to 4.29 billion years

before the present (Borg et al. 2015; Fig. 1). Lunar magma

ocean crystallization process can be divided into two stages

(Snyder et al. 1992; Elardo et al. 2011; Elkins-Tanton et al.

2011; Sakai et al. 2014; Lin et al. 2017).

The first stage mainly crystallizes olivine and pyroxene

at the bottom of residual magma ocean since adiabat

changes much smaller than liquidus with depth and would

intersect with liquidus at some depth where crystallization

occurs (Elkins-Tanton 2012). During this epoch, the sur-

face of magma ocean would remain as free liquid (Herbert

et al. 1977b; Elkins-Tanton et al. 2011), because any

chilled magma due to exposure to cold stellar space is

denser than liquid magma underneath, vigorous convection

and meteoritic impacts would disintegrate quenched

material and bring it downwards into hot magma (Walker

et al. 1980; Spera 1992), although some research would

argue the presence of a stable anorthositic crust formed at

its very beginning (Xu et al. 2016). The high-temperature

liquid surface would radiate energy at a rate of[ 105

W m-2, orders of magnitude higher than thermal conduc-

tion. Accordingly, the first * 80 vol% of magma ocean

would cool in just 102–103 years (Elkins-Tanton et al.
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2011). When plagioclase becomes a liquid phase, it will

crystallize at the bottom and float to the surface, forming an

anorthositic crust. The most significant aspect of this crust,

in terms of thermal evolution, is that it blocks heat loss

efficiently and delays the solidification of the last

* 20 vol% residual magmas. However, the last dreg of

magma would possibly crystallize in 10 Ma according to a

comprehensive LMO evolution model of Elkins-Tanton

et al. (2011), much shorter than geochronology analysis

from ferroan anorthosites (FANs) samples. Solomon and

Longhi (1977) and Meyer et al. (2010) also modeled the

age of FANs by assuming a priori plagioclase lid, an

invalid premise that violates the results of petrological

experiments. Therefore, the discrepancy between dated

FANs ages and modeled ones has not been fully reconciled

yet.

Essentially, the thermal evolution of LMO is regulated

by an initial heat budget and rate of heat loss. The initial

heat budget is always associated with its giant impact

origin and is not well constrained. The two-stage evolution

model of the magma ocean, on the one hand, divides

crystallization into two regimes, i.e., equilibrium and

fractional crystallization; on the other hand, it sets up two

corresponding thermal evolution schemes. Heat loss during

the first stage is very efficient when magma ocean has a

free liquid surface and can be characterized by Stefan–

Boltzmann law (Elkins-Tanton et al. 2011). This stage is

considered transient. The rate-limiting stage is the second

one because heat loss mode is transformed from blackbody

radiation to conduction. From Fourier’s law of heat con-

duction, heat flux is a product of thermal conductivity and

temperature gradient. Thus, thermal conductivity is a key

ingredient of thermal evolution. More often than not, lunar

and other planetary bodies’ thermal evolution models use

constant thermal conductivity in the range of

2–4 W m-1 K-1 (e.g. Solomon and Longhi 1977; Wiec-

zorek and Phillips 2000; Elkins-Tanton et al. 2011). This

range is mainly derived from minerals and rocks on Earth

at room temperature (e.g. Murase and McBirney 1970;

Cermak and Rybach 1982; Clauser and Huenges 1995;

Schumacher and Breuer 2006). The conditions under which

thermal conductivity was measured may not be applicable

to the Moon. The lunar anorthositic crust is heavily cra-

tered and its fractures, cracks, and porosities are well

preserved. Researches on porous chondrites and planetes-

imals show that thermal conductivity can be drastically

reduced by porosity as much as three orders of magnitude

(Yomogida and Matsui 1984; Hevey and Sanders 2006;

Henke et al. 2012). Due to small thermal conductivity,

highly porous anorthosites would serve as a blanket cov-

ering the remaining magma ocean and insulate internal heat

from being lost. Thus, in this study, we propose that porous

anorthosites have a vital influence on LMO thermal evo-

lution and may keep some of the lunar interiors as liquid

till 4.29 Ga ago.

In this study, we will first briefly introduce the proce-

dure of solving energy conservation equations numerically

that control LMO solidification process. Then the follow-

ing section will describe the impact of porosity of anor-

thosites on their thermal conductivity, followed by three

models that increase in complexity. Finally, we will also

discuss the possible factors that may affect LMO thermal

evolution.
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anorthosite rocks, compared
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2 LMO solidification

The depth of LMO is poorly constrained. McLeod (2016)

thoroughly discussed the possible scale of LMO, ranging

from 400 to 1000 km, based on aluminum mass balance

and geophysics. We will use 1000 km in all three models

for a good comparison with that of Elkins-Tanton et al.

(2011).

The crystallization of LMO follows Elkins-Tanton et al.

(2011) and Snyder et al. (1992). Detailed descriptions can

be found in these two studies. To simplify the problem, we

divide LMO evolution into two stages. According to Elk-

ins-Tanton et al. (2011), the first stage crystallizes olivine

and pyroxene at the bottom of LMO, leaving a liquid

surface. This stage extends to 80% of the initial magma

volume. The second stage, however, grows plagioclase

besides olivine, pyroxene, and oxides. The volume ratio b
between plagioclase and other minerals during this stage

does not hold constant, in other words, b = 0.5 when

80–87 vol% magma ocean is solidified; otherwise, b = 0.4.

A rough estimation tells that it would take magma ocean

several hundred years or so to cool to 80 vol% solidifica-

tions. According to energy conservation, we have

0:8� V0qLþ V0qCpDT ¼ 4pR2 � rT
4 � dt, where V0,

DT and T are the initial magma volume, mean temperature

change during 0%–80% crystallization (estimated by soli-

dus change, * 500 K), and mean effective radiation tem-

perature, respectively. The time dt, as a result, is

* 300 years, which is negligible compared with the total

time of the solidification of LMO. Therefore, we start our

model with the second stage directly, that is, the plagio-

clase floatation or crust formation period.

During the second stage, plagioclase and other minerals

will co-crystallize at the base of the remaining magma

ocean. Plagioclase is lighter than surrounding liquids and

floats to the surface immediately after its formation,

whereas other minerals (olivine, pyroxene, and oxides) stay

still at the bottom due to their higher densities. The tem-

perature of the crust surface is set as constant 250 K

(Langseth et al. 1976; Hevey and Sanders 2006), whilst the

temperature at bottom of the magma ocean is set as solidus.

The solidus of residual magma is defined as the tempera-

ture at the base of residual magma ocean where crystal-

lization occurs and is a function of pressure and chemical

composition. Following Meyer et al. (2010), solidus is

calculated as:

Ts ¼ 2134� 0:1724r � 1:3714� 10�4r2 � 4:4

0:2VL þ 0:01

ð1Þ

where Ts is solidus temperature in K, r is the radius in km,

and VL is residual liquid fraction relative to initial volume.

Furthermore, the temperature profile within the residual

liquid follows an adiabat.

In the following, we divide the volume of 20% of the

initial magma ocean into 1000 equal sub-volumes, each

step crystallizes one part. During each step, the residual

liquid fraction can be considered as constant, as an

approximation. Then, we solve the heat balance equation

numerically at the base of the crust (r = r*):

4pr2
oT

or
j
r¼r�

¼ H þ CpqV
oT

ot
þ qL

dV

dt
ð2Þ

where k is the thermal conductivity of crust, H, Cp, q and

L are heat production rate of radioactive decay, specific

heat capacity, density, and latent heat of residual magma,

respectively. These parameters are listed in Table 1. Note

that the present abundances of radioactive energy sources
235U, 238U, 232Th, and 40K should be extrapolated back-

ward to the time of lunar formation. The present abundance

of Thorium, Uranium, and Potassium concentrations are

adopted from (Anders and Grevesse 1989; Hagee et al.

1990). Heat production rates (watts per kilogram of iso-

tope) and decay constants can be found in Turcotte and

Schubert (2014) and Haenel et al. (1988). By multiplying

density, concentration, volume, and heat production rate,

and then summing up these four isotopes, we have the

energy contribution of radiogenic heating H.

The left side of Eq. (2) is the energy conducted through

the crust; on the other side, these three parts represent

energy sources in residual liquid, i.e., radioactive energy,

sensible heat, and latent heat. It is the heat flux at the

bottom of the crust that controls the solidification lifespan

of the magma ocean, as easily seen from Eq. (2). During

this step, the internal heat is continuously transferred to

stellar space by solving Fourier’s law of heat conduction

and calculation stops when the temperature of the next step

at the base of the crust is reached. Then, the next one-

thousandth volume is added to the bottom of the crust and

the top of the solidified mantle. The same procedure is

undertaken until the LMO is completely solidified. Unlike

Maurice et al. (2020), we consider solidified magma as

static cumulates for simplicity.

3 Effect of crustal thermal conductivity on LMO
solidification

3.1 Thermal conductivity of anorthosites

Thermal conductivity of certain material is a function of

composition, porosity, temperature, ambient pressure, and

fluids content (Cermak and Rybach 1982; Clauser and

Huenges 1995; Vosteen and Schellschmidt 2003; Schön

2015). FANs on the Moon are rather anorthositic. Among
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samples listed in Warren (1993) and Wieczorek (2006),

only a few of them contain mafic minerals more than

10 wt%. As Wieczorek (2006) pointed out, the mass-

weighted average plagioclase in FANs is 93 wt%. In

addition, accessory minerals are mostly absent in FANs

(Wieczorek 2006). Thereby, FANs are modeled as 93 wt%

plagioclase plus 7 wt% pyroxenes. Moreover, different

anorthite content can result in a large difference in thermal

conductivity (Horai and Simmons 1971), this requires that

the plagioclase, for its overwhelmingly high anorthite

content, should be treated as pure anorthite. The

monomineralic anorthite aggregates have a thermal con-

ductivity of 1.68 W m-1 K-1 at room temperature (Horai

and Simmons 1971; Schön 2015); while pyroxene (mostly

high-Ca pyroxene) is 4.66 W m-1 K-1 (Clauser and

Huenges 1995; Schön 2015), and mass-weighted average

thermal conductivity of anorthosites is 1.89 W m-1 K-1. It

follows Sass (1965) that aggregates of crystals typically

have lower conductivity values than monomineralic anor-

thosite, arising from contact effects of intergrains (Binder

and Lange 1980; Schön 2015). We thus infer that anor-

thosites may be more thermally resistant.

3.1.1 Dependence on T, P

The temperature influence of thermal conductivity has been

confirmed by many experiments, (Murase and McBirney

1970; Clauser and Huenges 1995; Vosteen and Schellsch-

midt 2003). In particular, the conductivity of synthetic

pore-free lunar basalts (10,022) in a large temperature

range, for example from room temperature up to 1500 �C
(e.g. Murase and McBirney 1970), exhibits asymptotically

decrease till melting point, where the conductivity reaches

its minimum, one-sixth of room temperature value. How-

ever, plutonic rocks rich in feldspar including anorthosites

do not show such a strong correlation, instead, conductivity

decreases slightly with temperature (Clauser and Huenges

1995). We hence assume that FANs possess conductivity

just independent of temperature. This assumption is valid

in our model since the temperature range of lunar anorthite

crystallization is * 1400 K calculated by the MELTS

program (Smith and Asimow 2005) using the BSM com-

position of (Elkins-Tanton et al. 2011), comparable with

the temperature range of Clauser and Huenges (1995).

The dependence of conductivity for pore-free materials

on ambient pressure is not well constrained compared with

temperature. Ross et al. (1984) showed that, though not for

rock-forming minerals, the thermal conductivity of crys-

talline material increases with ambient pressure on the GPa

scale. For rock-forming minerals, Yukutake and Shimada

(1978) and Seipold and Gutzeit (1980) conducted very

precise measurements and showed that pore-free minerals,

in terms of thermal conductivity, are insensitive to pressure

at least 10 kbar. In the case of the Moon, the lunar crust of

average thickness 34–43 km (Wieczorek et al. 2013a) has

pressure up to 0.2 GPa, small enough that pressure effect

on pore-free lower crust can be ignored. From the discus-

sion above, we conclude that neither temperature nor

pressure in our model would contribute remarkably to

thermal conductivity.

3.1.2 Dependence on porosity

Besides, the effect of fluids content in rock voids, if any,

should be ignored, inferred from results of Clauser and

Huenges (1995). The lunar anorthosite could have

* 1 wt% volatiles at most, according to Hui et al. (2013).

Here, we find porosity (/) to be the utmost factor that

influences the thermal conductivity of FANs. Porosity may

originate from dislocation of grains due to differential

thermal expansion (Clauser and Huenges 1995), meteorites

impact, and inherent voids (like holes in vesicular basalts).

Recently, the mean porosity values of dozens of lunar

samples have been upgraded, including Apollo samples

and lunar meteorites (Kiefer et al. 2012a, b). These are

regarded as on-the-Moon bulk porosities because alteration

of meteorites by terrestrial weathering is a negligible factor

(see supplementary materials in Wieczorek et al. 2013a).

Table 1 Parameters used in this

study
Parameter Symbol Value Unit References

Stefan–Boltzmann constant r 5.67 9 10–8 W m-2 K-4 –

Mean mantle Density q 3346 kg m-3 Wieczorek (2006)

Specific heat capacity Cp 1256.1 J kg-1 K-1 Elkins-Tanton (2008)

Latent heat L 500,000 J kg-1 Morse (2011)

Anorthosite pore-free density qAn 2917 kg m-3 Besserer et al. (2014)

Stress exponent n 1 – Rybacki and Dresen (2000)

Size exponent m 3 –

Activation energy Q 4.67 9 105 J mol-1

Pre-exponential factor A 1012.1 M Pa-n um-m s-1

Crystal diameter d 10–6 m This study
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Figure 2 summarizes the ages and porosities of their

samples. Ages are collected from Meteoritical Bulletin

Database (https://www.lpi.usra.edu/meteor/) and Lunar

Samples (https://www.lpi.usra.edu/lunar/samples/), Lunar

and Planetary Institute. They are considered as genesis time

based on resistance to shock events of geochronometers, in

the order Sm–Nd, Rb–Sr, U–Pb, according to Borg et al.

(2015). 77,035 and NWA4932 haven’t been dated yet;

NWA482 has only Ar–Ar age. So it may represent a little

higher porosity accumulation rate. It seems that the

porosities do not correlate with ages or rock types, broadly

consistent with statistical results (Consolmagno et al.

2008). The fact that the porosities do not cumulate with

ages implies that the porosities could be an indigenous

feature of these rocks, or the current porosities represent a

steady-state between the effect of impact cracking and

porosity generating rate. Both feasibilities indicate that

lunar rocks during or soon after their formation should

have the same porosities as they currently do. The maxi-

mum porosity is a little bit higher than 20%. Confining

pressure induced fracture decrease would be the most

likely factor in reducing porosity within a few kilometers

below the surface. This is because loose materials like

lunar soils become closer packed by grains rolling and

gliding under low pressure (Henke et al. 2012). Güttler

et al. (2009) determined porosities variation with pressure

range 10–4–100 bar, equivalent to 2 km below the lunar

surface, and porosities decrease to 0.42 from 0.88, repre-

sentative values of lunar soils. In the following, we will

employ three models, each using a different depth-depen-

dent porosity distribution, to evaluate the influence of

thermal conductivity on LMO thermal evolution.

3.2 Thermal conductivity profiles

within anorthosites

When plagioclase starts to form at magma’s bottom, it will

float to the magma surface forming a nascent lunar crust.

This crust could not be a single homogeneous crystal, but

possibly a local shell of plagioclase aggregates, because

plagioclase cannot crystallize everywhere simultaneously

and reach the surface at the same time. Different aggre-

gates or rockbergs will eventually join together, giving

birth to a complete global shell of crust (Herbert et al.

1977a).

This process will inevitably result in imperfect contact

between crystals and aggregates. Whatever the cause of

porosity, meteoritic impact, inherent bubbles, or differen-

tial thermal cracking, we argue that there are indeed some

pores in the primitive crust. Thermal conductivities of

rocks and soils that have porosities up to 60% have been

summarized by Warren (2011) and Keihm and Langseth

(1977). An exponential fitting equation is acquired by

Warren (2011):

k /ð Þ ¼ k0e
�12:46/ ð3Þ

where k0 is non-porous conductivity, here taken as

1.89 W m-1 K-1. Thus, rocks with / = 0.2 have conduc-

tivities * 0.156 W m-1 K-1. Interestingly, Henke et al.

(2012) independently derived a similar analytical expres-

sion from H and L chondrites data:

k /ð Þ ¼ k0e
�/=/0 ð4Þ

where /0 = 0.08. This formula yields an almost identical

result. We infer that the porosity reducing effect on the

conductivity is likely to be independent of materials and

thus Eqs. (3) and (4) can be more reliably applied to the

Moon. Figure 3 illustrates the relationship between thermal

conductivity and porosity defined by Eq. (3). The upper

limit of porosity is 0.6 corresponding to the lunar surface,

where thermal conductivity is approximately three orders

of magnitude smaller than pore-free anorthosites.

In the following, three models of porosity distribution

will be demonstrated. We firstly consider a simple case,

model A, in which a homogeneous porosity is at all depth.

This uniform porosity is taken as 20% in light of
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Fig. 2 Relationship between porosities and ages of anorthosites. Porosity from (Kiefer et al. 2012b); age from (Gaffney et al. 2008; Daubar et al.

2002; Grange et al. 2016; Nyquist et al. 1991, 1977, 2005, 2007, 2009; Dalrymple and Ryder 1996; Shih et al. 1985; Meyer et al. 1996; Borg

et al. 2011; Stettler et al. 1973; Murthy et al. 1971; Kirsten and Horn 1974)
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measurements (Kiefer et al. 2012a, b). This model is

oversimplified and is included here because it serves as a

basis to discuss the relationship between porosity and

thermal evolution. In this model, any parcel of forming

crust is assumed to have 20% porosity, and specific heat

capacity and density are constants.

Thermal evolution is shown in Fig. 4. Figure 4a depicts

the temperature profile for four selected times, 0 Ma,

30 Ma, 100 Ma, 190 Ma; Fig. 4b displays the growth of

the solidifying mantle and crust. Therefore, this simplified

model, for an initial composition of, shows that the last

drop of magma will freeze at * 190 Ma after lunar for-

mation. Apparently, both mantle and crust crystallize at a

higher rate during earlier times.

In model B, a more realistic porosity profile is consid-

ered. High-resolution lunar structure from GRAIL indi-

cates that density or porosity changes with depth below the

surface (Wieczorek et al. 2013b). Additionally, seismic

data proves that there is a steady increase of density within

uppermost * 20 km, under which a rather stable layer

exits down to lunar Moho (Toksöz et al. 1974; Khan et al.

2013). Since Apollo 12 and 14 landing sites are in a region

that has a similar vertical density feature to the far side

(Besserer et al. 2014), we tentatively assume that this

discontinuity exists 20 km below the lunar surface globally

as a primary feature, regardless of later mare basalts

eruption. As a consequence, the uppermost * 20 km crust

has an increased thermal conductivity, while the conduc-

tivity deeper than 20 km is invariable.

Han et al. (2014) set up a model with a suite of rea-

sonable scenarios. The porosity follows an exponential

decrease:

/ zð Þ ¼ /0e
�c

PðzÞ
Pc ð5Þ

where z is the depth in km, /0 is surface porosity. The

constant c is * 6.15. Lithostatic pressure P(z) is a sum of

pressure of overlying crust with variable porosities,

P zð Þ ¼
Pn

i¼0 qigDz, g = 1.62 m s-2. Characteristic closure

pressure Pc is experimentally determined when the porosity

is below 0.2% (Sclater and Christie 1980), and in the case

of the Moon, Pc is * 100 MPa.

Again, Binder and Lange (1980) suggest another expo-

nential decrease of porosity:

/ zð Þ ¼ /0e
�z=6:5 ð6Þ

where /0 is surface porosity set as 0.2. Factor 6.5 is an

e-folding depth in km. With the help of Eqs. (3) or (4), the

conductivity profiles are obtained. Once a shell of crust is

formed, according to its depth, it is assumed to have a

porosity corresponding to that of the same depth. This

assumption, though unrealistic to some extent, is good to

match the final porosity profile. In model C, we will try to

make up for this defect.

We also try a similar distribution but with e-folding

depth and surface porosity being 10 km and 0.24, respec-

tively (Besserer et al. 2013), i.e., / zð Þ ¼ 0:24e�z=10. A
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linear porosity distribution is also possible (Besserer et al.

2014), / zð Þ ¼ 0:24� 0:012z.

On the other hand, Wieczorek et al. (2013a) suggest that

porosity may extend to lunar uppermost mantle. Accord-

ingly, an exponential decrease in porosity throughout the

entire crust is modeled under the same pattern. A com-

parison between these porosity profiles is made in Fig. 5.

These results can be classified into two categories. The first

category has a surface porosity of 0.2, giving rise to shorter

crystallization time. While the second one has a longer

evolution time due to higher porous. Unexpectedly, the

little porosity difference between the two categories leads

to a clear discrepancy in total evolution time. Perhaps most

importantly, all these models fail to account for anortho-

sites’ large age coverage, though porosity does have a

noticeable influence on thermal evolution.

In model B, the presumption of the latest formed crust

having some certain porosity is possibly not in accordance

with reality. The temperature of anorthosites right after its

crystallization, generally above 1000 K, is high enough

that the thermal annealing effect could take place above the

solidification front. Thus, some inherent pores in

anorthosites could be squeezed out. In model C, in the

following, both overburden pressure and thermal annealing

are taken into account, giving a real-time adaptive porosity

profile synchronous with the ongoing solidification of

LMO. Rocks, when subjected to long-term stress, tend to

deform permanently, and if the temperature is close to their

melting point, they will be much easier to adjust shapes.

Minerals and rocks will finally adapt themselves to mutual

geometric shapes and fill voids in between. This process is

termed thermal annealing or sintering. The creep rate of

olivine crystal powders has been experimentally deter-

mined by Schwenn and Goetze (1978) in 1000–1600 �C
range. Henke et al. (2012) and Yomogida and Matsui

(1984) utilize it to model the sintering process of porous

planetesimals. In terms of anorthosites, the parameters of

Rybacki and Dresen (2000) are made use of. From volume

conservation, we have:

o ln 1� /ð Þ½ �
ot

¼ 3Aend�me�
Q
RT ð7Þ

where A is the pre-exponential factor, e is stress in MPa,

here taken as hydrostatic pressure, n is stress exponent, d is

particle size in um, m is size exponent, Q is the activation

energy in J mol-1, R is the universal gas constant

8.314 J mol-1 K-1, and T is the temperature in K. This

equation relates the time rate of porosity reduction and

strain rate, very similar to the one used by Schwenn and

Goetze (1978), Yomogida and Matsui (1984) and Henke

et al. (2012). The activation energy is, though highly

dependent on water content (Rybacki and Dresen 2000),

insensitive to stress, grain size, or porosity (Schwenn and

Goetze 1978). Thus, despite the high porosity of Schwenn

and Goetze (1978) or the low porosity of Rybacki and

Dresen (2000), we take Q as a constant. In the lunar crustal

pressure range, the dominant deformation is supposed to be

diffusion creep, according to Rybacki and Dresen (2000).

Parameters are listed in Table 1, Q is 4.67 9 105 J mol-1

if the Moon is dry. The strain rate employed by Yomogida

and Matsui (1984) is physically identical to that of Rybacki

and Dresen (2000). The particle diameter is taken as a

critical value that convective magma would allow anorthite

crystals to be not trapped in (Solomatov 2007):

d ¼ 10

Dqg

ffiffiffiffiffiffiffiffiffiffiffiffi
glagF
Cp

s

ð8Þ

Parameters are surface heat flux F, thermal expansivity a,
density contrast between anorthite and magma Dq, and

magma viscosity gl. For reasonable values, e.g.,

Dq = 450 kg m-3, a = 5 9 10–5 K-1, gl = 10 Pa s

(Dygert et al. 2017), the critical diameter is a few microns.

In order to constrain the depth of porous crust, we define

an annealing depth, dad, the depth where the last 0.1%
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Fig. 5 a Five porosity profiles within the lunar crust. The discon-

tinuity around 20 km is an artificial truncation assumed by the

corresponding model because porosity near 20 km is about a few

percent, not exactly zero. b Corresponding results of five porosity

profiles. Solid curves are the growth of crust, meanwhile dotted

curves are the solid front of the crystallizing mantle.
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porosity diminishes within 100 years. This tells us that

crust with porosities smaller than 0.1% will be annealed

within 100 years, short enough that can be considered as an

instant compared with geological time scale. A brief esti-

mation gives the strain rate should be higher than

3.2 9 10–13 s-1. Therefore, the corresponding annealing

depth can be numerically determined according to Eq. (7).

The porosity distribution above annealing depth is then

following an exponential with surface porosity 20%; while

porosity below annealing depth is set as 0. Figure 6 is the

annealing depth evolution and residual magma ocean

crystallization. Admittedly, it would take a shorter time to

a full crystallization because porosities between annealing

depth and crust surface during cooling are smaller than

final values.

3.2.1 Surface powdered matter insulation

As manifested by model B, a higher porosity of surface

materials will dramatically delay magma solidification.

Therefore, we infer that the uppermost highly porous layer

of the lunar crust might have a strong insulation effect. A

20 m layer of loose matter with porosity up to 60% at the

surface could possibly postpone the cooling of magma

ocean to a great extent, as represented by Fig. 7. With the

first layer of 10 m having 60% pores, a second 10 m being

36% (Warren 2011), and 20 m below surface following

porosity distribution of Wieczorek et al. (2013a), the

residual magma ocean extends to 180 Ma, almost 4 times

longer than the one without surface highly porous material

in model B. Thus, a 20 m thick highly porous layer could

possibly explain FANs large age span.

4 Discussion

4.1 Comparison with the previous model

Our model is a ramification of Elkins-Tanton et al. (2011).

The solidus equation we adopted is based on the thickness

of the lunar crust of 47 km, thicker than Wieczorek et al.

(2013a). A thinner anorthosite crust changes the initial

BSM, which further alters the solidus curve. However, due

to the large volume of LMO, the effect of a few kilometers

anorthosites on solidus could be modest. On the other hand,

this setup benefits us a better comparison between our

results and Elkins-Tanton et al. (2011). Their model yiel-

ded 7 Ma to complete solidification. However, even in the

adaptive porosity case, it would take magma ocean 25 Ma

to solidify, several times longer. Therefore, porosity in the

lunar crust should be considered in thermal evolution.

It’s interesting to note that we have noticeable different

results from Maurice et al. (2020) wherein they achieved

* 178 Ma magma ocean lifespan with a similar thermal

conductivity of porous-free anorthositic crust in a pure

conduction scheme. This discrepancy comes from mag-

ma’s internal heat source. They adopted U, Th, K abun-

dances from Taylor (1982), * 4 times higher than those in

CI chondrites (Anders and Grevesse 1989; Hagee et al.

1990). Additionally, we don’t include partitioning of these

elements between residual magma and solid, instead, they

are uniformly distributed in solidified cumulates and

residual magma. We admit that their model is more rea-

sonable with respect to radioactive decay, and can be

incorporated in future models.

4.2 Highly porous surface layer

Most people will argue the rationale of a highly porous

layer on the lunar surface. Those porosities were taken

from present lunar soil. The most uncertain factor perhaps

is its thickness. The thickness of this layer has an accu-

mulative tendency with its age (Nakamura et al. 1975), and

the mean rate after Imbrian Period is * 0.2 mm Ma-1

(Craddock and Howard 2000). This extremely low rate

would contribute to lunar soil less than one meter since the

Imbrian Period. This implies that the majority of present
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lunar soil originated from late heavy bombardment and

before. If present lunar soil stemmed from late heavy

bombardment only, then we suspect there should be more

soil because impacts would be more frequent during crust

formation. If this is the case, our presumption will be valid.

The reason why we don’t see a thicker soil is that soil made

during crust formation may undergo a sintering process due

to relatively high temperature under the lunar surface. On

the other hand, if present lunar soil was produced from both

late heavy bombardment and before, we infer there would

be some soil, for example, half of its present thickness, on

the surface of the Moon during crust formation. Overall,

some soil atop crust during crust formation is reasonable.

And the truth is the surface powdered matter is extremely

efficient in keeping the magma ocean warm.

4.3 Lunar surface temperature

Among these parameters in thermal models lies one

important factor, lunar surface temperature. This is treated

very roughly over the decades. Most literature takes as

250 K, for reasons like Apollo mission in situ heat flow

measurements (Langseth et al. 1976), or astronomical

constraints on nebular temperatures (Woolum and Cassen

1999). However, we find this arbitrary set of temperatures

to be oversimplified, and the lunar surface would be very

hot after its formation. Recent studies on the atmosphere of

rocky exoplanets demonstrate that rocky planets could be

smothered by hot dense silicate vapor or atmosphere

(Zahnle et al. 2007; Lupu et al. 2014). Thus, after the

catastrophic formation of the Moon, it would be sur-

rounded by a hot cloudy silicate vapor. This is partially

proved by the detection of SiO from Spitzer space tele-

scope (Lisse et al. 2009) and theoretical modelling (Saxena

et al. 2017). Based on LMO crystallization model of Elk-

ins-Tanton et al. (2011), Saxena et al. (2017) concluded a

104 Pa, 3000 K (sub-Earth point) atmosphere just 1 year

after formation and 300 Pa, 2300 K (sub-Earth point) some

400 years after formation. We, therefore, believe that the

infant Moon right after its formation would possess some

atmosphere, and this atmosphere would keep the lunar

surface warm/hot for some time. Once plagioclase formed

and floated up to the surface, under the blanketing effect of

the atmosphere, it would stay as hot as its solidus or so,

rather than 250 K.

Certainly, as the atmosphere dissipates gradually, the

surface temperature will drop to * 250 K. But neither the

question of how long the atmosphere would last nor how

surface temperature changes with time is clear. To simply

demonstrate how lunar surface temperature would dra-

matically change thermal evolution of LMO, we assume a

linear surface temperature drop with time, i.e.,

T(t) = Tpl - (Tpl - 250)t/t0, where Tpl is the melting point

of plagioclase here taken as 1390 K, t0 is the time scale for

surface temperature drop from Tpl to 250 K. It’s very hard

to determine t0, thus we use a series of t0, 1000 years,

10,000 years, 10 Ma, 50 Ma and 200 Ma.

5 Conclusion

We conducted a series of thermal evolution models of lunar

magma ocean with different porosity distributions in lunar

crust included. Model results suggest that porosity of lunar

crust could lead a very different magma ocean solidifica-

tion process than previous studies which generally

neglected crustal porosity. Finally, our results have the

following conclusions:

1. Thermal conductivities of anorthosites are smaller than

those generally used ones, especially when some pores

present;

2. A smaller thermal conductivity will delay the solidi-

fication of LMO a few tens of million years. However,

this cannot reconcile the discrepancy between the age

span and classical crystallization model;

3. Surface loose matter, if exists at the very beginning of

crystallization of the LMO, could possibly keep LMO

warm till 180 Ma after Moon formation, but its

thickness should be * 20 m.
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