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Abstract: Based on an analytical solution for the current point source in an anisotropic 
half-space, we study the apparent resistivity and apparent chargeability of a transversely 
isotropic medium with vertical and horizontal axes symmetry, respectively. We then provide 
a simple derivation of the anisotropy paradoxes in direct current resistivity and time-domain 
induced polarization methods. Analogous to the mean resistivity, we propose a formulation 
for deriving the mean polarizability. We also present a three-dimensional finite element 
algorithm for modeling the direct current resistivity and time-domain induced polarization  
using an unstructured tetrahedral grid. Finally, we provide the apparent resistivity and 
apparent chargeability curves of a tilted, transversely isotropic medium with diff erent angles, 
respectively. The subsequent results illustrate the anisotropy paradoxes of direct current 
resistivity and time-domain induced polarization.
Keywords: Paradox of anisotropy, direct current resistivity, time-domain induced polarization, 
FEM

Introduction

The direct current (DC) resistivity methods have 
been widely used in environmental and engineering, 
hydrological and mineral exploration surveys(Loke 
et al., 2013). Several modern DC resistivity acquiring 
systems can obtain time-domain induced polarization 

(TDIP) data and derive more useful information from 
underground sources (Dahlin and Loke, 2015). The 
modeling and inversion techniques in TDIP that are 
based on isotropic media are well-developed (Pelton 
et al., 1978; Huang et al., 2003). Anisotropy of the 
Earth’s subsurface is universal (Linde and Pedersen, 
2004); however, and existing research showed that if 
the electrical anisotropy of the subsurface is ignored in 
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the presence of inverted anisotropic data, large errors, and 
even false conclusions may occur (Asten, 1974; Kenkel et 
al., 2012). Therefore, studying the response characteristics 
of an anisotropic subsurface is important for understanding 
anisotropic media and the interpretation of anisotropic data.

Numerical simulation is the primary method used for 
studying the distribution law of electrical detection data and 
also plays an important role in understanding the physical 
mechanism of the method, while the forward simulation 
of the DC resistivity method serves as the basis of TDIP 
simulation. Many studies on DC resistivity anisotropic 
modeling have been published. One-dimensional (1D) DC 
resistivity layered arbitrarily anisotropic media modeling 
and inversion was carried out by Yin and Weidelt (1999), 
Yin (2000), and Yin and Maurer (2001). Additionally, three-
dimensional (3D) DC resistivity modeling in anisotropic 
media was studied by Li and Spitzer (2005) and Zhou et al. 
(2009). The singularity removal technique was reviewed by 
Lowry et al. (1989) and Zhao and Yedlin (1996), while the 
mesh-generating technique was investigated by Rücker et 
al. (2006) and Ren and Tang (2010). Anisotropy modeling 
was adopted by Wang et al. (2013) to achieve a higher 
accuracy and modeling topography, as well as complex 
models. 

A commonly studied and important phenomenon in the 
study of anisotropic media in DC resistivity modeling is 
known as the anisotropy paradox, a phenomenon that was 
verified by numerical simulations but is seldom studied 
in terms of its validity. Lüling (2013) provided proof of 
this phenomenon’s existence using Coulomb’s law in 
anisotropic media and explained this counterintuitive 
phenomenon using electric logging and surface surveys.

However, little research exists on anisotropic induced 
polarization (IP) modeling. Zhdanov (2008) introduced 
the generalized effective medium theory of induced 
polarization, which considers electromagnetic-induction 
and IP eff ects related to the relaxation of polarized charges 
in rock formations, and extended its use to anisotropic 
media (Zhdanov, 2008; Zhdanov et al., 2008). The 2D 
modeling technique and IP response for anisotropic 
complex conductivity were studied by Kenkel and Kemna 
(2017), Kenkel et al. (2012), and Winchen et al. (2009). 
These studies indicated that if anisotropic data were 
interpreted by isotropic inversion, a poor relationship arose 
with the proposed geological models, even in the presence 
of good data fi tting. Recently, Liu et al. (2017) developed 
a program for modeling TDIP and FDIP responses to a 3D 
anisotropic medium using the finite volume method and 
found that the anisotropy paradox phenomenon also existed 

in the response of TDIP modeling.
In this paper, we provide a simple proof of the 

existence of the anisotropy paradoxes in direct 
current resistivity and TDIP and define the mean 
chargeability in TDIP modeling from the proof 
process. To verify our proof, we also developed a 
program for DC resistivity and TDIP modeling in 3D 
anisotropic medium using the fi nite element method 
with unstructured grids.

Anisotropy paradoxes in DC 
resistivity and TDIP methods

An analytical solution for the point source 
potential in an anisotropic half-space

The resistivity of an anisotropic medium can be 
represented by a 3 × 3 tensor, as shown in equation (1) 
(Yin, C., 2000; Yin, C. et al., 2018):
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The electrical potential from a current point source 
in an anisotropic half-space can be written as shown 
in equation (2) (Li and Uren., 1997a, 1997b): 
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In the above equation, I0 is the point current source 

0 0 0( ) ( )TAD rB r r r0ρ , which can be labeled as 
the anisotropic distance (Lüling, 2013). This distance 
includes the effect of the anisotropy and is distinct 
from a Pythagorean distance, while 0AD  represents 
the anisotropic distance between the image source 
and the measurement point.

For the traditional DC resistivity method, the 
source point is located at the earth’s surface; 
therefore, the location of the image point source is the 
same as for the source point, and equation (2) can be 
simplifi ed into equation (3):
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Anisotropy paradox in DC resistivity method
By placing the current point source at r0 = (0, 0, 0), 

notation B in equation (3) can be simplifi ed into equation 
(4):

.T
TB r r0ρ (4)

While all three principal axes of the resistivity tensors 
coincided with the coordinates, the resistivity of the half-
space could be expressed as ρ0 = ρx / ρy / ρz. Accordingly, 
equation (3) can be simplifi ed into equation (5):
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For DC resistivity method, the measurement 
electrodes are located at the surface, and, as such, z = 0; 
then, the potential can be expressed as in equation (6):
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For an azimuthal anisotropy medium, when the 
resistivity of the x–y plane is the same, i.e., ρL, and the 
resistivity along the z-direction is ρT, the resistivity of 
the half-space can be expressed as ρ0 = ρL / ρL / ρT; this 
is also known as the vertical transverse isotropic (VTI) 
medium. Then equation (6) can be written as equation 
(7):
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Equation (7) is also the analytical solution to 
the isotropic half-space, the resistivity of which 

is m L T . This means that, for this type of 
anisotropic half-space, we cannot derive any anisotropic 
information of the medium while the measurement 
electrodes are located at the surface.

For a transversely isotropic medium, while the 
resistivity of the x–z plane is the same, i.e., ρL, and the 
resistivity along the y-direction is ρT, the resistivity of 
the half-space can be expressed as ρ0 = ρL / ρL / ρT; this 
is also called the horizontal transverse isotropic (HTI) 
medium.Then equation (6) can be written as equation (8):
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The measurement electrodes are located along 
the x-direction, which means the location of the 
measurement point is r = (x, 0, 0).Then equation (8) can 
be written as equation (9):
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The above equation indicates that the measured 
a p p a r e n t  r e s i s t i v i t y  a l o n g  t h e  x - d i r e c t i o n 

is m L T , which is the mean resistivity of the 
anisotropic half-space, while the true resistivity along 
the x-direction is ρL.

If the measurement electrodes are located along 
the y-direction, which means the location of the 
measurement point is r = (0, y, 0), equation (8) can be 
written as equation (10):
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2

L
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Equation (10) also express the potential of a half- 
space, while the resistivity of the half-space is ρL; 
therefore, the apparent resistivity along the y-direction 
is ρL, while the true resistivity along the y-direction is 
ρT. This is known as the paradox of anisotropy, which 
several scholars have verified using numerical testing 
(e.g., Li and Spitzer 2005; Wang. et al., 2013).

Anisotropy paradox of chargeability in TDIP  
method 

In the finite volume algorithm for TDIP (Liu et al., 
2017a, 2017b), both the resistivity and the chargeability 
of the medium are anisotropic and the numerical results 
of an HTI medium along the x- and y- are, similar to our 
results . That shows the anisotropic paradox of apparent 
resistivity. There also exists a paradox of the anisotropy-
like phenomenon concerning apparent chargeability. 
Hereto, we provide a simple proof of the paradox of 
anisotropy in TDIP.

To simplify the problem, we assumed that all three 
principal axes of resistivity and chargeability were 
coincident with the coordinates. Similar to resistivity, 
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the chargeability tensor can be simplifi ed as η = ηx / ηy / 
ηz, and the apparent chargeability can be calculated by 
equation (11) (Oldenburg and Li, 1994):

  
1 .t

t

vv
v

(11)

In the above, v1 is the primary potential without the 
IP eff ect, and vt is the total potential with the IP eff ect. 
For the VTI medium, where the chargeability tensor 
is written as η = ηL / ηL / ηT, the potential without the IP 
eff ect is shown in equation (7); the potential with the IP 
eff ect is expressed as in equation (12):
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In equation (12), / (1 )L L L and / (1 )T T T . 
If equations (7) and (12) are brought into equation (11), 
the following equation is derived:

  

.L T L T

L T

(13)

Equation (13) can subsequently be simplified into 
equation (14):

  
1 1 ) 1 ).( (m L T (14)

The above equations indicate that the apparent 
chargeability is a constant. Similar to resistivity in DC 
resistivity method, we refer to this constant, i.e., ηm, as 
the mean chargeability.

For the HTI medium, where the chargeability tensor 
is written as η = ηL / ηT / ηL,  the potential without the IP 
eff ect is shown in equation (8); the potential with the IP 
eff ect is expressed as equation (15):
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When equations (8) and (15) are brought into equation 
(11), we derive the following equation:
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When the measurement electrodes are located along 
the x-direction, the location of the measurement point is  
r = (x, 0, 0), and equation (16) can be written as equation 
(17):

  2
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Equations (17) can subsequently be simplified into 
equation (18):

  
( )(1 ).1 1x m L T (18)

Equation (18) is the same with the mean chargeability 
as shown in equation (14); this phenomenon is similar to 
that of DC resistivity method.

Likewise, for the surveyed line along the y-direction, 
the apparent chargeability is shown in equation (19):

  2

2 .1
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L T T

y
L T T

(19)

Equation (19) can subsequently be simplified into 
equation (20):

.y L (20)

Equation (20) implies that the measured apparent 
chargeability is ηL, while the true chargeability along the 
y-direction is ηT.

In conclusion, the above calculation tells that the 
measured apparent chargeability is different from the 
chargeability along the surveyed line in anisotropic 
media, this phenomenon is the paradox of anisotropy in 
TDIP.

The paradoxes of anisotropy in DC resistivity and 
TDIP are both caused by the different distribution of 
current density in each direction, which is also the 
physical basis to detect the electrical anisotropy.

Three-dimensional forward modeling 
of anisotropy paradoxes in DC 

resistivity and TDIP

The forward modeling of TDIP is based on the 



121

Song et al.

simulation of DC resistivity method. The boundary 
value problem of the DC resistivity method with a point 
current source in anisotropic media is shown in equation 
(21) (see Wang et al., 2013; Li and Spitzer, 2005):
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In equation (21), 0cos( )r
B
r n

q 0r r
, and  B = 

(r–r0)T·ρ·(r–r0).
In a study conducted by Li and Spitzer (2005), the 

mixed boundary condition was compared with the 
Dirichlet boundary condition. The mixed boundary 
condition is the third part shown in equation (21) defi ne 
the potential on the infi nite boundary Г∞, and Dirichlet 
boundary condition is generally expressed as v = 0 on   
Г∞ which means the potential on the infi nite boundary is 
0. Their result showed that the mixed boundary condition 
could derive better results, regardless of whether the 
vicinity of the source or near the boundary. Additionally, 
the potential using the Dirichlet boundary condition 
included larger errors while the measurement point is far 
from the source point. Accordingly, the mixed boundary 
condition was adopted in the simulation.

By applying equation (11), we found that dual forward 
modeling of the point current source was needed, once 
for v1 when the resistivity was ρ and without the IP 
eff ect, and once for vt when the resistivity was ρ [1–η]-1 ; 
then, the apparent chargeability could be calculated.

According to Li and Spitzer (2005), the solution for 
equation (21)  is equivalent to minimizing the following 
integral:
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We used FEM to solve equation (22), as well as the 
unstructured grids created by Gmsh (v4.5.6) (Geuzaine 
and Remacle, 2009), which can generate high-quality 
tetrahedral grids and is non-commercial software. Figure 

1 shows a grid generated by Gmsh; the meshes in the 
central area, where the electrodes are located, are refi ned 
in the image.

Fig. 1.  Grid generated by Gmsh.

Fig. 2.  Tetrahedral element. 

The basic element of the grid shown in Figure 1 is 
tetrahedral, as shown in Figure 2.

Assuming that the electrical field at the nodes of 
the tetrahedral element is v1,v2,v3,v4, respectively, 
the potential in the tetrahedral element is linearly 
interpolated; then, the potential at any point in the 
element can be obtained by linear interpolation with 
the potentials of these four corner points as shown in 
equation (23) (Rücker et al., 2006).

  1 1 2 2 3 3 4 4
4

1
.i i

i

v N v N v N v N v

N v T TN v v N (23)

In the above equation, NT = (N1,N2,N3,N4), vT = 
(v1,v2,v3,v4) and Ni is the shape function. In the discrete 
element shown in Figure 1, equation (23) is placed in 
equation (22) to obtain the element matrix; then, the 
system of linear equations can be obtained by combining 
the element matrix shown in equation (24).

.Kv P (24)

After solving the linear system, the potential vector 

1

2 4

3
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was obtained. Based on the DC resistivity forward 
modeling and equation (11), we can implement the 
forward modeling of TDIP method by doing DC 
resistivity modeling twice.

Numerical tests

Verifi cation of modeling accuracy
Figure 3 shows a two-layer model with azimuthal 

Fig. 3. A two-layered model with azimuthal anisotropy.

Fig. 5. Electrodes’ distribution above the azimuthal 
anisotropy half-space. The red solid circle indicates the 
source electrode, which injects a current (1A) into the 
ground; the 41 black solid circles indicate the measurement 
electrodes. These measurement electrodes are distributed 
evenly across the circle, the center of which is the source 
electrode, and its radius is 1 m.

Fig. 4. Apparent resistivity and relative error of the pole–pole array along the x-direction for a two-layered model with azimuthal 
anisotropy, compared with Li and Spitzer’s results.

anisotropy, which we used to verify the correctness of 
our algorithm.

The principal resistivity of the fi rst layer is ρx = ρz = 
100 Ω·m, ρy = 10 Ω·m, and the basement half-space is 
ρx = ρz = 10 Ω·m, ρy = 1 Ω·m; for both layers, α = β = γ 
= 0˚. The apparent resistivity of the, and the basement 
half-space is pole–pole array along the x-direction was 
calculated and compared with Li and Spitzer’s (2005) 
solution (see Figure 4).

Our solution showed good agreement with that 
derived by Li and Spitzer for the entire distance of r, 
and the relative error was below 1%. The results showed 
that apparent resistivity was ρa ≈ 36.1 Ω·m when the 
electrode spacing (r) was short, and ρa ≈ 36.1 Ω·m 
when r was large. The apparent resistivity for short and 
large electrode spacing was the geometric mean of the 
resistivity for each layer.
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Anisotropic half-space
To study the characteristics of apparent resistivity, 

derived from the surface resistivity survey, a half-
space with azimuthal anisotropy was assumed, and 
the principal resistivities were ρ0 = 0.5/0.5/2.0 Ω·m, 
respectively. The current source and measure points are 
shown in Figure 5.

The Euler angles, i.e., β = 0˚, γ = 0˚ and α = 0˚/30˚/90˚, 
respectively, were calculated separately. The measured 
apparent resistivity for each electrode (shown in Figure 5) 
of the pole–pole array is shown in Figure 6.

Where α = 0˚, the apparent resistivity shown in Figure 
6 presents as a circle with a radius of 1 Ω·m , equal 
to the mean resistivity of the anisotropic half-space; 
accordingly, no information about this anisotropic half-
space is available. When α = 90˚, the medium can be 
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Fig. 6. Apparent resistivity of the pole–pole array for three 
Euler angles, i.e., α = 0°/30°/90°, respectively, while β = 0°, 
γ = 0°and  ρ0 = 0.5/0.5/2.0 Ω·m, respectively.The red solid 
circles indicate the location of the current source. The 
distances between the current source and other circles are 
the apparent resistivities, and their orientation is consistent 
with what is shown in Figure 5, and the same to Figure 7.

Fig. 8.  Mean resistivity varies with  ρL and ρT  when 
normalizing the resistivity. Fig. 9.  Mean chargeability varies with ηL and ηT.  

Fig. 7.  Apparent chargeability of the pole–pole array for three 
Euler angles, i.e., α = 0°/30°/90° , respectively, while β = 0°,   
γ = 0°, ρ0 = 0.5/0.5/2.0 Ω·m and  η0 = 0.1/0.1/0.6, respectively.

expressed as ρ0 = 0.5/2.0/0.5 Ω·m, respectively, and the 
apparent resistivity (Figure 6, the blue circle) presents 
as an ellipse with a semi-major axis equal to 1 Ω·m 
(x-direction), and a semi-minor axis equal to 0.5 Ω·m  
(y-direction); this result is consistent with the conclusion 
above. When α = 30˚, the apparent resistivity between    

α = 0˚ and  α = 90˚.
With the same confi guration as for the homogeneous 

half-space, when the chargeability tensor is η0 = 
0.1/0.1/0.6, respectively, the relevant calculated apparent 
chargeability is shown in Figure 7.

The curve for apparent chargeability similar to what is 
shown in Figure 6 and also agreed with our conclusion 
presented in the section discussing the paradox of 
anisotropy in TDIP. The calculated result represents a 
constant–mean chargeability of the half-space when 
surveying along the x-direction for three models, which 
in this instance is 1 (1 0.1) (1 0.40.6)x . For 

α = 90˚, the apparent chargeability is ηy = 0.1 when 
surveying along the y-direction.

To investigate the characteristics of mean resistivity 
and mean chargeability, we normalized the resistivity, 
i.e., ρL and ρT ranging from 0:1; then, we drew ρL , ρT and 
ρm in Figure 8.

Figure 8 shows that the mean resistivity is always 
close to the smaller values of ρL and ρT. The mean 
chargeability, i.e., ηm and  ηL, is shown in Figure 9.

We found that the mean chargeability was always 
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close to the larger values of ηL and ηT, which differed 
from mean resistivity.

A two-layer anisotropic model
To test our FEM code and to study the response of the 

layered anisotropy models, we created the model shown 
in Figure 10.

First, we set two Euler angles β/γ = 0˚/0˚; then, let α as 

Fig. 10. A two-layer model with an anisotropic covering layer 
over an isotropic half-space. The three principal resistivities 
of the covering layer are ρx / ρy / ρz = 50/50/200 Ω·m, and the 
three principal chargeability values are ηx / ηy / ηz = 0.1/0.1/0.3. 
The resistivity and chargeability of the isotropic half-space 
are 10 Ω·m and 0.6, respectively.

Fig. 11.  Apparent resistivities along the x- and y-directions 
for the pole–pole array with different Euler angles.

Fig. 12.  Apparent chargeability along the x- and y-directions 
for the pole¬–pole array with different Euler angles.

0˚/30˚/45˚/90˚ separately in the fi rst layer. The apparent 
resistivity and chargeability of the pole–pole array along 
the x and y-directions are shown in Figure 11 and Figure 
12, respectively.

We conclude that with large electrode spacing, all 

of the measured data are close to 10 Ω·m, which is the 
resistivity of the isotropic half-space, and the infl uence 
of the anisotropic covering layer becomes intense when 
the electrode spacing is small.

When α = 0˚, it is similar to the half-space model 

described in equation (7). With small electrode spacing, 
the apparent resistivity is 100za x m, both 
along the x- and y-directions, which represent the mean 
resistivity of the covering layer and indicates good fi tting 
with equation (7).

When α = 90˚, it is similar to the half-space model 
described in equation (8). With small electrode spacing, 
while measuring along the x-direction, the apparent 
resistivity is close to 100 Ω·m, which represents the 
mean resistivity of the covering layer and indicates good 
fitting with equation (9). While measuring along the 
y-direction, the apparent resistivity is close to 50 Ω·m, 
which represents the resistivity of the x-direction and 
is consistent with equation (10). For α = 30˚/45˚, the 
measured data are always between α = 0˚ and  α = 90˚.

Similar  to apparent  resis t ivi ty,  the apparent 

chargeability (see Figure 12) shows that with large 
electrode spacing, all of the measured data are close to 
0.6, which represents the resistivity of the isotropic half-
space; the influence of the anisotropic covering layer 
becomes intense when the electrode spacing is small.

When α = 0˚, the covering layer is the VTI. With 
small electrode spacing, the apparent chargeability 
is ηa ≈ 0.2, both along the x and y-directions; this 
is the mean chargeability of the covering layer 
( 1 (1 0.1) (1 0.20.3)m )  and indicated good 
fi tting with equation (14).

When α = 90˚, the covering layer is the HTI. With 
small electrode spacing, while measuring along the 
x-direction, the apparent chargeability is almost 0.2; 
this represents the mean chargeability of the covering 
layer and indicated good fitting with equation (18). 
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Fig. 13. A 3D anisotropic cube in a homogeneous isotropic 
half-space. The principal resistivity of the cube is given by ρ1x 

/ ρ1y / ρ1z = 100/100/500 Ω·m, and the background resistivity is  
ρ0 = 10 Ω·m; the principal chargeability of the cube is given 
by η1x / η1y / η1z = 0.6/0.6/0.3, and the background chargeability 
is η0 = 0.01.

Fig. 14. Apparent chargeability pseudo-section of the model that is illustrated in Figure 13.

When measuring along the y-direction, the apparent 
chargeability is close to 0.1; this indicates the resistivity 
in the x-direction and is consistent with equation (20).

Three-dimensional anomalous target
Figure 13 shows a model of an anisotropic cube 

embedded in a half-space.

The survey line was deployed along the x-direction, 
and the dipole–dipole array was adopted. The Euler 
angles, α = γ = 0˚, β = 0˚/30˚, and the pseudo-sections of 
the apparent chargeability are shown in Figure 14(a) and 
(b), respectively.

As shown in Figure 14, with a change in the Euler 
angle, the anomalous body also presents a specific 
angle in the apparent chargeability pseudo-section; this 
illustrates the infl uence of the anisotropic Euler angle on 
the observation data of the apparent chargeability. But in 
this model, the anisotropy paradox is not obvious.

Conclusions

In this paper, we test and verify the anisotropy 
paradoxes in the DC resistivity and TDIP methods 
using analytical and numerical solutions. The following 
conclusions were drawn.

1. For the VTI medium, the apparent resistivity 
was consistent when measurements were made on the 
surface, and its value was equal to the mean resistivity 

of the uniform half-space; While for the HTI case, 
the apparent resistivity was the mean resistivity of 
the uniform half-space when measured along the 
x-direction; when measured along the y-direction, the 
apparent resistivity obtained was the resistivity in the x- 
and z-directions.

2. The definition of the mean chargeability differed 
from that of the mean resistivity, which is always close 
to the larger value of the transverse and longitudinal 
chargeabilities.

3. By conducting numerical simulations and analyses, 
the anisotropy paradoxes in resistivity and chargeability 
were verified, and through simulation it is found that 
the euler angles has a great influence on the apparent 

chargeabilities.
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