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ABSTRACT
Photochemical processes generate mass-independent fractionation (MIF) of mercury 

(Hg) isotopes in the atmosphere-ocean system, and the subduction of marine sediments or 
hydrated oceanic crust may recycle the resultant Hg isotope signature into the volcanic-arc 
environment. This environment typically hosts epithermal gold deposits, which are character-
ized by a specific Hg-Sb-As metal association. We investigated the Hg isotopic composition 
of seven volcanic-arc–related epithermal gold deposits in northeast China and revisited the 
isotopic composition of Hg in hydrothermal ore deposits in circum-Pacific and Mediterranean 
volcanic arcs. The gold ore samples in northeast China mostly display positive Δ199Hg values 
(0.11‰ ± 0.07‰, 1σ, n = 48) similar to those observed in the Pacific Rim (0.07‰ ± 0.09‰, 
1σ, n = 182) and the Mediterranean Cenozoic volcanic belt (0.09‰ ± 0.08‰, 1σ, n = 9). Be-
cause Hg in marine sediments and seawater has positive Δ199Hg, we infer that Hg-bearing 
epithermal deposits in active continental margin settings receive most Hg from recycled 
seawater in marine sediments, through the release of Hg by dehydration from the subduct-
ing oceanic slab. However, negative to near-zero Δ199Hg values were observed in Hg-bearing 
deposits in the South China craton (−0.09‰ ± 0.05‰, 1σ, n = 105) and in the intraplate 
magmatic-hydrothermal Almadén Hg deposit in Spain (−0.02‰ ± 0.06‰, 1σ, n = 26), which 
are considered to relate to basement and mantle sources, respectively. Hg isotopes have the 
potential to trace lithospheric Hg cycling.

INTRODUCTION
Mercury (Hg) receives global concern due 

to its toxicity. The biogeochemical cycling of 
Hg in Earth’s surface environment has attracted 
much interest; however, the cycling of Hg in the 
lithosphere remains poorly understood. Due to its 
chalcophile and volatile character, Hg is abundant 
in epithermal sulfide deposits, often in a shallow 
low-temperature environment as part of the larger 
porphyry-epithermal ore deposit spectrum. Ore 
deposits of this spectrum form in active continen-
tal margin settings (White and Hedenquist, 1995), 
where subduction of oceanic crust and concomi-
tant release of Hg from the subducting oceanic 
slab may contribute to the typical Hg component 
in epithermal gold deposits.

Mercury isotopes may help to evaluate the 
amount of oceanic Hg in subduction-related 
hydrothermal deposits. With the discovery that 
Hg isotopes undergo both mass-dependent frac-
tionation (MDF, expressed as δ202Hg) and mass-
independent fractionation (MIF, expressed as 
Δ199Hg), Hg isotope geochemistry provides 
new and multidimensional information about 
the sources and fates of Hg in the environment 
(Blum et al., 2014). Hg-MDF is observed during 
various physical, chemical, and biological pro-
cesses. However, Hg-MIF is primarily associated 
with photochemical processes (reviewed by Blum 
et al., 2014); therefore Hg-MIF signals can be a 
direct source tracer of Hg. Significant Hg-MIF 
signals are mainly found in Earth’s surface envi-
ronments (e.g., soil, water, sediment, atmosphere, 
and biological samples) and crustal materials (e.g., 

sedimentary rocks; Blum et al., 2014, and refer-
ences therein), whereas mantle-derived Hg has 
no Hg-MIF (Δ199Hg ∼0; Sherman et al., 2009).

Hg-MIF with Δ199Hg ranging from −0.30‰ 
to 0.36‰ has been observed in hydrothermal 
deposits (Fig. 1A; Smith et al., 2005, 2008; Yin 
et al., 2016, 2019; Xu et al., 2018; Fu et al., 2020; 
Pribil et al., 2020), indicating that Hg from sur-
face reservoirs may be involved during Hg min-
eralization. To verify this speculation, we used 
Δ199Hg as a potential proxy to study the source of 
Hg in seven subduction-related epithermal gold 
deposits in northeast China (Fig. 1B). Combined 
with previous results on the volcanic-arc–related 
Amiata Hg deposit in Italy, and in comparison to 
low-temperature Au-Sb-Pb-Zn deposits in South 
China and the intraplate magmatic-hydrothermal 
Almadén Hg deposit in Spain, we demonstrate 
that the subduction of ocean crust likely delivers 
a substantial amount of marine Hg to epithermal 
deposits in active continental margins.

GEOLOGICAL BACKGROUND
Seven Mesozoic calc-alkaline volcanoplu-

tonic rock–related epithermal Au deposits (San-
daowanzi, Yongxin, Pangkaimen, Tuanjiegou, 
Fuqiang, Jinchang, and Sipingshan) were select-
ed in northeast China (Fig. 1B), which is situated 
between the Siberia and North China cratons, at 
the intersection of the Paleozoic Central Asian 
orogenic belt and the Mesozoic–Cenozoic Pa-
cific orogenic belt (Figs. 1C and 1D). The sim-
plified tectonic evolution of northeast China is 
summarized in the Supplemental Material1.

Both the Sandaowanzi and Yongxin deposits 
are characterized by Au-telluride mineralization 
occurring in the quartz vein and breccia sys-
tems. Gold orebodies in Tuanjiegou, Fuqiang, *E-mail: yinrunsheng@mail.gyig.ac.cn

1Supplemental Material. Geological background, samples and methods, and analytical results for hydrothermal Au deposits in northeast China. Please visit 
https://doi .org/10.1130/GEOL.S.13076288 to access the supplemental material, and contact editing@geosociety.org with any questions.
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and Pangkaimen occur as veined, brecciated, 
and lenticular bodies with gold mineralization 
dominated by gold-bearing pyrite-chalcedony 
and pyrite-calcite assemblages. The ores in 
the Jinchang mine include auriferous breccias, 
quartz-sulfide veins, and disseminated miner-
alization. The Sipingshan Au deposit is a hot-
spring–type deposit. Its orebodies are hosted 
by chert, silicified breccias, and silicified rhyo-
lites, with pyrite as the main sulfide mineral. 
Wall-rock alteration, including sericitization, 
silicification, carbonatization, pyritization, and 
chloritization, is developed in these Au deposits. 
Zircon U-Pb ages of the igneous host rocks and 
hydrothermal sericite Ar-Ar dating demonstrate 
that the Au deposits formed in the Early Creta-

ceous with ages ranging from 125 to 105 Ma 
(Xue, 2012). The S-Pb isotopic compositions 
show that the ore-forming components mainly 
originated from igneous source rocks with no or 
negligible significance of magmatic assimilation 
or fluids equilibrated with the sedimentary coun-
try rocks (Xue, 2012; Zhai et al., 2015). Fluid 
inclusion data indicate that mixing of meteoric 
and magmatic water triggered the precipitation 
of Au (Xue, 2012; Li et al., 2020).

SAMPLES AND ANALYTICAL 
METHODS

In total, 48 samples, including 7 volcanic 
wall rocks and 41 ores (7 of which were pre-
pared for pyrite concentrates), were collected 

from the selected deposits (see the Supplemen-
tal Material). Total Hg concentration (THg) and 
Hg isotopic composition were analyzed at the 
Institute of Geochemistry, Chinese Academy of 
Sciences, Guiyang, China, following previous 
methods (see the Supplemental Material). Hg-
MDF is expressed in δ202Hg notation in units of 
‰ referenced to the NIST-3133 Hg standard 
(analyzed before and after each sample):
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Hg-MIF is reported in Δ notation, which 
describes the difference between the measured 
δxxxHg value and the theoretically predicted 
δxxxHg value, in units of ‰:

 ∆xxx xxxHg Hg Hg≈ ×δ δ β– ,202
 (2)

where β is equal to 0.2520 for 199Hg, 0.5024 
for 200Hg, and 0.7520 for 201Hg (Blum and 
Bergquist, 2007).

Hg CONCENTRATION AND ISOTOPIC 
COMPOSITION

Hg concentrations and isotopic compositions 
of the samples are summarized in Text S2 (Table 
S1 in the Supplemental Material). THg concen-
tration varied by orders of magnitude among 
pyrite (2.30–21.5 ppm), ore (0.033–7.64 ppm), 
and volcanic wall rocks (0.005–0.045 ppm). The 
δ202Hg and Δ199Hg values of the samples showed 
large ranges of –2.20‰ to 0.10‰ and –0.02‰ to 
0.27‰, respectively, which are significant, given 
the 2σ analytical uncertainty of δ202Hg (±0.1‰) 
and Δ199Hg (±0.05‰). No clear differences in 
δ202Hg and Δ199Hg were observed among pyrite, 
ore, and wall-rock samples (p > 0.05, Student’s 
t test). However, a negative correlation was ob-
served between δ202Hg and Δ199Hg, and a posi-
tive correlation was observed between Δ201Hg 
and Δ199Hg (Fig. 2A).

Previous results on hydrothermal deposits 
of various types worldwide are summarized in 
Figure 2 for comparison. Large ranges of δ202Hg 
(–2.52‰ to 1.99‰) and Δ199Hg (–0.30‰ to 
0.36‰), with a negative correlation between 
δ202Hg and Δ199Hg and a positive correlation 
between Δ201Hg and Δ199Hg, were observed in 
these reference deposits as well. According to 
Hg-MIF signals, the compiled data set (for data 
sources: see the caption of Fig. 1) can be di-
vided into three groups: (1) Hydrothermal Hg 
deposits in active continental margin settings 
mainly show positive Δ199Hg (e.g., Pacific Rim, 
mean = 0.07‰ ± 0.09‰, 1σ, n = 182; and Ami-
ata, Italy, 0.09‰ ± 0.08‰, 1σ, n = 9; Fig. 1), 
similar to our results on gold deposits in north-
east China (0.11‰ ± 0.07‰, 1σ, n = 48). (2) 
Hg-bearing hydrothermal deposits (e.g., Carlin-
type Au deposits, hydrothermal base-metal and 
Sb deposits) in the South China craton mainly 

A
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Figure 1. (A) Map showing hydrothermal deposits with Hg mass-independent fractionation 
(Hg-MIF) values. Data in the white squares are from previous studies: Hg deposits along the 
West Coast of the United States from Smith et al. (2005, 2008), Stetson et al. (2009), and Smith, 
(2010); Amiata Hg deposit, Italy, from Pribil et al. (2020); Almadén Hg deposit, Spain, from Gray 
et al. (2013); Andean Hg deposits from Cooke et al. (2013); Au-Sb-Pb-Zn deposits in South China 
from Xu et al. (2018), Yin et al. (2019), and Fu et al. (2020). (B) Enlarged map showing locations 
of studied Au deposits and Hg-MIF values. (C) Tectonic sketch map of the Central Asian oro-
genic belt (after Jahn, 2004). (D) Simplified geological map of eastern northeast China with 
seven gold deposits studied marked (after Xue, 2012).
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show negative Δ199Hg (–0.09‰ ± 0.05‰, 1σ, 
n = 105; Fig. 1). These sediment-hosted deposits 
have no direct connection to volcanic-arc mag-
matism. (3) The Almadén Hg deposit in Spain 
shows near-zero Δ199Hg (–0.02‰ ± 0.06‰, 1σ, 
n = 26; Fig. 1). This deposit was suggested to be 
sourced from intraplate mafic magma (Higueras 
et al., 2013).

MIF OF Hg ISOTOPES
The large variation of the Hg isotopic com-

position in epithermal gold deposits in north-
east China (Fig. 2A) may be explained by the 
mixing of Hg sources with distinct isotopic sig-
natures. Because various processes can trigger 
MDF (Blum et al., 2014), to avoid ambigu-
ous interpretations, we will not discuss δ202Hg 
further.

However, Hg-MIF mainly occurs during 
photochemical processes with little contribu-
tion from complex biogeochemical cycling, and 
therefore it provides clear constraints on Hg 
sources. As shown in Figure 2B, samples from 
hydrothermal deposits from northeast China and 
elsewhere show a Δ199Hg/Δ201Hg ratio of ∼1.0, 
similar to that reported during aqueous Hg(II) 
photoreduction (Bergquist and Blum, 2007). 
Primordial Hg in mantle rocks is characterized 
by Δ199Hg of ∼0. However, once emitted to the 
surface environment, Hg(II) photoreduction in 
aquatic ecosystems can imprint the Hg-MIF 
signature, leading to negative Δ199Hg values in 
the product Hg(0) and positive Δ199Hg values in 

the residual Hg(II) pool (Bergquist and Blum, 
2007). Terrestrial reservoirs (e.g., plants, soil, 
coal) are characterized by negative Δ199Hg due 
to Hg(0) deposition, whereas aquatic reservoirs 
(e.g., rain and seawater) are characterized by 
positive Δ199Hg due to Hg(II) deposition (Blum 
et al., 2014). In the ocean, coastal sediments 
commonly show negative Δ199Hg values due to 
continental runoff, whereas marine sediments 
show positive Δ199Hg values due to the scav-
enging of seawater Hg by particles (Yin et al., 
2015; Meng et al., 2019). Mineralization pro-
cesses are unlikely to induce Hg-MIF; therefore, 
the Hg-MIF observed in hydrothermal deposits 
indicates Hg sourced from Earth’s surface res-
ervoirs (Yin et al., 2016).

SUBDUCTION DELIVERS THE 
POSITIVE Hg-MIF SIGNATURE IN 
HYDROTHERMAL DEPOSITS NEAR 
ACTIVE CONTINENTAL MARGINS

The positive Δ199Hg spectrum observed in the 
epithermal gold deposits in northeast China and 
Hg deposits in active continental margins else-
where suggests a common phenomenon. There 
are two possible sources with positive Δ199Hg: 
(1) meteoric water; and (2) fluid-rock interaction 
and devolatilization from sedimentary country 
rocks. Although meteoric water plays an impor-
tant role in triggering the precipitation of ore 
minerals, its extremely low Hg concentrations 
(0.35–11 ng/L; Chen et al., 2012) rule out any 
significant contribution in the gold deposits. 

The northeast China strata consist mainly of 
late Paleozoic sandstone and siltstone, reflect-
ing a coastal depositional environment, where 
sediments are mainly characterized by negative 
Δ199Hg (Yin et al., 2014; Meng et al., 2019). 
S-Pb isotopic data from the epithermal Au de-
posits in northeast China indicate that the ore-
forming components were likely derived from 
igneous rocks through fluid exsolution during 
crystallization instead of leaching of sedimen-
tary country rocks (Xue, 2012). Combined 
with the absence of sedimentary rocks in most 
of the selected Au deposits, the contribution of 
Hg from sedimentary rocks can probably be 
precluded.

Considering that the epithermal and porphyry 
Au deposits commonly occur in subduction set-
tings, an alternative cause of the positive Δ199Hg 
in the epithermal gold deposits in northeast China 
could be the subduction of oceanic crust with ma-
rine sediments and seawater. The subduction zone 
environment plays an important role in energy 
and mass exchange between oceanic and conti-
nental plates (Tatsumi and Eggins, 1995; Zheng, 
2019). Extensive hydrothermal activity has cre-
ated large numbers of Hg and Hg-bearing depos-
its in active continental margin settings (Rytuba, 
2003). The subduction process, with concomitant 
release of Hg and other volatile components from 
the descending oceanic plate (Fig. 3A), plays an 
important role in creating volcanic arcs and their 
geothermal/ hydrothermal systems. The positive 
Δ199Hg values in the ocean  reservoir  (marine 

A B

Figure 2. (A) Δ199Hg versus δ202Hg and (B) Δ199Hg versus Δ201Hg diagrams for studied Au deposits in northeast China and hydrothermal deposits 
worldwide. Data sources for deposits are as in Figure 1. For the subset of data points from Smith et al. (2005, 2008), Δ201Hg values were plotted 
because mass 199Hg was not measured, and the Δ199Hg/Δ201Hg ratio in these samples is expected to be close to 1.0 (Blum et al., 2014). Area of 
marine sediments is that defined by Yin et al. (2015) and Meng et al. (2019), terrestrial Hg is that defined by Blum et al. (2014, and references 
therein), and seawater is that defined by Štrok et al. (2015).
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 sediments and seawater; Fig. 3B) would be in-
herited in the fluids released from the oceanic slab 
during plate dehydration. Aqueous fluids with 
marine Hg values could trigger the partial melt-
ing of the mantle wedge, and then they would be 
transported to the upper crust by mantle magma. 
Finally, Hg would be released into magmatic-hy-
drothermal fluids during crystallization and pre-
cipitated in the Au deposits when mixed with me-
teoric water (Fig. 3C). Figure 2A shows a broadly 
negative correlation trend between Δ199Hg and 
δ202Hg for hydrothermal deposits in active con-
tinental margins, suggesting mixing of two Hg 
source end members. One end member could 
be mantle Hg, which is likely characterized by 
Δ199Hg of ∼0‰ (Sherman et al., 2009). The other 
end member seems to be characterized by Δ199Hg 
of ∼0.3‰, which agrees well with previous re-
sults on marine sediments and seawater (Blum 
et al., 2014, and references therein; Štroket al., 
2014; Ogrinc et al., 2019).

The distinct Δ199Hg values observed in low-
temperature deposits in the South China cra-
ton and the intraplate mantle magma–related 
Almadén Hg deposit in Spain suggest different 
sources of Hg from those in active continental 
margins. The low-temperature deposits in South 
China seem to have received most of their Hg 
from regional basement rocks, as these rocks 
are characterized by negative Δ199Hg (Xu et al., 
2018; Fu et al., 2020). The near-zero Δ199Hg 
values observed in the Almadén Hg deposit are 
similar to those reported for mantle materials 
(Sherman et al., 2009), consistent with a previ-
ous study demonstrating that Hg was sourced 
from intraplate mafic magma (Higueras et al., 
2013).

CONCLUSIONS AND IMPLICATIONS
We demonstrate that Hg-MIF is a common 

feature of hydrothermal ore deposits in active 
continental margins and also within cratons. 

Hg-MIF can serve as a robust tracer for the 
origin of Hg in hydrothermal deposits. For hy-
drothermal ore deposits at active continental 
margins, the positive Hg-MIF signals suggest 
that Hg was sourced from ocean reservoirs. 
Subduction of oceanic crust delivers positive 
Hg-MIF from marine sediments or seawater 
into the subduction zone, and this Hg is released 
from the subducting slab during dehydration 
to finally form epithermal deposits in active 
continental margins. For the low-temperature 
Au-Sb-Pb-Zn deposits in South China and the 
Almadén Hg deposit in Spain, local basement 
rock dehydration or fluid release from enriched 
mantle melts may play a more important role in 
contributing Hg to those hydrothermal deposits. 
Our study, thus, provides new insight into the 
lithospheric cycling of Hg.
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