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ARTICLE

Petrogenesis and tectonic implications of Early Paleozoic granitoids in the 
Qiaerlong district of the West Kunlun orogenic belt: constraints from petrology, 
geochronology, and Sr-Nd-Hf isotope geochemistry
Jinhong Xua,b, Zhengwei Zhanga, Chengquan Wua, Xiyao Lia,b, Ziru Jina,b, Pengcheng Hua,b, Taiyi Luoa 

and Weiguang Zhua

aState Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; bSchool of Earth 
and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

ABSTRACT
The West Kunlun orogenic belt (WKOB) is a complex orogenic belt that preserves the evidence of Early 
Palaeozoic and Late Palaeozoic orogenic events, with the former resulting from the closure of the Proto- 
Tethys Ocean. To better reveal the relationships between Early Palaeozoic granitoids in the WKOB and the 
tectonic evolution of the Proto-Tethys Ocean, we analysed the rocks of Akedala pluton, which is exposed 
within the Qiaerlong basin, and compared the results with contemporaneous magmatic rocks elsewhere in 
the WKOB. Integrated petrology, geochronology, and Sr–Nd–Hf isotope analyses of the rocks revealed the 
following: (1) The Akedala pluton is mainly composed of metaluminous–peraluminous I-type quartz mon-
zonite and monzogranite; U–Pb dating of zircon indicates that quartz monzonite and monzogranite compo-
nents is emplaced at 473–479 Ma and 462 Ma, respectively. (2) Both of them were enriched in large-ion 
lithophile elements and light rare earth elements and depleted in high field strength elements with negative 
Nb, Ta, Zr, P and Ti anomalies, indicating that they formed in a subduction zone environment. (3) Quartz 
monzonites were enriched in MgO concentrations (>3.10 wt.%), and show variable whole rock Sr-Nd isotopic 
ratios ((87Sr/86Sr)i = 0.7042–0.7058, εNd(t) = – 0.4 to +1.1), and had positive zircon εHf(t) (+0.0 to +6.8) values, 
which suggests they are derived from a mixed source of juvenile crust and older lower crust. (4) 
Monzogranites were characterized by high Sr (461–804 ppm) and low Y (2.00–3.68 ppm) and Yb (0.19–0.31 
ppm) contents with high Sr/Y (164–325) and (La/Yb)N (12.6–46.7) ratios, indicating an adakitic affinity; they 
had relatively homogeneous whole rock (87Sr/86Sr)i (0.7044–0.7045) and positive εNd(t) (+2.0 to +2.9) and 
positive zircon εHf(t) (+1.1 to +4.3) values with low MgO, Cr, Ni and Nb contexts, suggesting that they were 
mainly generated from partial melting of thickened lower crust. Comparative analysis of these results with 
other Early Palaeozoic arc magmas in the WKOB shows that the Akedala pluton was formed due to the 
southward subduction of the Proto-Tethys Ocean. Divergent bidirectional subduction of the Proto-Tethys 
Ocean was initiated in the Early Cambrian, continued through the Middle Ordovician, and ended in the Early 
Silurian, due to terminal collision between the Tarim block and the West Kunlun terrane, which created the 
Early Palaeozoic orogenic belt.
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1. Introduction

The West Kunlun orogenic belt (WKOB) is located in the 
western part of the central China orogenic belt (CCOB) 
(Figure 1A-B), bordering the Tarim Basin in the north 
and the Tibetan Plateau in the south. WKOB experi-
enced subduction–accretion–collision of the Proto- 
and Paleo-Tethys Oceans during the Early Palaeozoic 
and the Late Palaeozoic, respectively, and thus, it is 
a complex orogenic belt preserving the evidence of 
both the Early Palaeozoic and the Late Palaeozoic 
deformational events (Figure 1C; Pan 2000; Zhang 
et al. 2019a, b). The Proto-Tethys Ocean was subducted 
and closed along the Oytag-Kudi-Qimanyut suture 
zone during the Early Palaeozoic, forming the orogenic 
belt that contains ophiolite mélanges, accretionary 
wedges, arc granitoids, and high-Ba/Sr granites 
(Figure 1C and Table 1; Xiao et al. 2002; Zhang et al. 
2019a). Many studies have revealed that the arc gran-
itoids were emplaced in the Cambrian (Hu et al. 2016; 
Zhu et al. 2018; Zhang et al. 2018a; Li et al. 2019; Liu 
et al. 2019; Yin et al. 2020), the Early–Middle Ordovician 
(Xiao et al. 2002, 2005; Yuan et al. 2002; Liao et al. 2010; 
Liu et al. 2014; Li et al. 2019), and the Late Ordovician 
(Zhang et al. 2007b; Ye et al. 2008). The sources of the 
arc magmas have been proposed as ancient crust 
(Zhang et al. 2019d), subducted sediments (Liao et al. 
2010), enriched lithospheric mantle (Hu et al. 2016; Liu 
et al. 2019), and a mantle wedge (Zhang et al. 2018a). 
In addition, many researchers have suggested that 
these granites formed either due to southward subduc-
tion (Jiang et al. 2002; Liao et al. 2010; Jia et al. 2013; 
Liu et al. 2014; Li et al. 2019; Zhang et al. 2018a, 2019), 
northward subduction (Xiao et al. 2000; Wang 2004; Ye 
et al. 2008), or bidirectional subduction (Xiao et al. 
2002, 2005; Zhu et al. 2018). Although comprehensive 
previous research and published data can be used to 
analyse the relationship between tectonic and mag-
matic events in the WKOB, many issues remain unre-
solved, including how the subduction–collision process 
and petrogenesis of arc granitoids are related to the 
tectonic evolution of the Proto-Tethys Ocean.

Studies have shown that the northern belt of the 
WKOB is characterized by back-arc basin extension and 
the related Cu–Pb–Zn–Mn mineralization of the Late 
Palaeozoic age (Zhang et al. 2006, 2014, 2019e; Jiang 
et al. 2008; Ji et al. 2018). However, there are only few 
magmatic rocks related to the Proto-Tethys Ocean in the 
north WKOB. Recently, it has been recognized that the 
Akedala (AK) pluton, which occurs within the Qiaerlong 
basin, has geological features similar to the Early 
Palaeozoic granitoids in the southern part of the WKOB 
(Figure 1C). Therefore, it has been speculated that it may 

represent a valuable record of magmatism related to the 
subduction of the Proto-Tethys Ocean in the northern 
belt of the WKOB.

In this study, we present new and comprehensive 
field observations, petrography, laser ablation induc-
tively coupled plasma mass spectrometry (LA–ICP–MS), 
zircon U–Pb geochronology, whole-rock major and trace 
element data, and Sr–Nd–Hf isotope ratios from the AK 
pluton to constrain the crystallization ages and explore 
the petrogenesis of its granitoid components. These 
data are then combined with the results of previous 
studies conducted on Early Palaeozoic granites in the 
WKOB to better understand the evolution of the Proto- 
Tethys Ocean in this area.

2. Geological setting

The WKOB has been tectono-stratigraphically subdivided 
into four tectonic units separated by three suture zones. 
From north to south, these comprise the North Kunlun 
terrane (NKT), the Oytag-Kudi-Qimanyute suture (OKQS), 
the South Kunlun terrane (SKT), the Mazha-Kangxiwa- 
Subashi suture zone (MKSS), the Mazar-Tianshuihai ter-
rane (MTT), the Hongshanhu-Qiaoertianshan suture 
(HQS), and the Karakorum terrane (KKT) (Figure 1C; Pan 
2000; Zhang et al. 2019a).

The NKT, also termed the Tiekelike belt or the south-
ern margin of the Tarim Basin (Pan 2000), is an uplifted 
terrane that represents the basement of the Tarim Basin. 
The crystalline basement is composed of the 
Paleoproterozoic Heluositan complex and the 2.41 Ga 
Akazi pluton. The basement experienced amphibolite- 
to granulite-facies metamorphism at 1.9 Ga (Zhang et al. 
2007a), and it is unconformably covered by the 
Neoproterozoic Sailajiazitage Group volcanic- 
sedimentary sequence and the Ailiankate Group clastic 
rocks (Zhang et al. 2016a).

The SKT is mainly composed of volcano-sedimentary 
sequences belonging to the Saitula Group and the 
Bulunkuole Group, which were deposited during the 
Late Neoproterozoic to Cambrian and are unconform-
ably covered by Upper Palaeozoic to Mesozoic volcanic 
rocks (Pan 2000; Zhang et al. 2018b). Recent studies have 
shown that the SKT is a large accretionary wedge that 
formed via the southward subduction of the Proto- 
Tethys Ocean during the Early Palaeozoic (Yuan et al. 
2002; Zhang et al. 2019a). The accretionary wedge 
includes a fore-arc complex, seamount, arc volcano- 
sedimentary sequence, and ophiolite, which were all 
metamorphosed to amphibolite facies conditions at 
440 Ma (Yuan et al. 2002; Zhang et al. 2019a, b).
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The MTT is mainly composed of crystalline base-
ment rocks of the Mazar Complex (Zhang et al. 
2019b) and is covered by the Tianshuihai Group 
(Zhang et al. 2018c). The basement comprises bimo-
dal volcanic rocks and sedimentary sequences that 
were deposited at 2.5 Ga, and it underwent amphi-
bolite-facies metamorphism at 2.0 Ga (Ji et al. 2011; 
Zhang et al. 2018b). The cover is a Late Palaeozoic 
passive continental margin sedimentary sequence 
intruded by Cambrian gabbro and Mesozoic granite 
(Hu et al. 2016; Zhang et al. 2018c).

The KKT is mainly composed of Proterozoic crystalline 
schist, gneiss, quartzite, and marble, and Cambrian phyl-
lite, schist, and limestone of the Heihezi Group; it is 
covered by a Palaeozoic clastic-carbonate sedimentary 
sequence (Pan 2000).

The WKOB was assembled during the subduction- 
driven closure of the Proto- and Paleo-Tethys Oceans 
and contains voluminous magmatic rocks that devel-
oped as two large, parallel, and NW–SE-trending I-type 
magmatic suites over 1000 km in length. These occur 
between the OKQS and MKS, and between the Late 
Palaeozoic–Early Mesozoic belt in the south and the 
Late Mesoproterozoic–Early Palaeozoic belt in the 
north (Figure 1C; Pan 2000; Xiao et al. 2002). The south-
ern magmatic rocks that are related to the tectonic 
evolution of the Paleo-Tethys Ocean occur mainly 
along the southern part of the SKT and the northern 
margin of the MTT. The northern magmatic suites con-
sist of Precambrian magmatic rocks, early Palaeozoic 
plutons, and ophiolitic mélanges (Xiao et al. 2002). The 
Precambrian magmatic rocks are mainly composed of 
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the Paleoproterozoic Heluositan complex, the 
Paleoproterozoic Akazi pluton, and the 
Mesoproterozoic Azibailedi pluton (Zhang et al. 2007a; 
Ye et al. 2016). Early Palaeozoic magmatism related to 
the tectonic evolution of the Proto-Tethys Ocean com-
prises abundant mafic to felsic granitoids that were 
emplaced along the NKT, SKT, and TST, including the 
Cambrian–Ordovician I-type arc granites and Silurian 
high-Ba/Sr and A-type granites (Figure 1C and Table 1; 
Jiang et al. 2002; Yuan et al. 2002; Xiao et al. 2005; Yuan 
et al. 2005; Cui et al. 2007a, b; Zhang et al. 2007b; Ye et al. 
2008; Liao et al. 2010; Liu et al. 2014; Hu et al. 2016; Wang 
et al. 2017; Zhang et al. 2018a; Zhu et al. 2018; Li et al. 
2019; Liu et al. 2019; Zhang et al. 2019a, b, d; Yin et al. 
2020).

3. Sampling and analytical methods

3.1 Sampling

The AK pluton occurs in the Qiaerlong basin; it has an 
exposed area of 12 km2, and is surrounded by the Early 
Jurassic Kangsu and Late Carboniferous–Early Permian 
Tegeinaiqikedaban Formations (Figure 2). It is mainly 
composed of a medium-grained grey–green lithology 
and a fine-grained grey lithology (Figure 3). Both of 
lithologies are typically dominated by K-feldspar, plagi-
oclase, and quartz, although the actual proportions of 
each mineral vary between them (Figure 3). The former 
contains plagioclase (35–45 vol.%), alkali feldspar (25–35 
vol.%), quartz (10–20 vol.%), amphibole (10–15 vol.%), 
and pyroxene (1–5 vol.%), which plot in the quartz 

monzonite field on a Quartz–Alkaline feldspar– 
Plagioclase–Feldspathoid (QAPF) diagram (Figure 4). 
And the later contains plagioclase (35–40 vol.%), alkali 
feldspar (20–35 vol.%), quartz (30–45 vol.%), and mica 
(<1 vol.%), which plot in the monzogranite field on 
a QAPF diagram (Figure 4). Plagioclase is often sur-
rounded by K-feldspar, which is a typical monzonitic 
texture, and quartz is interstitial to feldspar. The acces-
sory minerals in the granitoids include zircon, apatite, 
titanite, and magnetite (Figure 3). Weak, late-stage 
hydrothermal alteration is represented by the epidotiza-
tion of feldspar.

Ten representative samples were collected from the 
AK pluton along an N–S transect, four of which were 
quartz monzonites and six were monzogranites (Figure 
2). The geochemical analyses of these samples included 
zircon U–Pb age dating, whole-rock major and trace 
element geochemistry, and Sr–Nd–Hf isotope analysis, 
which were conducted simultaneously by LA-ICP-MS at 
the State Key Laboratory of Ore Deposit Geochemistry, 
Institute of Geochemistry, Chinese Academy of Sciences.

3.2 Analytical methods

After removing the rims and weathered portions of the 
sampled hand specimens, each sample was individually 
crushed and ground to a fine powder for bulk-rock 
chemical analysis. Three representative samples (~5 kg) 
were used for zircon U–Pb dating of the AK pluton: two 
quartz monzonites (AKDL-2 and AKDL-4) and one mon-
zogranite (AKDL-8). Zircon grains were separated from 
each sample using traditional heavy liquid and magnetic 

Akedala Ranch

Kulibakejilega

45°

53°

60°

42°

20°

45°

75°55′ 76°00′

38°23′

38°25′

38°27′

AKDL-2
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Figure 2. Geological map of the Akedala pluton with sampling and dating sites shown (modified after Henan Institute of Geological 
Survey 2005).
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separation techniques, after which they were hand-
picked under a binocular microscope and mounted in 
epoxy resin. The epoxy mounts were then polished 
down to near-half sections of the grains to reveal their 
internal structures for cathodoluminescence (CL) ima-
ging, U–Pb dating, and Hf isotopic analyses.

Sample powders (~0.4 g) were accurately weighed 
and then fluxed with 4 g of Li2B4O7 at 1150–1200°C in 
preparation of homogeneous glass disks used for X-ray 
fluorescence (XRF) analyses. The major element concen-
trations were determined using an ARL Perform’ X 4200 
Sequential X-Ray Fluorescence Spectrometer (Thermo 
Fisher Scientific Inc.), which has an analytical precision 
better than 1 wt.%.

Trace element analyses were performed following the 
procedures described by Qi et al. (2000), which required 
~50 mg of sample powder to be accurately weighed and 
dissolved by a HF + HNO3 solution in high-pressure 
Teflon bombs for two days at 190°C. Rhenium was cho-
sen as an internal standard to monitor the signal drift 
during counting. The trace element contents were ana-
lysed using a Perkin-Elmer SCIEX ELAN DRC-e ICP–MS, 
which has a precision better than 10% (Qi et al. 2000).

Sample preparation for whole-rock Sr–Nd isotope ana-
lyses were performed by weighing, spiking, and dissolving 
~100–150 mg of sample powders with 15 mL of a HF + 
HNO3 + HClO4 solution in Teflon bombs for seven days at 
200°C. The isotope solution was subsequently separated 
using conventional cation-exchange techniques, and the 
ratios were analysed using a Neptune plus multi-collector 
inductively coupled plasma mass spectrometer (MC-ICP- 
MS).

0 0

10cm 1 cm

00 m 00 m

a b

c d

Figure 3. A–B. Photographs of representative lithologies from the AK pluton. C–D. Major mineral assemblages and typical textures in 
the AK pluton.
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Figure 4. QAPF classification of the AK pluton (modified from 
Streckeisen 1967).
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Zircon trace element analyses and U–Pb dating were 
performed with LA–ICP–MS using a GeoLas Pro 193 nm 
ArF excimer laser. An Agilent 7500x ICP–MS was used to 
acquire ion-signal intensities using a beam diameter of 
32 µm, repetition time of 6 Hz, and energy density of 5 J/ 
cm2. Helium was used as a carrier gas. Each analysis 
involved a background measurement of 20 s (gas 
blank) followed by 40 s of data acquisition and an addi-
tional 20 s of wash time. Offline data processing was 
conducted using ICPMSDataCal (Liu et al. 2008, 2010). 
Zircon 91,500 was selected as the external standard for 
U–Pb dating and was analysed twice after every 10 
analyses (i.e. two zircon 91,500 standards, 10 samples, 
two zircon 91,500 standards etc.). Uncertainties of the 
preferred values for the external standard 91,500 were 
propagated through calculations used to determine the 
ages for each sample. Concordia plots and weighted 
mean ages were calculated using the Isoplot (Ludwig 
2003). Trace element contents of zircons were measured 
against multiple reference materials (NIST 610, BHVO- 
2 G, BCR-2 G, and BIR-1 G) and integrated with Si internal 
standardization.

Zircon Lu–Hf isotope analyses were performed using 
a RESOlution S-155 laser ablation system (ASI, Australia) 
connected to a Nu Plasma III MC–ICP–MS (Nu 
Instruments, Wrexham, UK) with a beam diameter of 
44 µm, repetition time of 6 Hz, and energy density of 

64 J/cm2. Helium was used as the carrier gas at an uptake 
rate of 280 mL/min. Each analysis incorporated 
a background acquisition of 20 s followed by 40 s of 
ablation for signal collection. The isobaric interferences 
of 176Lu and 176Yb on 176Hf were calibrated by counting 
175Lu and 173Yb and using the ratios of 
176Lu/175Lu = 0.02658 and 176Yb/173Yb = 0.796218. 
Mass fractionation of Yb and Hf isotope ratios was cor-
rected by normalizing to 172Yb/173Yb = 1.35274 and 
179Hf/177Hf = 0.7325, respectively, using an exponen-
tial law.

4. Analytical results

4.1. Zircon LA-ICP-MS U–Pb dating

Zircons separated from the sample AKDL-2 are 
50–200 μm long with length-to-width ratios between 
1:1 and 2:1, colourless to light brown, subhedral to 
euhedral in shape, and have cores that are either banded 
or homogenous, surrounded by rims with weak oscilla-
tory zoning in CL images (Figure 5A). All 25 analytical 
spots produced broadly concordant 206Pb/238U and 
207Pb/235U ages that match each other within analytical 
errors. These analyses showed variable abundances of 
U (72.5–208 ppm) and Th (34.1–128 ppm), producing Th/ 
U ratios of 0.4–0.8 (Supplementary Table 1). The 25 
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Figure 5. A. Representative cathodoluminescence (CL) images of zircon from quartz monzonite and monzogranite from the AK pluton. 
Solid red and purple circles show the location of LA-ICP-MS U–Pb analyses and LA-MC-ICP-MS Hf analyses, respectively. The scale bar 
in all CL images is 50 μm in length. U–Pb concordia diagrams for quartz monzonite (B–C) and monzogranite (D) components.

8 J. XU ET AL.



analyses produced a weighted mean 206Pb/238U age of 
473 ± 2 Ma (MSWD = 0.49, 2σ) (Figure 5B), which is 
identical, within error, to the concordant age of 
473 ± 2 Ma (MSWD = 0.45, 2σ).

Zircons separated from the sample AKDL-4 are 
100–250 μm long with length-to-width ratios 
between 2:1 and 3:1, colourless to light brown, 
euhedral in shape, and have homogenous cores 
surrounded by rims with weak oscillatory zoning 
in CL images (Figure 5A). All 24 analytical spots 
showed variable abundances of U (67.7 to 136 
ppm) and Th (32.7 to 108 ppm), producing Th/U 
ratios of 0.4 to 0.9 (Supplementary Table 1). All 24 
analyses yielded a weighted mean 206Pb/238U age 
of 479 ± 2 Ma (MSWD = 0.42, 2σ) (Figure 5C), 
which is identical, within error, to the concordant 
age of 479 ± 1 Ma (MSWD = 0.10, 2σ).

Zircons separated from the sample AKDL-8 are 
100–200 μm long with length-to-width ratios between 
1:1 and 2:1, colourless to light brown, euhedral in shape, 
and have clear zonation textures in CL images (Figure 
5A). All 18 analytical spots showed variable abundances 
of U (137 to 551 ppm) and Th (49.8 to 423 ppm), produ-
cing Th/U ratios of 0.4 to 1.0 (Supplementary Table 1). All 
18 analyses yielded a weighted mean 206Pb/238U age of 
462 ± 2 Ma (MSWD = 0.97, 2σ) (Figure 5D), which is 
identical, within error, to the concordant age of 
462 ± 1 Ma (MSWD = 0.49, 2σ).

4.2. Major and trace elements

Major and trace element data of all samples for the AK 
pluton are listed in Supplementary Table 2. The quartz 
monzonites contain moderate SiO2 contents (55.29–-
56.84 wt.%) and are alkalis-enriched (K2O + Na2 

O = 6.75–7.16 wt. %), such that they plot in the monzonite 
field on a total alkali vs. silica diagram and along the 
alkaline to the calc-alkaline series (Figure 6A). The quartz 

monzonites are enriched in TiO2 (0.75–1.06 wt.%), Al2O3 

(15.28–18.08 wt.%), Fe2O3
T (7.24–8.89 wt.%), MnO (0.12–-

0.15 wt.%), MgO (3.10–4.70 wt.%), CaO (1.68–5.11 wt.%), 
K2O (3.57–4.69 wt.%), and P2O5 (0.19–0.29 wt.%) 
(Supplementary Table 2). They are peraluminous with A/ 
CNK (molecular ratio of Al2O3/[CaO + Na2O + K2O]) and A/ 
NK (molecular ratio of Al2O3/[Na2O + K2O]) values of 0.-
83–1.41 and 1.69–1.97 (Figure 6B), respectively. In con-
trast, the analysed monzogranites have significantly 
higher SiO2 (68.29–71.70 wt. %) and alkalis contents (K2 

O + Na2O = 7.37–8.90 wt. %), such that they plot along the 
calc-alkaline series on a total alkali vs. silica diagram 
(Figure 6A). The monzogranites have A/CNK and A/NK 
ratios of 0.87–1.11 and 1.91–2.82, respectively, indicating 
that they are metaluminous to peraluminous (Figure 6B). 
The monzogranites have relatively low TiO2, Al2O3, Fe2O3

T, 
MnO, MgO, CaO, K2O, and P2O5 contents (Supplementary 
Table 2), and form a continuous trend with the quartz 
monzonites (Figure 7).

The AK pluton quartz monzonites have total rare 
earth element (REE) contents of 90.25–113.76 ppm. 
Chondrite-normalized REE patterns of the quartz mon-
zonites invariably show relative enrichment of light rare 
earth elements (LREE) with (La/Yb)N ratios of 4.43–9.57 
and weak negative Eu anomalies (δEu = 0.84–0.90) 
(Figure 8A). The monzogranites have lower total REE 
contents than the quartz monzonites (19.52–60.44 
ppm) and show weakly positive to negative Eu anoma-
lies (δEu = 0.95–1.28) (Figure 8A). In primitive mantle 
(PM)-normalized multi-element diagrams, the quartz 
monzonites and monzogranites are depleted in Nb, Ta, 
P, and Ti, and enriched in K, Pb, Sr, and LREE (Figure 8B).

4.3. Sr and Nd isotopic results

Whole-rock Rb–Sr and Sm–Nd isotopic compositions of 
the AK pluton are listed in Supplementary Table 3 and 
shown in Fig. 9. All initial 87Sr/86Sr isotopic ratios (87Sr/86 
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Sr)i and εNd(t) values were calculated according to the 
weighted mean 206Pb/238U ages for each monzonite and 
granite sample. The quartz monzonites have moderate 
Sr contents (350–710 ppm) and high Rb contents (104–-
165 ppm), and these show a variable initial 87Sr/86Sr of 
0.704187–0.705772. They have high Sm contents (3.38–-
4.83 ppm), high Nd contents (15.3–19.6 ppm), and vari-
able εNd(t) values (−0.4 to +1.1), which produce two- 
stage Nd model ages of 1.12–1.24 Ga. In contrast, the 
monzogranites have moderate Sr (461–604 ppm) and 
low Rb contents (61.0–81.6 ppm), and these show homo-
geneous initial 87Sr/86Sr ratios of 0.704432–0.704500. 
They have low Sm contents (0.811–1.38 ppm), low Nd 

contents (4.04–8.29 ppm), relatively homogeneous εNd(t) 
values (+2.0 to +2.9), and therefore, similar two-stage Nd 
model ages of 0.96–1.04 Ga.

4.4. Hf isotope compositions of zircon

In situ Lu–Hf isotopic compositions of zircons from the 
AK pluton were analysed in the same spots used for U– 
Pb age determination by LA-ICP-MS, and all initial 
176Hf/177Hf ratios and εHf(t) values were back-calculated 
to their weighted mean 206Pb/238U age. The results are 
listed in Supplementary Table 4 and are shown in Figure 
10. Zircons from quartz monzonite and monzogranite 
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within the AK pluton all have similar positive εHf(t) 
values. Sample AKDL-2 (473 ± 2 Ma) has εHf(t) values of 
+0.0 to +5.6, with a major peak at εHf(t) = +4, and two- 
stage Hf model ages of 1.11–1.32 Ga (Figure 10A). 

Sample AKDL-4 (479 ± 2 Ma) has εHf(t) values of +1.9 to 
+6.6, with a major peak at εHf(t) = +4, and two-stage Hf 
model ages of 0.96–1.22 Ga (Figure 10B). Sample AKDL-8 
(462 ± 2 Ma) has εHf(t) values of +1.1 to +4.3, with 

Figure 9. (87Sr/86Sr)i vs. εNd (t) plot for the AK pluton. Data sources are as follows: mid-ocean ridge basalt (MORB) (Chauvel and 
Blichert-Toft 2001), Kudi ophiolite (Pan 2000), Precambrian metaigneous and metasedimentary rocks in SKT (Jia et al. 2013), and Early 
Palaeozoic arc granitoids in the WKOB (references are shown in Table 1).

a b c

d e

Figure 10. Histograms of zircon εHf(t) values for quartz monzonite (A–B), and monzogranite (C) from the AK pluton, εHf(t) values vs. 
zircon U–Pb ages from the AK pluton (D), and εHf(t) values vs. εNd(t) values from the AK pluton (Chauvel et al. 2008, 2009). The Early 
Palaeozoic arc granitoids in the WKOB are the same as shown in Figure 8
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a major peak at εHf(t) = +4, and two-stage Hf model ages 
of 1.07–1.25 Ga (Figure 10C).

5. Discussion

5.1 Genetic types

Granitoids are generally divided into S-, I-, and A-types 
(Collins et al., 1982; Whalen et al., 1987). The A/CNK values 
of quartz monzonites were higher than 1.1, indicating that 
their peraluminous compositions are in agreement with 
felsic S-type granites (Figure 6B; Chappell and White 
1992). Quartz monzonites mainly contained plagioclase, 
K-feldspar, and quartz (Figure 3A, C), and no peraluminous 
minerals were found in of this study. They had low Zr 
(46.0–78.8 ppm), low Nb (7.52–9.96 ppm), low (Zr + Nb + 
Ce + Y) (105–161 ppm) contents, and low 10,000 × Ga/Al 
ratios (2.05–2.22) that are distinct from those of A-type 
granites (Zr≥250 ppm, Nb≥20 ppm, (Zr + Nb + Ce + Y) 
≥350 ppm, and 10,000 × Ga/Al≥2.6; Whalen et al., 1987). 
Quartz monzonites showed a negative relationship 
between P2O5 and SiO2 (Figure 7E), and a positive rela-
tionship between Pb and SiO2 (Figure 7F). This is consis-
tent with the trend observed for I-type granites (Chappell 
and White 1992; Wu et al. 2003).

Monzogranites had high SiO2 contents (68.29–-
71.70 wt.%) and low A/CNK values (0.96–1.11), with 
a similar mineral assemblage (Figure 3B, D) and geo-
chemical trend (Figure 7E, F) to quartz monzonites, also 
indicative of I-type granite affinity. They were enriched in 
Sr (461–804 ppm), have low Y (2.00–3.68 ppm) and Yb 
(0.19–0.31 ppm) contents with high Sr/Y (164–325) and 
(La/Yb)N (12.6–46.7) ratios that are similar to those of 
adakite (Sr≥400 ppm, Y ≤ 18 ppm, Yb≤1.8 ppm, Sr/Y ≥ 20 
and (La/Yb)N ≥ 10; Figure 11A, B; Martin 1999). In addi-
tion, they had low MgO and Nb contexts and high SiO2 

contents that show geochemical affinities to high-SiO2 

adakitic rocks (Figure 11C-D; Martin et al. 2005).

5.2 Petrogenesis

The AK quartz monzonites had relatively low SiO2 (57.-
60–59.17 wt.%) and high MgO contents (3.27–4.92 wt. 
%) and bulk Mg number (Mg# = Mg/(Mg+Fe2+)) of 42–55 
that were consistent with those of the partial melts from 
mafic crust (Rudnick and Gao 2003). In addition, they had 
a wide range of Nb/Ta (12.9–18.6), Nb/U (3.25–6.90) and 
Ce/Pb (2.81–4.24) ratios, with average values of 14.4, 
4.97 and 3.26, similar to those of continental crust 
(11.4, 6.15, and 3.91; Rudnick and Gao 2003), further 
suggesting a crustal origin.

However, quartz monzonites show a large variations 
in depleted whole rock Sr-Nd isotopic ratios ((87Sr/86Sr)i 

= 0.7042–0.7058, εNd(t) = – 0.4 to +1.1; Fig. 9), indicating 
that they were derived from a mixed magma. The zircon 
εHf(t) values also varied (+0.0 to +6.8) with almost seven 
εHf units (Fig. 9D). This is consistent with an open-system 
magma chamber where mantle-derived basaltic melt 
may be mixed with crustal components (Griffin et al. 
2002), thereby producing the observed isotopic variabil-
ity in the AK quartz monzonites. The two-staged Nd 
model ages (1.11–1.24 Ga, Supplementary Table 3) and 
two-stage Hf model ages (0.96–1.32 Ga, Supplementary 
Table 4) of quartz monzonites were significantly younger 
than the crystallization age of the basement meta-
morphic rocks of the Tarim Basin (the Paleoproterozoic 
Heluositan complex and the 2.41 Ga Akazi pluton; Zhang 
et al. 2007a) and the MTT (the 2.5 Ga Mazar complex; Ji 
et al. 2011; Zhang et al. 2018b), suggesting that the 
quartz monzonites were originated from 
a Mesoproterozoic source. The studied rocks had posi-
tive zircon εHf(t) values (+0.0 to +6.8), and plotted above 
the evolutionary trend defined by the lower crust and 
near the chondritic uniform reservoir (CHUR) reference 
line in t-εHf(t) diagram (Figure 10D), which suggests that 
a mixed source of a juvenile crust and an older lower 
crust was involved in the origin of quartz monzonites.

As mentioned above, the AK monzogranites show 
adakitic affinities. Several petrogenetic models have 
been proposed the explain the origins of adakites, 
including: (1) melting of subducted young oceanic 
crust (Defant and Drummond 1990); (2) fractional crys-
tallization of water-rich arc magma (Macpherson et al. 
2006; Richards and Kerrich 2007); (3) magma mixing 
between felsic and basaltic magmas (Streck et al. 2007); 
and (4) partial melting of thickened lower crust (Chung 
et al. 2003; Zhu et al. 2009).

Monzogranites were high-SiO2 adakitic rocks with 
a high SiO2 (68.29–71.70 wt.%), and low MgO (0.34–-
0.87 wt.%), Nb (1.65–3.46 ppm), Cr (9.88–18.9 ppm) and 
Ni (1.74–6.13 ppm) contents (Figure 11C-F), which were 
distinct from the adakites that were derived from sub-
ducted young oceanic crust; they were generally similar 
to high-Mg andesites with high MgO, Nb, Cr, and Ni 
contents (Defant and Drummond 1990; Rapp et al. 
1999; Martin et al. 2005).

Adakites can be formed by garnet fractional crystal-
lization under high pressure and plagioclase and amphi-
bole fractional crystallization under low pressure 
(Macpherson et al. 2006; Richards and Kerrich 2007). 
Both formation mechanisms have an important impact 
on the chondrite-normalized REE patterns; for example, 
garnet crystallization influences HREE and Y contents, pla-
gioclase fractional crystallization affects Eu and Sr values, 
while amphibole fractional crystallization affects middle 
REE (MREE) concentrations. However, monzogranites 
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show flat chondrite-normalized REE patterns without any 
significant negative Eu anomalies (Figure 8A), indicating 
that neither of these formation mechanisms played an 
important role in the generation of the AK monzogranites. 
In addition, there were no significant linear trends in the 
Sr/Y, (La/Yb)N, Eu* versus SiO2 diagrams (Figure 12A–C), or 
in the (Dy/Yb)N versus (La/Yb)N diagram (Figure 12D), and 
no significant negative Sr anomalies in PM normalized 
trace element patterns (Figure 8B), further suggesting 
that fractional crystallization was not responsible for the 
petrogenesis of the AK monzogranites.

Monzogranites had similar Sr–Nd–Hf isotopic data to 
quartz monzonites in the AK pluton, however, it is unli-
kely that monzogranites can be a result of fractional 
crystallization of quartz monzonites. Zircons from quartz 
monzonites show relatively homogeneous CL character-
istics with weak oscillatory zoning in rim domains, while 

monzogranites show clear zonation textures (Figure 5A), 
which suggests that zircons formed in different magma 
systems. Geochronological data revealed a gap of at 
least 10 Ma between quartz monzonites and monzogra-
nites, suggesting that they were from two independent 
magmatic systems, an early one with intermediate com-
position (479 ± 2 Ma and 473 ± 2 Ma for monzonites) and 
a later one with felsic composition (462 ± 2 Ma for 
granite) (Figure 5C-D). A distinct compositional gap in 
SiO2 concentrations between monzogranites (68.29–-
71.70 wt.%) and quartz monzonites (55.29–56.84 wt.%) 
is inconsistent with a fractional model in which the SiO2 

concentrations gradually increased (Bellieni et al., 1986; 
Garland et al. 1995). In addition, more evolved magmas 
are enriched in Na2O + K2O along with fractional crystal-
lization, which contrasts with the fact that Na2O + K2 

O decrease with the increasing SiO2 content (Figure 6A). 
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Therefore, the mineralogical and geochemical differ-
ences further suggest that fractional crystallization of 
quartz monzonites was not responsible for the origin 
of the adakitic monzogranites.

Monzogranites have high SiO2 and low Cr and Ni 
contents that plotted in thick lower crust-derived adaki-
tic rocks (Figure 11E, F; Martin et al. 2005), suggesting 
that the adakites were likely generated by partial melt-
ing of the thickened lower crust. They haave low MgO 
contents and low Mg# values (38–48), which were similar 
to experimental melts of meta-basalt and eclogite under 
1–4.0 GPa (Figure 13A; Rapp and Watson 1995; Rapp 
et al. 1999). Monzogranites have low K2O/Na2 

O (0.45–0.76) and CaO/Al2O3 (0.04–0.13) ratios, which 
are consistent with those of lower crustal-derived ada-
kites, but are different from those of oceanic slab melts 
(Figure 13B; Stern and Kilian, 1996; Karsli et al. 2019). 
They have Nb/Ta ratios (9.85–14.9) with average values 
(12.3) intermediate between the mantle (17.7; Sun and 
McDonough 1989) and the lower crust (8.3; Rudnick and 
Gao 2003), indicating that monzogranites were probably 
generated by the partial melting of amphibole and horn-
blende eclogite in the garnet stability field (Figure 13C; 
Foley et al. 2002). In addition, the studied adakitic mon-
zogranites had moderate to high La/Yb (17.5–65.1), La/ 
Sm (5.44–12.0) and Sm/Yb (3.22–6.59) ratios with aver-
age values of 42.2, 8.50, and 4.73, respectively, similar to 

those of melts sourced from the lower crust at depths of 
45–50 km with garnet-bearing eclogite residues (La/ 
Yb>30 and Sm/Yb>5; Rapp et al. 1999). This is also con-
sistent with the 513-Ma-old thick lower crust-derived 
Yierba adakitic diorite (41.6, 10.1, and 4.13; Yin et al. 
2020) in the plot of La/Sm versus Sm/Yb (Figure 13D; 
Haschke et al. 2006), and this indicates that monzogra-
nites were generated from a thickened lower crust. 
Furthermore, the AK adakitic monzogranites had higher 
Sm/Yb ratios than quartz monzonites (Figure 13D), indi-
cating that monzogranites were formed under relatively 
higher pressures. Finally, monzogranites have 
a relatively homogeneous whole rock (87Sr/86Sr)i (0.-
7044–0.7045) and εNd(t) (+2.0 to +2.9) values zircon εHf 

(t) values (+1.1 to +4.3) and show older two-staged Nd- 
Hf model ages (0.97–1.25 Ga) (Supplementary Tables 3 
and 4), suggesting that monzogranites were mainly 
derived from partial melting of a thickened lower crust.

Monzonites and monzogranites of the AK pluton 
underwent crystallization fractionation, as indicated by 
their variable major and trace elements. The TiO2, Fe2O3

T 

, and MgO contents were negatively correlated with the 
SiO2 content (Figure 7A–C), which reflects the fractiona-
tion of mafic minerals (i.e. pyroxene and hornblende). 
They show negative Ba, Sr, P, and Ti anomalies in the PM 
normalized trace elements (Figure 8B), indicating plagi-
oclase, apatite and Fe-Ti oxide fractionation. The Ba 
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contents of monzonites and monzogranites are nega-
tively correlated with their Rb contents, but positively 
correlated with their Sr contents (Figure 14A-B), which 
revealed crystallization of plagioclase, K-feldspar and 
amphibole. The negative correlation between La and 
(La/Yb)N suggests separation of monazite and/or allanite 
(Figure 14C).

5.3 Tectonic implications

Zircons analysed from the AK pluton quartz monzonite 
and monzogranite samples show oscillatory zoning tex-
tures in CL images (Figure 5), indicating a magmatic 
origin (Hoskin and Black 2000). High Th/U ratios 
(0.4–1.0) are also consistent with them being igneous 
(Supplementary Table 1; Williams et al. 1996). Core–man-
tle structures were not observed in the CL images 
(Figure 5); thus, the obtained zircon ages can be as 
assumed to representing the timing of their growth in 
the melt. The quartz monzonites have crystallization 
ages between 473 ± 2 Ma and 479 ± 2 Ma, and the 
monzogranite yielded a weighted mean 206Pb/238U age 
of 462 ± 2 Ma. All weighted mean ages were identical 
within analytical errors to the associated concordant 
ages. As such, these new data undoubtedly show that 
the AK pluton was emplaced during the Early Palaeozoic 
and are consistent with those of the Ordovician arc 

magmatism that occurred in the WKOB (Table 1, 
Figure 1C).

The quartz monzonite and monzogranite from the AK 
intrusions are enriched in LILEs and LREEs, and depleted in 
high field strength elements (HFSEs) with negative Nb, Ta, 
P, Zr, and Ti anomalies in PM normalized trace element 
patterns, and are similar to other Cambrian–Ordovician arc 
granitoids in the WKOB (Figure 8B), suggesting they were 
formed in a subduction environment (Hawkesworth et al. 
1997; Martin et al. 2005). The AK quartz monzonites plotted 
in the arc field in the La/Sm vs. Sm/Yb diagram and Ta/Yb 
vs. Yb + Ta diagram (Figure 14D-E; Whalen and Hildebrand 
2019), suggesting a subduction setting. Monzogranites 
have a high silicon content (>68 wt.%) due to the relatively 
intensive crystalline differentiation, falling into slab failure 
field. These granitoids had relatively low Rb and Yb + Ta 
contents and plotted in the volcanic arc granitoids (VAG) 
field in Rb vs. (Yb + Ta) diagram (Figure 14F; Pearce et al. 
1984), indicating arc affinities. Therefore, the AK pluton 
represents an example of Early Palaeozoic arc magmatism 
in the northern belt of the WKOB.

The WKOB contains numerous Cambrian–Ordovician 
magmatic rocks, including the 487–532 Ma 
Nanpingxueshan pluton (Hu et al. 2016; Liu et al. 2019), 
515 Ma Warengzilafu pluton (Zhu et al. 2016), 530 Ma Ayilixi 
pluton (Zhu et al. 2016), and 500 Ma Kulule pluton in the 
MTT (Zhang et al. 2016b); the 443–473 Ma Datong complex 
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(Liao et al. 2010; Wang et al. 2017; Zhu et al. 2018; Li et al. 
2019), 485 Ma Datongdong pluton (Li et al. 2019), 
471–513 Ma Yirba pluton (Yuan et al. 2002; Liu et al. 2014), 
and 463–479 Ma Akedala pluton in the SKT (This study); and 
the 502 Ma Dongbake pluton (Cui et al. 2007a) and 466 Ma 
Kashikashi pluton in the NKT(Zhang et al. 2019b). Previous 
studies have shown that these granitoids exhibit similar 
geochemical characteristics, including variably negative 
Eu anomalies (Figure 8) and depletion in Nb, Ta, P, and Ti 
(Figure 8), indicating that they all formed in a subduction 
zone setting related to the closure of the Proto-Tethys 
Ocean (Xiao et al. 2005; Yuan et al. 2005; Cui et al. 2007a, 
b; Liao et al. 2010; Liu et al. 2014; Hu et al. 2016; Wang et al. 
2017; Zhang et al. 2018a; Zhu et al. 2018; Li et al. 2019; Liu 
et al. 2019; Zhang et al. 2019a,b,d; this study). However, the 
polarity of subduction of the Proto-Tethys Ocean has been 
debated. Some researchers consider that the Early 
Palaeozoic Kudi-Qimanyute ophiolite is a remnant of 
a back-arc basin (Wang et al. 2002; Wang 2004), which 
implies the northward subduction of the Proto-Tethys 
Ocean (Xiao et al. 2000; Wang 2004; Ye et al. 2008). In 
contrast, some researchers interpret it as an ‘supra- 
subduction zone’ (SSZ) ophiolite, implying that the Proto- 
Tethys Ocean subducted southward beneath the SKT and 
MTT (Jiang et al. 2002; Liao et al. 2010; Jia et al. 2013; Liu et al. 
2014; Li et al. 2019; Zhang et al. 2018a, p. 2019). In addition, 
some researchers have reported bidirectional closure of the 
Proto-Tethys Ocean, indicating the simultaneous operation 
of subduction zones towards both the north and south 
(Xiao et al. 2002, 2005; Zhu et al. 2018).

Examination of the temporal and spatial distribution 
of the Early Palaeozoic magmatic rocks in the WKOB 
shows that Cambrian–Ordovician intrusions mostly 
occur in the SKT and MTT, with minor occurrences in 
the NKT (Fig. 1C and Table 1). The arc-related pluton in 
the NKT has an enriched Sr–Nd–Hf isotope composition 
(Figs. 9–10; Zhang et al. 2019d), while the arc magmas in 
the SKT and MTT have relatively depleted Sr–Nd–Hf 
isotope compositions (Figs. 9–10; Xiao et al. 2005; Yuan 
et al. 2005; Liao et al. 2010; Liu et al. 2014; Hu et al. 2016; 
Wang et al. 2017; Zhang et al. 2018a; Zhu et al. 2018; Li 
et al. 2019; Liu et al. 2019). These characteristics indicate 
that the arc systems that formed above different sub-
duction zones during closure of the Proto-Tethys Ocean 
had very different characteristics, with continental arcs 
characterizing northward subduction beneath the NKT 
and island arcs characterizing southward subduction 
beneath the SKT and MTT. These island arcs contain 
accretionary complexes, volcanic rocks, gabbros, and 
granites (Zhang et al. 2019a). The temporal and spatial 
distribution of the Early Palaeozoic arc magmas in the 
WKOB suggests bidirectional subduction of the Proto- 
Tethys Ocean, with most occurring in a southward direc-
tion. As the AK pluton has depleted Sr–Nd–Hf isotopic 
ratios, it may have formed during the southward sub-
duction of the Proto-Tethys Ocean.

It is generally accepted that the Early Palaeozoic mag-
matism in the WKOB is related to the tectonic evolution 
of the Proto-Tethys Ocean (Xiao et al. 2005; Yuan et al. 
2005; Cui et al. 2007a, b; Ye et al. 2008; Liao et al. 2010; Jia 
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et al. 2013; Liu et al. 2014; Hu et al. 2016; Wang et al. 
2017; Zhang et al. 2018a; Zhu et al. 2018; Li et al. 2019; 
Liu et al. 2019; Zhang et al. 2019a,b,d); therefore, 
a comprehensive study of the results from previous 
studies can be used to decipher the tectonic evolution 
of the Proto-Tethys Ocean.

The Proto-Tethys Ocean formed between the West 
Kunlun terrane and Tarim block in the Late 
Neoproterozoic–Early Palaeozoic (before 530 Ma) during 
the break-up of the Rodinia supercontinent (Figure 15A; 
Zhang et al. 2004; Metcalfe et al. 2017; Zhang et al. 
2019a). Bidirectional subduction began at 530–500 Ma 

(Figure 15B), whereby southward subduction beneath 
the MTT formed an island arc system accompanied by 
volcanic rocks, gabbro, and granites that were emplaced 
into the MTT; meanwhile, northward subduction 
beneath the NKT formed a continental arc and allowed 
intrusion of the Dongbake pluton into the NKT at 502 Ma 
(Cui et al. 2007a). This bidirectional subduction contin-
ued through 500–460 Ma as the arc systems gradually 
matured (Figure 15C), forming a large accretionary 
wedge (SKT) in the fore-arc region. The dehydration of 
the subducted plate caused partial melting of subducted 
sediment and partial melting in the overlying mantle 
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Figure 15. Cartoon illustration showing the tectonic model for generation of the AK pluton. A. Pre-530 Ma: Proto-Tethys Ocean 
opening between the Tarim block and the MTT. B. 530–500 Ma: bidirectional subduction of the Proto-Tethyan oceanic crust, forming 
gabbro and granite on both sides. C. 500–460 Ma: continued bidirectional subduction of the Proto-Tethyan oceanic crust, forming the 
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Kunlun terrane, and oceanic slab break-off to form high-K, high-Sr/Y, and high-Ba/Sr granites.
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wedge, which led to the formation of bimodal igneous 
rocks (gabbro and granite) in the SKT (Liu et al. 2014; 
Wang et al. 2017; Li et al. 2019; Zhang et al. 2019a, d; this 
study) and the intrusion of the Kashikashi pluton in the 
NKT (Zhang et al. 2019b). the closure of the Proto-Tethys 
Ocean caused a collision between the West Kunlun ter-
rane and the Tarim block at 460–430 Ma, which, in turn, 
led to metamorphism of volcanic-sedimentary 
sequences in the accretionary wedge (SKT) under horn-
blende-bearing granulite-facies conditions at 
450–440 Ma (Xiao et al. 2005; Wang 2008; Zhang et al. 
2019a, b). the break-off of the Proto-Tethys oceanic slab 
and associated asthenospheric upwelling caused empla-
cement of voluminous high-K, high-Sr/Y and high-Ba/Sr 
granite into the SKT and NKT (Figure 15D; Ye et al. 2008; 
Jia et al. 2013; Zhu et al. 2018; Zhang et al. 2016d, Zhang 
et al. 2019c).

6. Conclusions

The Akedala pluton is composed of quartz monzonite 
and monzogranite that were emplaced at 473–479 Ma 
and 462 Ma, respectively, both of which show geochem-
ical affinities to arc magmas. The depleted whole rock Sr- 
Nd isotopic ratio ((87Sr/86Sr)i = 0.7042–0.7058, εNd(t) = – 
0.4 to +1.1), and positive zircon εHf(t) (+0.0 to +6.8) 
values of I-type quartz monzonites suggest that they 
were derived from a mixed source involving juvenile 
and lower crust. The adakitic monzogranites have 
depleted whole rock (87Sr/86Sr)i (0.7044–0.7045) and 
positive εNd(t) (+2.0 to +2.9) and positive zircon εHf(t) 
(+1.1 to +4.3) values with low MgO, Cr, Ni, and Nb 
contents, indicating that they were mainly generated 
from partial melting of the thickened lower crust. Due 
to the temporal and spatial distribution of the Early 
Palaeozoic magmatic rocks in the WKOB, we suggest 
that bidirectional subduction of the Proto-Tethys 
Ocean began during the Early Cambrian, and continued 
to the Middle Ordovician. The Akedala pluton formed 
due to the southward subduction of the Proto-Tethys 
Ocean. The final closure of the Proto-Tethys Ocean dur-
ing the Early Silurian facilitated collision between the 
Tarim block and the West Kunlun terrane, forming the 
Early Palaeozoic orogenic belt.
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