典型黑色岩系地质高背景区农田土壤-玉米系统重金属富集特征

陈梓杰'肖唐付'刘意章^{2*} 邢 丹³ 杨 军² 朱正杰⁴ 宁增平² (1广州大学环境科学与工程学院,广州 510006;2中国科学院地球化学研究所环境地球化学国家重点实验室,贵阳 550081; 3贵州省农业科学院辣椒研究所,贵阳550006;4百色学院农业与食品工程学院,广西百色533000)

> 黑色岩系风化是我国西南地区土壤重金属元素环境背景值高的重要原因之一,目 摘 要 前关于黑色岩系高地质背景区农田土壤-农作物系统重金属的富集特征及影响因素的认识 仍存在不足。本研究选择重庆市城口县典型黑色岩系高地质背景区为研究区,研究了土 壤-玉米系统中的重金属元素总量、生物有效性与迁移富集过程及影响因素。结果表明,研 究区土壤中重金属元素的富集程度为 Cd>Zn>Cu>Ni>Cr>Pb, Cd、Zn、Cu 和 Ni 含量均高于 我国土壤背景值,Cd的平均含量达 5.11 mg·kg⁻¹。研究区土壤 Cd的污染程度最高(I_{see} 为 1.35~7.04),82%的土壤样品达到了重度污染水平,潜在生态风险最高(E,平均值为1534), 为该区域的特征污染元素。土壤样品有效态 Cd 含量为 0.001~1.51 mg·kg⁻¹,平均提取率 为 6.14%, 且在酸性条件下随土壤 pH 增加显著降低, 在近中性条件下对 pH 变化的响应不 明显。玉米籽粒对重金属的富集程度低,其中Cd的干重含量为0.001~1.36 mg•kg⁻¹,超标 率为14%,基本处于安全水平。玉米籽粒中重金属含量与土壤重金属总量无明显关系,与 有效态的关系在不同 pH 条件下存在差异。

黑色岩系; 镉污染; 土壤; 农作物; 生物有效性 关键词

Accumulation of heavy metals in agricultural soils and maize in a typical black shale area with high geochemical background. CHEN Zi-jie¹, XIAO Tang-fu¹, LIU Yi-zhang^{2*}, XING Dan³, YANG Jun², ZHU Zheng-jie⁴, NING Zeng-ping² (¹School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; ² State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; ³Institute of Pepper, Guizhou Academy of Agricultural Science, Guiyang 550006, China; ⁴College of Agriculture and Food Engineering, Baise University, Baise 533000, Guangxi, China).

Abstract: The weathering of black shale is a vital contributor to the high background values of heavy metals (HMs) in soils in Southwest China. However, the accumulation characteristics and controlling factors of HMs in soil-crop systems are not well understood. We investigated the bulk contents and bioavailability of HMs and their transfer pattern from soil to maize in a typical black shale area with high geochemical background in Chengkou of Chongqing. The results showed that the accumulation factor of HMs in soils from the study area followed an order of Cd>Zn>Cu>Ni> Cr>Pb, with Cd, Zn, Cu and Ni exceeding the background value. Cd was the main HM contaminant in the study area. Average Cd content in bulk soils was 5.11 mg \cdot kg⁻¹. The soils were seriously polluted by Cd, with I_{geo} ranging from 1.35 to 7.04. 82% of soil samples were classified as heavy contamination based on $I_{\rm geo}$. The Cd in these soils posted high ecological risk, with an average E_r of 1534. The contents of bioavailable Cd in the soils ranged from 0.001 to 1.51

国家重点研发计划项目(2017YFD0800302)、国家自然科学基金(41773142)、贵州省科学技术基金资助项目(黔科合基础[2017]1195 [2018] 1177)、中国科学院青年创新促进会(2021399)和贵州省高层次留学人才择优资助项目[(2020)10号]资助。 接受日期: 2021-05-05

收稿日期: 2021-02-28

^{*} 通讯作者 E-mail: liuyizhang@ mail.gyig.ac.cn

mg • kg⁻¹, with an average extractability of 6.14%. Extractability of Cd decreased with increasing soil pH in acidic soils, and slightly changed with pH in near-neutral soils. The accumulation of HMs in maize was low, with the total Cd contents ranging from 0.001 to 1.36 mg • kg⁻¹. 14% of maize samples exceeded the safety threshold of cereal. There was no relationship between the contents of HMs in maize grains and their bulk contents in soils. The relationship between Cd content in maize grains and soil available Cd content depended on soil pH conditions.

Key words: black shale; cadmium pollution; soil; food crop; bioavailability.

2014年发布的《全国土壤污染状况调查公报》 显示,我国土壤环境状况不容乐观,全国土壤总的超 标率为16.1%,污染类型以无机型为主;耕地土壤点 位超标率更是高达 19.4%, Cd 等重金属元素是主要 污染物,如Cd的点位超标率达到7.0%(环境保护 部和国土资源部,2014)。除工矿业、农业等典型人 为活动影响外,自然地质过程造成的高背景值也是 土壤重金属超标的重要因素。西南地区是我国典型 的高地质背景区,该地区碳酸盐岩广泛分布,岩溶地 貌发育,碳酸盐岩特殊的风化成土过程,导致重金属 元素原位残积于上覆土壤,造成大量农田土壤重金 属超标(Wen et al., 2020; Xia et al., 2020),并被认为 是造成西南地区土壤环境背景值高的主要原因 (Zhao et al., 2015; 骆永明等, 2018)。然而, 地质背 景资料显示,西南地区也分布有大面积的黑色岩系 (范德廉等,2004;周东晓等,2020),其通常富集多 种重金属元素,且暴露于地表易于风化分解(Parviainen et al., 2019),造成土壤、农作物等环境介质中 Cd 等重金属元素的富集,由此产生的重金属污染问 题近年来得到较广泛的关注(Duan et al., 2020; Liu et al., 2021)。前人在不同地区(广西、浙江、重庆、 贵州等)、不同地层(二叠系、寒武系等)的黑色岩系 地质高背景区对土壤、农作物等环境介质中重金属 元素的含量、形态特征等进行了研究,取得了较丰富 的成果(赵万伏等, 2018;杨连升等, 2020; Duan et al., 2020; Liu et al., 2021)。但总体来看, 以往研究 或集中于土壤重金属分布特征、富集机理与形态特 征,缺乏农作物的相关数据;或针对大区域尺度的土 壤、农作物样品(水稻、玉米等)进行分析,区域变异 性较大,土壤与作物的对应性不强。因此,难以准确 阐明黑色岩系地质高背景区重金属在土壤-农作物 系统的富集和迁移特征。基于此,本研究在前期工 作基础上,选择重庆市城口县前寒武系黑色岩系地 质高背景区,在典型小流域内采集对应的土壤和当 地主要种植农作物玉米样品,系统研究重金属元素 的富集与迁移特征及其主要影响因素,旨在为黑色

岩系地质高背景区土壤重金属污染防控和土地管理 提供科学依据。

1 研究地区与研究方法

1.1 研究区概况

研究区位于重庆市城口县(图1),处于大巴山 南麓,地形以中低山为主,平均海拔1000 m以上。 研究区属于亚热带季风气候,以西南风为主,常年温 和湿润,立体气候明显。年平均降水量约为1261 mm,年平均气温为13.8 ℃,最低气温出现在1月, 最高气温在7月。研究区内没有工矿活动,土壤类 型主要为黄壤、黄棕壤,农田基本为旱地土壤,用于 种植蔬菜、玉米等满足日常生活的农作物。研究区 出露岩石主要为下寒武统黑色岩系,主要包括炭质 粉砂岩、炭质泥页岩、碳钙质砂岩和硅质粉砂岩,受 黑色岩系自然风化过程影响,土壤富集 Cd 等重金 属元素(Liu *et al.*,2021)。

1.2 样品采集与处理

耕作土壤和玉米样品采集于 2020 年 9 月,在前 期工作基础上于高地质背景区内系统设计采样点位 (图 1),土壤样品的采集按照《土壤环境监测技术规 范》(HJ/T 1662—2004)进行,以地块为单位,按蛇 形法采集 0~20 cm 的表层土,混匀后作为该地块的 样品,同时采集该地块种植的玉米果实部分,共采集

图1 研究区域采样点位示意图

Fig.1 Location of sampling sites in study area

土壤样品 50 件, 玉米样品 50 件(细分为玉米籽粒、 玉米芯、苞叶)。土壤样品经自然风干后, 过 2 mm 尼龙筛去除砂砾和植物根系, 经压碎、研磨至≤200 目密封保存。玉米样品测定含水率后, 烘干并用破 碎机粉碎后密封保存。

1.3 样品分析与质量控制

土壤 pH 按1:2.5(土/水)的比例混匀、振荡后 采用 pH600 型 pH 计测定。土壤有机质(SOM) 采用 重铬酸钾法测定(鲍士旦,2000);碳酸钙含量采用 气量法测定(鲍士旦,2000);有效阳离子交换量 (ECEC)采用三氯化六氨合钴浸提法(HJ 889-2017) 测定。固体样品的消解在全自动消解仪(Auto Digiblock S60 UP) 上进行,称取 30 mg 土壤样品于 Teflon 罐中,加入 2 mL HNO3+0.5 mL HF+0.4 mL HClO₄消解 3.5 h;称取玉米样品 50 mg 于 Teflon 罐 中,加入3 mL HNO₃(68%~70%, UPS) 消解6 h; 消 解液定容至 50 mL 后,在环境地球化学国家重点实 验室采用电感耦合等离子体质谱仪(ICP-MS,美国 PE, NexION 300X) 测试重金属元素含量。每批次消 解样品设置空白样、10%平行样和标准样品进行质 量控制,结果表明重现性高于95%;土壤标准样品 (GSS-5)各重金属元素的回收率为86.9%~117.8%; 植物标准样品(GBW(E) 100348) 各重金属元素的 回收率为82.0%~121.6%。土壤重金属的生物有效 态采用 CaCl2提取法(Novozamsky et al., 1993), 取 2 g 土壤样品,加入 20 mL 0.01 mol • L⁻¹ CaCl,溶液, 于室温下振荡 1.5 h,离心过滤后采用 ICP-MS 测试 重金属元素含量。

1.4 数据处理与分析

本研究采用地累积指数(*I*_{geo})来评价土壤中重 金属元素的污染水平,计算方法为:

$$I_{\text{geo}} = \log_2\left(\frac{C_i}{1.5B_i}\right)$$

式中, C_i 为重金属的实测浓度; B_i 为重金属元素的地 球化学背景值,本文采用中国土壤背景值(魏复盛 等,1991);1.5为校正系数,用于校正人为和自然影 响(Müller,1969;Wei *et al.*,2010)。污染等级划分 为:未污染(≤ 0)、未污染至中度污染($0 \sim 1$)、中度 污染($1 \sim 2$)、中度至重度污染($2 \sim 3$)、重度污染($3 \sim$ 4)、重度至极度污染($4 \sim 5$)和极度污染(≥ 5) (Müller,1969)。

本研究采用生态风险因子(*E_r*)来指示土壤重 金属的潜在生态风险,计算方法为:

$$E_r = \frac{C_i}{B_i} T_i$$

式中, C_i 为重金属的实测浓度; B_i 为重金属元素的地 球化学背景值,采用中国土壤背景值(魏复盛等, 1991); T_i 是毒性因子,Cd为30,Cr为2,Cu,Ni和Pb 为5,Zn为1(Håkanson,1980;Tian *et al.*,2017)。生 态风险等级分为低潜在生态风险(E_r <40)、中等潜 在生态风险($40 \le E_r$ <80)、较高潜在生态风险($80 \le E_r$ <160)、高潜在生态风险($160 \le E_r$ <320)、极高生 态风险($E_r \ge 320$)(Håkanson,1980)。

此外,还计算了重金属元素在土壤-农作物系统的转运系数(TF),和土壤重金属单项污染指数(PI),计算方法为:TF=农作物重金属含量/土壤重金属含量。PI为土壤重金属的实测浓度与我国农用地土壤污染风险筛选值(GB 15618—2018)的比值。

皮尔森相关性分析采用 SPSS(23.0) 软件完成; 图表绘制采用 Origin(9.0) 和 Excel(Microsoft Office 2019) 软件完成。

- 2 结果与讨论
- **2.1** 研究区土壤重金属富集特征 表1显示,研究区土壤pH值为4.63~7.41(平

表 1	土壤理化参数和重金属元素统计值及中国土壤背景值(N=50)	

Table 1 Statistics of son	physicoer	icilical pa	ameters,	neavy m	ictal content	s and Ch	mese	soli backgrot	inu values	
项目	Cd	Zn	Cr	Cu	Ni	Pb	pН	ECEC	CaCO ₃	SOM
	$(\ mg\ {\scriptstyle \bullet}\ kg^{-1})$	$(\ mg \ {\scriptstyle \bullet} \ kg^{-1})$	$(\ mg\ {\scriptstyle \bullet}\ kg^{-1})$	(mg • kg ⁻	$^{l}) (mg \cdot kg^{-1})$	$(\ mg\ {\scriptstyle \bullet}\ kg^{-1})$		$(\text{ cmol}^+ \cdot \text{kg}^{-1})$	$(g \cdot kg^{-1})$	$(g \cdot kg^{-1})$
最小值 Min	0.38	118	52.2	26.5	27.5	16.1	4.63	2.10	0.95	9.37
最大值 Max	19.8	1784	496	243	344	35.2	7.41	13.7	208	45.50
中位值 Median	3.45	362.4	129.9	66.9	85.6	20.5	5.69	7.37	6.30	22.60
平均值 Mean	5.11	488	157	88.2	95.3	20.6	5.73	7.37	10.3	22.90
几何平均值 Geomean	3.30	382	138	72.9	83.8	20.5	5.69	6.67	6.08	21.90
标准偏差 SD	4.9	360	96.5	58.0	52.0	5.35	0.65	3.02	28.3	7.07
变异系数 CV(%)	95.9	74.1	60.7	66.7	55.7	25.4	11.5	41.4	277	31.20
全国土壤背景值 Chinese back- ground values(魏复感等,1991)	- 0.10	74.2	61.0	22.6	26.9	26.0	6.7	-	-	-

均值 5.73),呈酸性至近中性,88%的土壤样品呈酸 性(pH < 6.5),土壤碳酸钙含量为 0.95~208 g・ kg⁻¹,除 1 件样品为极值 208 g・kg⁻¹外,其余样品含 量均低于 15 g・kg⁻¹。研究区土壤 pH 与碳酸钙呈 正相关(0.382, P < 0.01),说明研究区土壤 pH 值可 能受到成土母质的影响。SOM 为 9.37~45.5 g・ kg⁻¹(平均值 22.9 g・kg⁻¹),近似于重庆山区旱地土 壤平均值(25.6 g・kg⁻¹;叶润根等,2021)。有效阳 离子交换量(ECEC)为 2.10~13.66 cmol⁺•kg⁻¹,土 壤 pH 与 ECEC 呈显著正相关(0.714, P < 0.01),说 明土壤胶体吸附阳离子受到 pH 的影响,当 pH 变化 时,土壤胶体从介质吸收或解吸离子,使土壤电荷发 生变化,即 pH 影响了可变电荷(王文艳等,2012; Liu et al.,2021)。

研究区土壤重金属呈现不同程度的富集,与我 国土壤背景值相比(魏复盛等,1991),各重金属元 素的富集程度为 Cd>Zn>Cu>Ni>Cr>Pb,其中 Cd、 Zn、Cu、Ni 平均含量分别是我国土壤背景值的 51.1、 6.7、3.9、3.5 倍。Cd、Zn、Cr 和 Cu 的变异系数较高, Ni 和 Pb 的变异系数较低,可能是土壤继承母岩地 球化学特征的结果(Liu et al., 2013)。与《农用地土 壤污染风险管控标准》(GB 15618-2018)相比,Cd、 Zn、Cr、Cu和Ni的超标率(高于风险筛选值)分别为 100%、78%、38%、66%和66%, Pb 未超标; 70%的土 壤样品 Cd 含量超过风险管制值(GB 15618-2018)。研究区土壤重金属元素含量普遍高于其他 高地质背景区,例如,土壤 Cd 平均含量(5.11 mg• kg⁻¹)高于浙江黑色岩系风化土壤 Cd 平均含量 (0.81 mg•kg⁻¹;赵万伏等,2018)和广西岩溶区土 壤 Cd 平均含量(1.78 mg•kg⁻¹; 郭超等, 2019)。除 Pb 外, 土壤中各重金属元素间相关性极高(表2),

说明重金属元素具有相似来源,由于研究区内无工 矿业活动,主要来源为富重金属的黑色岩系自然风 化(Liu et al.,2021)。而且,母岩地球化学组成的分 异造成研究区土壤中重金属分布的高度异质性,整 体表现为不同元素富集程度差异大,同一元素的空 间变异性大。土壤理化性质与重金属元素相关分析 表明,pH与Cd、Zn、Ni呈正相关(P<0.05),ECEC与 Cd、Ni呈正相关(P<0.05),CaCO₃与Zn、Ni呈正相 关(P<0.01),说明土壤中重金属元素的富集与pH、 矿物、土壤胶体电荷等因素关系紧密,整体来说,高 pH、高ECEC有利于重金属元素的富集。

平均单项污染指数变化规律为 Cd(17.05) >Zn (2.35) >Cu(1.66) >Ni(1.37) >Cr(1.02) >Pb(0.25)。 土壤重金属的平均地累积指数(图 2) 变化规律为 Cd(4.46) >Zn(1.78) >Cu(1.10) >Ni(1.06) > Cr(0.59) >Pb(-0.93)。所有土壤样品 Cd 污染程度 达到中度污染水平以上,其中 84.0%达到重度污染 水平;60.0%的样品Zn处于未污染至中度污染水

图 2 土壤中重金属的地质积累指数箱型图 Fig. 2 Boxplot of the geo-accumulation index of heavy metals in soils

表 2 土壤重金属元素与土壤理化性质的 Pearson 相关系数

				neuvy metals	unu physico	enemieur p		nona	
指标 Index	Cd	Zn	Cr	Cu	Ni	Pb	рН	ECEC	SOM
Zn	0.849**								
Cr	0.804 * *	0.727**							
Cu	0.830**	0.852**	0.906**						
Ni	0.607 * *	0.877 * *	0.414**	0.651**					
Pb	0.137	0.089	0.282^*	0.324^{*}	0.109				
pН	0.345^{*}	0.342^{*}	0.095	0.155	0.427**	-0.141			
ECEC	0.309^{*}	0.219	-0.018	-0.032	0.316*	0.070	0.714 * *		
SOM	0.164	0.228	0.121	0.095	0.150	0.115	-0.078	0.035	
CaCO ₃	0.134	0.524**	0.066	0.175	0.678**	-0.159	0.382 * *	0.263	0.210

* * , P<0.01; * , P<0.05.

平;96.0%的样品 Cr 处于未污染至中度污染水平, 其中 70.0%的样品为中度污染水平以下;78.0%的 样品 Cu 处于未污染至中度污染水平,94.0%的样品 Ni 处于未污染至中度污染水平,其中 48.0%的样品 处于中度污染水平;土壤 Pb 处于未污染水平。由 此可见,研究区土壤污染程度较高,主要污染元素为 Cd,其次为 Zn、Cu 和 Ni。土壤重金属平均生态风险 因子(E_r)变化规律为 Cd(1534) > Cu(19.5) > Ni(17.7) >Zn(6.58) > Cr(5.15) > Pb(3.97),由于土 壤 Cd 的富集和高毒性因子,研究区土壤 Cd 具有极 高生态风险,而 Zn、Cr 和 Pb 无潜在生态风险;绝大 部分土壤样品的 Cu(86.0%)和 Ni(90.0%) 无潜在 生态风险。以上结果表明 Cd 是研究区土壤的特征 污染元素,生态环境风险最高。

2.2 土壤重金属生物有效性及影响因素

CaCl₂为中性盐溶液,主要提取离子交换态和解 离态的重金属离子(郭超等,2019),能够较好地指 示重金属的生物有效性(Novozamsky et al., 1993)。 研究区土壤的 CaCl,提取结果表明(表 3),各重金属 元素提取态含量变化规律为 Cu>Zn>Ni>Cd>Cr≈ Pb,Cr 和 Pb 与其他元素具有数量级的差异。从提 取率来看,Cu>Cd>Zn>Ni>Pb>Cr,综合各重金属元 素的绝对含量(表1),这一结果与提取态含量变化 特征一致。以生态环境风险最高的 Cd 为例,其平 均提取率(6.14%)明显低于赵万伏等(2018)报道的 浙江黑色岩系地区土壤Cd的平均提取率 (15.86%),这可能与成土母质和土壤风化程度差异 有关;略高于郭超等(2019)报道的广西岩溶区高地 质背景区 Cd 的 CaCl,提取态平均提取率(4.8%)。 前期对该区域土壤的连续化学提取结果表明,除生 物有效态外,Cd的主要赋存形态还包括碳酸盐结合 态、铁锰氧化物结合态和残渣态(Liu et al., 2021)。 鉴于研究区土壤 Cd 的富集程度和生态环境风险, 本部分将重点讨论 Cd 的生物有效性及影响因素。

表 3 土壤重金属氯化钙提取态含量(mg・kg⁻¹)与提取率(%)(N=50) Table 2. Statistical value of CaCle systematic has we matched (mg + kg⁻¹), and systematic bility (I)

Table 5 Statistical va	alue of CaCl ₂ extr	acteu neavy	metals (mg · K	g) and extra	(<i>n</i>)	(1V - 30)	
内容 Content	统计值 Statistics	Cd	Zn	Cr	Cu	Ni	Pb
CaCl ₂ 提取态含量	最小值 Min	0.001	0.23	0.01	0.03	0.01	0.01
${\rm CaCl}_2$ extracted contents	最大值 Max	1.51	16.4	0.46	22.2	2.21	0.53
	平均值 Mean	0.25	5.22	0.04	5.43	0.43	0.04
提取率(%)	最小值 Min	0.16	0.02	0.003	0.05	0.03	0.03
Extractability	最大值 Max	23.8	10.0	0.48	69.7	5.59	2.57
	平均值 Mean	6.14	1.79	0.04	9.87	0.55	0.17

土壤 CaCl₂提取态 Cd 含量与总 Cd 含量呈正相 关(*r*=0.470,*P*<0.01),说明生物有效态 Cd 含量随 Cd 总量增加而增加。Cd 的提取率与土壤 pH 高度 相关(图3),且在土壤呈酸性(pH<6)时,提取率随

图 3 研究区土壤 CaCl₂提取态 Cd、pH 与碳酸钙含量关系 Fig.3 Correlation of CaCl₂ extracted Cd, pH and carbonate in soils of the study area

pH 增加而显著降低, 而在土壤呈中性和弱碱性时 (pH>6),斜率变化平缓,提取率变化较小;这一结 果与郭超等(2019)报道的结果较为一致,可能是由 于土壤的持续酸化消耗了土壤中碳酸钙等矿物组 分,导致其缓冲能力逐步减弱,Cd的生物有效性对 pH 的变化响应更快。碳酸钙含量的变化也支持这 一推论(图3),土壤碳酸钙含量小于中位值(6.3 g•kg⁻¹)的样品,其pH值均小于6.5。此外,土壤 pH升高会导致可变负电荷增加,ECEC升高,吸附 能力增加。说明在酸性条件下,土壤 Cd 的生物有 效性和迁移活性增加。虽然结果与岩溶地区相似, 但这一现象在黑色岩系高地质背景区尤为值得关 注;因为黑色岩系中硫化物风化产酸,导致部分土壤 酸化严重,如本研究中土壤 pH 可低至 4.63,且这一 现象在黑色岩系地区普遍存在(刘意章等,2019), 可能由此导致土壤中 Cd 的生物有效性增加。因 此,了解母岩化学组成及土壤酸化潜力,对于黑色岩 系高地质背景区土壤 Cd 污染防控可能具有重要意 义。此外,相关性分析表明,研究区土壤 Zn、Cr 和 Ni 的 CaCl₂提取态含量也与 pH 呈显著负相关,与前 人的研究结果相似(张成丽等,2019),说明土壤 pH 是影响研究区土壤重金属生物有效性的重要因素。 2.3 研究区玉米重金属富集特征

玉米果实各部位重金属元素干重含量结果列于 表4,就平均含量来看,不同元素在各部位的分布差 异明显,Cd和Pb的含量变化为苞叶>芯>籽粒,Cr 和 Cu 为芯>苞叶>籽粒; Zn 和 Ni 的最高平均含量分 别为芯和籽粒中。以上元素包括典型有害元素(如 Cd和Pb)和微量营养元素(如Cu和Zn),植物生理 特性可能导致不同元素在吸收、转运和分配过程中 存在差异,并最终富集在不同部位;例如,个别玉米 样品中苞叶的 Cd 含量高(12.1 mg • kg⁻¹),但籽粒 Cd 含量低,这可能是 Cd 通过蒸腾作用向地上部分 运输时,被苞叶的液泡隔离,从而降低了 Cd 在籽粒 的富集,说明 Cd 的分配特征可能是其解毒机制的 结果(杨红霞等,2019)。Zn在玉米中的含量是其他 元素的1~2个数量级,籽粒中的含量最高,这可能 是因为Zn为植物生长必需元素,也是必需元素中生 物利用性最高的元素(Nan et al. 2002)。玉米籽粒 中各元素平均含量变化为 Zn(23.0 mg • kg⁻¹) >Cu $(1.96 \text{ mg} \cdot \text{kg}^{-1}) > \text{Ni}(0.95 \text{ mg} \cdot \text{kg}^{-1}) > \text{Cr}(0.69)$ $mg \cdot kg^{-1}$ > Cd (0.13 mg $\cdot kg^{-1}$) > Pb (0.02 mg \cdot kg⁻¹)。根据含水系数将玉米籽粒中重金属含量换 算为鲜重含量,并与《食品安全国家标准食品中污 染物限量》(GB 2762—2012)对比,结果表明,玉米 样品中 Cd 的超标率为 14.0%, 超标倍数为 1.3~9.0 倍(平均4.1倍), Cr的超标率为 32.0%, 超标倍数为 1.0~2.3 倍(平均 1.5 倍); Pb 的超标率为 8.0%, 超 倍数较低以及部分重金属元素的回收率偏高(Cr和Pb为110%~121.6%),玉米Cr和Pb的实际超标率应该低于该值。以上结果与其他研究报导的黑色岩系地区玉米重金属含量和变化特征基本一致(Guetal.,2019;张迪等,2021)。整体来看,虽然研究区土壤重金属元素富集,但其在玉米籽粒中的富集程度低,基本处于安全水平。值得注意的是,这并不说明其他农作物不富集重金属元素,从以往研究来看,玉米对重金属元素的富集程度明显低于叶类蔬菜等作物(刘意章等,2019;韩伟等,2020)。

标倍数为 1.1~1.9 倍(平均 1.3 倍)。但考虑到超标

2.4 土壤-玉米系统中重金属的迁移及其影响因素

通过计算转运系数(TF)可反映重金属从土壤 到农作物的迁移能力(图4),玉米籽粒重金属元素 TF平均值变化规律为Zn(0.072)>Cd(0.045)>Cu (0.032)>Ni(0.012)>Cr(0.006)>Pb(0.001),Cr和 Pb低于其他元素一个数量级;按照相关分级(孙厚 云等,2021),Zn、Cd、Cu和Ni为微弱摄取,Cr和Pb 为极弱摄取。可见,玉米对不同重金属元素的富集 能力差异较大且普遍较弱。从相关性分析结果来 看,TF与土壤 pH、SOM 之间为弱正相关性,可能说 明富集能力差异主要由植物生理特性、元素生物有 效性等决定。

作为农作物中元素的主要来源,土壤重金属总 量与有效态含量也对农作物中重金属的富集具有重 要影响。相关性分析结果表明,玉米籽粒重金属含 量与土壤总 Cd 和 Zn 含量呈一定的弱正相关,说明 土壤中重金属总量对玉米籽粒中重金属的富集影响 较小。生物有效态重金属为农作物根系可直接吸收 部分,但本研究中玉米籽粒重金属含量与土壤有效 态重金属为弱的正相关关系。然而,值得注意的是,

表4 玉米重金属元素含量(干重)(mg・kg⁻¹)(N=50) Table 4 Concentrations of heavy metal in maize (dry weight)

Tuble 4 Con	centrations of neavy	metal m mai	Le (un y weight)				
部位 Plant organ	统计值 Statistics	Cd	Zn	Cr	Cu	Ni	Pb
籽粒	最小值 Min	0.001	8.97	nd.	0.89	nd.	nd.
Grain	最大值 Max	1.37	41.6	4.54	4.71	4.01	0.64
	平均值 Mean	0.13	23.0	0.70	1.96	0.95	0.02
苞叶	最小值 Min	0.04	4.16	nd.	1.23	nd.	nd.
Bractea	最大值 Max	12.1	136	18.1	6.67	1.99	1.49
	平均值 Mean	0.99	19.7	2.30	3.42	0.28	0.15
芯	最小值 Min	0.03	9.34	1.57	2.57	0.09	nd.
Corncob	最大值 Max	2.54	79.3	10.7	7.47	3.11	1.03
	平均值 Mean	0.43	31.6	4.23	4.45	0.71	0.03

注: nd.: 表示低于检测限。

Note: nd.: Below the detection limit.

图 4 玉米籽粒转运系数箱图 Fig.4 Boxplot of the transfer factor of maize

以 Cd 为例(图 5),当 pH<6 时,玉米籽粒 Cd 与土壤 CaCl,提取态 Cd 没有明显相关性,此时 CaCl,提取率 受 pH 影响大(图 3),且部分样品存在 CaCl,提取态 不高但玉米(籽粒)含量高的现象,说明除了 Cd 有 效性以外,其他因素也影响着玉米籽粒 Cd 含量。 玉米的品种也可能影响籽粒中 Cd 的含量,例如袁 林等(2018) 报道了西南地区 9 个玉米品种对 Cd 富 集程度差异明显;郭晓方等(2010)报道了甜玉米品 种籽粒的 Cd 含量高于饲料玉米。另一个因素可能 是 Cd 和 Zn 的竞争关系,例如土壤中 Cd 与 Zn 的含 量比例可能影响作物吸收 Cd(Zare et al., 2018); Cai 等(2019) 报道了外源 Zn 的添加会降低水稻地上部 分对 Cd 的吸收积累,其原因可能是 Cd 和 Zn 对转 运蛋白的竞争。当 pH>6 时,玉米籽粒 Cd 与 CaCl, 提取态 Cd 呈显著正相关(r=0.931,P<0.01),此时 CaCl,提取率受 pH 的影响较小且含量较低(图 3)。 以上结果说明土壤 pH 可能是影响农作物吸收和富 集重金属的重要影响因素之一,但其影响机制并非

图 5 玉米籽粒 Cd 含量、CaCl₂提取态 Cd 与 pH 相关性 Fig.5 Correlation of Cd contents in maize, CaCl₂ extracted Cd and pH

简单的线性关系,其作用机制有待于进一步深入 研究。

3 结 论

研究区土壤中 Cd、Zn、Cr、Cu、Ni 和 Pb 存在不同程度的富集,其中 Cd 的富集程度最高(平均值 5.11 mg•kg⁻¹),70%的土壤样品 Cd 含量超过农用 地土壤的风险管控值,污染程度最严重(I_{geo} = 4.46),82%的土壤样品达到了重度污染水平;生态环境风险最高(E_r =1534),为研究区土壤的特征污染元素。

研究区土壤中重金属生物有效性和可提取率差 异较大,Cd的 CaCl₂提取率平均值为 6.14%,其提取 率与土壤 pH 高度相关,在酸性条件下随土壤 pH 增 加显著降低,在近中性条件下对 pH 变化的响应不 明显。

玉米对不同重金属的富集能力差异明显且较弱,有害元素和营养元素的富集部位也有差异。玉 米籽粒中 Cd 的干重含量为 0.001~1.36 mg•kg⁻¹, 超标率为 14%,基本处于安全水平。玉米籽粒中重 金属含量与土壤重金属总量无明显关系,与有效态 的关系在不同 pH 条件下存在差异。

参考文献

- 鲍士旦. 2000. 土壤农化分析. 北京: 中国农业出版社. [Bao SD. 2000. Soil Agro-chemical Analysis. Beijing: China Agriculture Press.]
- 范德廉,张 焘,叶 杰,等. 2004. 中国的黑色岩系及其有 关矿床. 北京:科学出版社. [Fan DL, Zhang T, Ye J, et al. 2004. Black Shale and Related Mineral Deposits in China. Beijing: Science Press.]
- 郑 超,文字博,杨忠芳,等. 2019. 典型岩溶地质高背景土 壤 Cd 生物有效性及其控制因素研究. 南京大学学报 (自然科学),55(4):678-687. [Guo C, Wen YB, Yang ZF, et al. 2019. Factors controlling the bioavailability of soil cadmium in typical karst areas with high geogenic background. Journal of Nanjing University (Natural Science), 55(4): 678-687.]
- 郭晓方,卫泽斌,丘锦荣,等. 2010. 玉米对重金属累积与转运的品种间差异. 生态与农村环境学报, 26(4): 367-371. [Guo XF, Wei ZB, Qiu JR, et al. 2010. Differences between corn cultivars in accumulation and translocation of heavy metals. Journal of Ecology and Rural Environment, 26(4): 367-371.]
- 韩 伟, 王成文, 彭 敏, 等. 2021. 川南山区土壤与农作物
 重金属特征及成因. 环境科学: 1-12. [2021-02-24]. ht tps: //doi. org/10. 13227/j. hjkx. 202008257. [Han W,
 Wang CW, Peng M, et al. 2021. Characteristics and origin

of heavy metals in soil and crops in mountain area of Southern Sichuan. *Environmental Science*, 1–12. [2021-02-24]. https://doi.org/10.13227/j.hjkx.202008257.]

- 环境保护部,国土资源部. 2014. 全国土壤污染状况调查公报. 北京:环境保护部,国土资源部. [Ministry of Environmental Protection, Ministry of Land and Resources. 2014. Bulletin on the Investigation of Soil Pollution in China. Beijing: Ministry of Environmental Protection, Ministry of Land and Resources.]
- 刘意章,肖唐付,熊 燕,等. 2019. 西南高 Cd 地质背景区 农田土壤与农作物的重金属富集特征. 环境科学, **40**(6): 2877-2884. [Liu YZ, Xiao TF, Xiong Y, *et al.* 2019. Accumulation of heavy metals in agricultural soils and crops from an area with a high geochemical background of cadmium, Southwestern China. *Environmental Science*, **40**(6): 2877-2884.]
- 骆永明,滕 应. 2018. 我国土壤污染的区域差异与分区治理修复策略. 中国科学院院刊, 33(2): 145-152. [Luo YM, Teng Y. 2018. Regional difference in soil pollution and strategy of soil zonal governance and remediation in China. Bulletin of Chinese Academy of Sciences, 33(2): 145-152.]
- 孙厚云,卫晓锋,孙晓明,等. 2021. 钒钛磁铁矿尾矿库复垦 土地及周边土壤-玉米重金属迁移富集特征. 环境科学: 1-14. [2021-02-22]. https://doi.org/10.13227/j. hjkx. 202007200. [Sun HY, Wei XF, Sun XM, et al. 2021.Bioaccumulation and translocation characteristics of heavy metals in a soil-maize system in reclaimed land and surrounding areas of typical vanadium-titanium magnetite tailings. *Environmental Science*, 1-14. [2021-02-22]. https://doi. org/10.13227/j.hjkx.202007200.]
- 王文艳,张丽萍,刘 俏,等. 2012. 黄土高原小流域土壤阳 离子交换量分布特征及影响因子.水土保持学报, 26(5):123-127. [Wang WY, Zhang LP, Liu Q, et al. 2012. Distribution and affecting factors of soil cation exchange capacity in watershed of the Loess Plateau. Journal of Soil and Water Conservation, 26(5): 123-127.]
- 魏复盛, 陈静生, 吴燕玉, 等. 1991. 中国土壤环境背景值研 究. 环境科学, **12**(4): 12-19. [Wei FS, Chen JS, Wu YY, *et al.* 1991. Study on the background contents on 61 elements of soils in China. *Environmental Science*, **12**(4): 12-19.]
- 杨红霞, 陈俊良, 刘 崴. 2019. Cd 对植物的毒害及植物解 毒机制研究进展. 江苏农业科学, **47**(2): 1-8. [Yang HX, Chen JL, Liu W. 2019. Research progress on the toxicity of cadmium to plants and the mechanism of plant detoxification. *Jiangsu Agricultural Sciences*, **47**(2): 1-8.]
- 杨连升,周明忠,熊康宁,等. 2020. 贵州黑色页岩土壤地球 化学特征. 矿物岩石地球化学通报, **39**(5): 1023-1037. [Yang DS, Zhou MZ, Xiong KN, *et al.* 2018. Geochemical characteristics of black-shale soils in Guizhou Province, China. *Bulletin of Mineralogy*, *Petrology and Geochemistry*, **39**(5): 1023-1037.]
- 叶润根,陈国建,王 震,等. 2021. 重庆山区不同土地利用

下的土壤肥力质量研究. 四川林业科技, **42**(1): 29-34. [Ye YH, Zhang DG, Liu J, *et al.* 2021. Research on soil fertility quality under different land use types in mountainous areas of Chongqing. *Journal of Sichuan Forestry Science and Technology*, **42**(1): 29-34.]

- 袁林、刘颖、兰玉书、等. 2018. 不同玉米品种对 Cd 吸收累积特性研究. 四川农业大学学报, 36(1): 22-27.
 [Yuan L, Liu Y, Lan YS, et al. 2018. Variations of cadmium absorption and accumulation among corn cultivars of metal pollution in soil from lead-zinc mining area. Journal of Sichuan Agricultural University, 36(1): 22-27.]
- 张 迪,周明忠,熊康宁,等. 2021.贵州遵义下寒武统黑色 页岩区土壤重金属污染和人体健康风险评价.环境科 学研究: 1-17. [2021-02-25]. https://doi.org/10.13198/ j.issn. 1001-6929. 2021. 01. 10. [Zhang D, Zhong MZ, Xiong KN, et al. 2021.Assessment of pollution and human health risk from heavy metals in soils and crops in the lower cambrian black shale area, Zunyi, Guizhou Province. Research of Environmental Sciences, 1-17. [2021-02-25]. https://doi.org/10.13198/j.issn.1001-6929.2021.01.10.]
- 张成丽,王 阳,白银雪,等. 2019. 禹州市废旧煤矿周边土 壤重金属总量及有效态分析与评价. 安全与环境学报, 19(6): 2183-2191. [Zhang CL, Wang Y, Bai YX, et al. 2019. Analysis and assessment of total and available heavy metal of abandoned coal mined-off land-soils in Yuzhou City, Henan. Journal of Safety and Environment, 19(6): 2183-2191.]
- 赵万伏, 宋垠先, 管冬兴, 等. 2018. 典型黑色岩系分布区土 壤重金属污染与生物有效性研究. 农业环境科学学报, **37**(7): 1332-1341. [Zhao WF, Song YX, Guan DX, et al. 2018. Pollution status and bioavailability of heavy metals in soils of a typical black shale area. Journal of Agro-Environment Science, **37**(7): 1332-1341.]
- 周东晓,彭 渤,王 勤,等. 2020. 扬子地台西缘下寒武统 黑色页岩土壤元素地球化学特征. 矿物岩石地球化学 通报, **39**(1): 59-71. [Zhou DX, Peng B, Wang Q, et al. 2020. Elemental geochemical characteristics of soils derived from the lower cambrian black shales in the Western Yangtze Platform, China. Bulletin of Mineralogy, Petrology and Geochemistry, **39**(1): 59-71.]
- Cai YM, Xu WB, Wang M, et al. 2019. Mechanisms and uncertainties of Zn supply on regulating rice Cd uptake. Environmental Pollution, 253: 959–965.
- Duan YR, Yang ZF, Yu T, et al. 2020. Geogenic cadmium pollution in multi-medians caused by black shales in Luzhai, Guangxi. Environmental Pollution, 260: 113905.
- Gu QB, Yu T, Yang ZF, et al. 2019. Prediction and risk assessment of five heavy metals in maize and peanut: A case study of Guangxi, China. Environmental Toxicology and Pharmacology, 70: 103199.
- Håkanson L. 1980. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 14: 975–1001.
- Liu YZ, Xiao TF, Ning ZP, et al. 2013. High cadmium concen-

tration in soil in the Three Gorges region: Geogenic source and potential bioavailability. *Applied Geochemistry*, **37**: 149–156.

- Liu YZ, Xiao TF, Zhu ZJ, et al. 2021. Geogenic pollution, fractionation and potential risks of Cd and Zn in soils from a mountainous region underlain by black shale. Science of the Total Environment, 760: 143426.
- Müller G. 1969. Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2: 108–118.
- Nan ZR, Li JJ, Zhang JM, et al. 2002. Cadmium and zinc interactions and their transfer in soil-crop system under actual field conditions. Science of the Total Environment, 285: 187–195.
- Novozamsky I, Lexmond M, Houba VJG, et al. 1993. A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. International Journal of Environmental Analytical Chemistry, 51: DOI: 10. 1080/ 03067319308027610.
- Parviainen A, Loukola-Ruskeeniemi K. 2019. Environmental impact of mineralised black shales. *Earth-Science Reviews*, 192: 65–90.
- Tian K, Huang B, Xing Z, et al. 2017. Geochemical baseline establishment and eco-logical risk evaluation of heavy metals in greenhouse soils from Dongtai, China. *Ecological*

Indicator, 72: 510-520.

- Wei BG, Yang LS. 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. *Microchemical Journal*, 94: 99–107.
- Wen YB, Li W, Yang ZF, et al. 2020. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China. Chemosphere, 245: 125620.
- Xia XQ, Ji JF, Yang ZF, *et al.* 2020. Cadmium risk in the soilplant system caused by weathering of carbonate bedrock. *Chemosphere*, **254**: 126799.
- Zare AA, Khoshgoftarmanesh AH, Malakouti MJ, et al. 2018. Root uptake and shoot accumulation of cadmium by lettuce at various Cd: Zn ratios in nutrient solution. Ecotoxicology and Environmental Safety, 148: 441–446.
- Zhao FJ, Ma YB, Zhu YG, et al. 2015. Soil contamination in China: Current status and mitigation strategies. Environmental Science & Technology, 49: 750-759.

作者简介 陈梓杰,男,1996年生,硕士研究生,主要研究方向为土壤重金属污染及其环境效应。E-mail: 291655438@ qq.com 责任编辑 魏中青

陈梓杰,肖唐付,刘意章,邢丹,杨军,朱正杰,宁增平.2021.典型黑色岩系地质高背景区农田土壤-玉米系统重金属富集特征.生态学杂志,40(8):2315-2323.

Chen ZJ, Xiao TF, Liu YZ, Xing D, Yang J, Zhu ZJ, Ning ZP. 2021. Accumulation of heavy metals in agricultural soils and maize in a typical black shale area with high geochemical background. *Chinese Journal of Ecology*, **40**(8): 2315–2323.