西南典型高原山地城市大气黑碳气溶胶污染 特征及来源解析

周瑞国^{1,3} 梁隆超^{2,3,*} 肖德安⁴ 董 娴² 陈 卓^{2,5} 仇广乐³

(1. 潍坊市勘察测绘研究院,山东 潍坊 261041;2. 贵州师范大学 化学与材料科学学院,贵阳 550001;
3. 中国科学院地球化学研究所 环境地球化学国家重点实验室,贵阳 550081;4. 贵州理工学院
资源与环境工程学院,贵阳 550003;5. 贵阳市大气细粒子和大气污染化学重点实验室,贵阳 550001)

摘 要:利用大气细颗粒物采样仪器(青岛崂应 2050 型)和黑碳仪(SootScan[™] Model OT21),于 2016 年 5 月至 2017 年 4 月对 贵阳市城区大气黑碳进行了连续采样和监测。结果表明,大气黑炭的浓度为 1.17 ~ 12.77 μg/m³,平均值为 5.19±1.91 μg/ m³ 季节变化特征呈现为冬季>秋季>春季≈夏季。大气黑碳气溶胶含量与大气细粒颗粒物 PM_{2.5} 质量浓度及钾离子含量呈 显著正相关性 相关系数分别为 *R*² = 0.64(*P*<0.01) 和 *R*² = 0.31(*P*<0.01)。源解析结果显示,化石燃料(51.9%)、生物质燃烧 (32.4%) 和餐饮油烟排放(15.7%) 是大气黑碳气溶胶的主要来源。后向轨迹模型 HYSPLIT 显示,贵阳市全年大气污染气团 主要来自我国境内,污染气团的来源与贵阳市大气主导风向有关。

关键词:黑碳;季节变化;影响因素;来源解析

中图分类号: X513 文献标识码: A 文章编号: 1672-9250(2021) 04-0375-06 doi: 10.14050/j.enki.1672-9250.2021.49.028

黑碳(BC) 气溶胶是大气细颗粒物(PM_{2.5}) 的重 要组成部分之一。黑碳气溶胶因其多孔性、粒径小 等特点,易捕捉大气中污染物,能吸收可见光而使 得大气能见度下降^[1-3]。在大气边界层,黑碳粒子 易吸收太阳辐射,造成气候变暖^[4-6]。流行病学研 究表明,黑碳会导致呼吸道及心血管疾病^[7-8]。 Hvidtfeldt 等^[9]对长期暴露于黑碳气溶胶下的死亡 率进行了研究,认为许多疾病与黑碳暴露相关。

黑碳气溶胶的来源主要与化石燃料和生物质 燃料的不完全燃烧有关^[10]。我国是全球大气黑碳 排放量最大的国家 约占总排放量的 17%^[11-12]。大 气中的黑碳最终会通过大气干湿沉降返回地球表 面^[13]。近年来 随着我国大气污染的严峻形势 ,人 们对黑碳气溶胶的污染特征、来源及健康风险研究 逐渐增多 ,并取得了丰富的成果。大量调查数据显 示 ,我国城市大气黑碳日均浓度多介于 1.1~5.2 μ g/m³ 最高可达 17 μ g/m³^[14-23]。Liu 等^[24]对黑碳 气溶胶微物理特性观测研究显示 ,气溶胶粒径增加 会改变黑碳形貌和影响黑碳密度。Xie 等^[25]研究认为 黑碳气溶胶的增加增强了季风系统动力环流, 导致全球季风的变化。

本研究拟对我国西南具有典型高原山地气候 特征的贵阳市,开展大气黑碳气溶胶的研究,初步 探讨大气颗粒物 PM_{2.5} 中黑碳气溶胶的污染特征、 影响因素及潜在来源,以期为我国城市大气污染物 防治工作提供数据支持。

1 材料和方法

1.1 样品采集

采样时间 2016 年 5 月至 2017 年 4 月,采样地 点贵阳市云岩区(E106°07′~107°17′, N26°11′~27° 22′),为城区交通、居住、商业和学习等综合区域。 采样点设在距离地面 20 m 的 7 楼顶层,周围无高大 树木和建筑物遮挡,无明显工业排放源。

1.2 实验室分析

大气颗粒物 PM2.5 样品采集,采用国产青岛崂

收稿日期: 2020-09-15; 改回日期: 2020-12-24

基金项目: 国家自然科学基金项目(21767007);贵州省科学技术基金项目(黔科合 J字[2011]2089);贵州省科技计划项目(黔科合基础 [2018]1111);贵州省科技计划项目(黔科合平台人才[20175726])。

第一作者简介:周瑞国(1970-) 男 高级工程师,注册土木工程师(岩土),研究方向为水文地质、工程地质与环境地质。E-mail: 15689195866 @ 163.com.

^{*} 通讯作者:梁隆超(1986-) 男,博士,研究方向为大气污染及来源解析。E-mail: liangle139@126.com.

应 2050 型智能空气综合采样器,样品以石英滤膜 $(\phi = 90 \text{ mm}, \text{Waterman})$ 收集, 气体流量为 100 L/min ,每个样品采集 24 h(早晨 8:00~次日早 晨 8:00) 洪采集样品 189 个。样品采集前 石英滤 膜进行超净处理 ,置于马弗炉中 500 ℃灼烧 5 h; 采 样前与采集后,石英滤膜进行恒重处理,置于恒温 恒湿箱(HWS-250BX,天津泰斯特公司)48 h,以 0.01 mg 精度分析天平(Mettler-Toledo XP205,瑞士 梅特勒-托利多)称重并记录,计算样品大气颗粒物 PM,、质量浓度。大气颗粒物 PM,、样品采集后,采 用元素分析仪(Elementar vario MACRO cube,德国 艾利蒙塔公司)分析总碳,采用黑碳仪(SootScan[™] Model OT21 美国 Magee 科学公司)分析黑碳 总碳 与黑碳的差值为有机碳。本文黑碳观测数据以 880 nm 红外光作为检测光,黑碳质量衰减系数为 16.6 m²/g^[26]。大气颗粒物中钾离子(K⁺),采用高 温密闭消解,电感耦合等离子体质谱仪 ICP-MS (Agilent 7700, USA) 进行检测。

1.3 数据质量控制

以空白和平行样品(每10个样品插入1个平行 样),控制实验数据质量。空白滤膜未检测出黑碳 和有机碳(OC),平行样品分析结果相对标准偏差均 小于5%。钾离子测量数据质量,采用空白、平行和 标准物质(GBW07305a)进行控制,其空白值低于检 出限0.1 μg/L,精密度<3%,标准物质回收率为 97.1%~120.5%。

2 结果与分析

 2.1 黑碳浓度变化特征 贵阳市大气黑碳日平均浓度介于 1.17~12.77 $\mu g/m^3$,平均值为 5. 19±1. 97 $\mu g/m^3$ 。月平均浓度, 见表 1。由表 1 可以看出,黑碳浓度在 12 月和 1 月 较高,最大值出现在 1 月; 7 月、4 月和 2 月较低,最 小值出现在 2 月。有机碳日均含量介于 7. 14~ 52. 66 $\mu g/m^3$,平均值为 17. 06±7. 29 $\mu g/m^3$ 。有机 碳浓度在 12 月和 1 月较高,最大值出现在 1 月; 2 月至 8 月较低,最小值出现在 7 月。本次研究的大 气黑碳日平均浓度(5. 19±1. 97 $\mu g/m^3$),略高于仇 广乐等^[27]报道的 2008 年贵阳市大气黑碳日平均浓 度 4. 13±1. 79 $\mu g/m^3$,可能与贵阳市近年来工矿业 经济快速发展有关。

全年黑碳浓度频数呈现出对数正态分布(p = 0.065),主要分布在 2~8 μ g/m³之间,占 91%,其次 是 8~9 μ g/m³、9~10 μ g/m³、1~2 μ g/m³、10~13 μ g/m³,分别各占 3.7%、3.2%、2.6%、2.6%(图 1a)。有机碳浓度频数亦呈对数正态分布(p = 0.200),主要分布在 5~35 μ g/m³之间,所占比例为 98.9%,其它浓度区间分布频数相对较少(图 1b)。

贵阳市大气黑碳和有机碳浓度季节变化特征 见图 2。大气黑碳浓度季节变化呈现冬季>秋季>夏 季 ~ 春季的特征(图 2a)。冬季最高,取暖燃煤用量 的增加,可能是导致高浓度的直接因素。有机碳浓 度季节变化呈现与黑碳一致的变化规律,总体冬季 >秋季,而春季和夏季差异不显著(图 2b)。

2.2 影响因素

由图 3a 可见 黑碳与大气颗粒物 PM_{2.5} 浓度呈 显著正相关性 相关系数为 *R*²=0.65(*P*<0.001) ,说 明两者的潜在同源性。图 3b 所示 黑碳浓度与大气 颗粒物 PM_{2.5} 中的钾离子(K⁺) 浓度 ,呈现出显著的 相关性 *R*²=0.31(*P*<0.01)。由于钾离子是生物质

表 1 贵阳市黑碳和有机碳月变化浓

时间 -					+++ +++ /
	平均值	范围	平均值	范围	**************************************
2016年05月	13.02±3.36	8. 24~20. 44	4.7±1.75	2. 24~9. 13	19
2016年06月	13.09±1.97	10.36~16.73	5.48±2.08	2.64~9.17	14
2016年07月	11.80±0.47	22. 61~10. 44	2.62±0.45	2.11~3.22	5
2016年08月	14.81±3.91	10.36~16.75	4.33±0.54	3.31~5.07	7
2016年09月	16.63±3.58	12.64~22.29	5.52±1.56	3.73~8.26	7
2016年10月	21.06±6.67	12.54~31.95	5.99±1.56	4.39~9.00	13
2016年11月	16.46±2.61	11.57~21.22	5.30±0.94	3.36~6.75	11
2016年12月	26.13±4.29	19.68~34.56	7.28±1.18	5.67-11.11	17
2017年01月	26.04±10.04	7.14~52.66	7.24±2.27	3.63~12.77	23
2017年02月	13.56±3.39	7.66~18.76	4.08±1.46	1.17~6.86	19
2017年03月	14.49±4.88	7.20~24.57	4.50±1.49	2.18~7.83	27
2017年04月	13.60±5.29	7.79~25.39	3.94±1.11	2.26~5.97	27

Table 1 Monthly variations of black carbon and organic carbon concentrations in Guiyang µg/m³

Fig. 2 Concentration of black carbon and organic carbon in the four seasons

燃烧的标识元素^[23],两者之间的正相关关系暗示了 黑碳来源于生物质燃烧,诸如贵阳市周边秸秆、枯 枝落叶等有关。

贵阳市周边秸秆、落叶等焚烧以及燃煤取暖等 活动,主要发生在秋季、冬季。进一步分析发现,秋 冬季节与春夏季节黑碳与钾离子浓度的相关系数, 分别为 R^2 =0.312(P<0.01 μ =89)和 R^2 =0.147(P<0.05 μ =95) 暗示了秋冬季节生物质燃烧与燃煤 取暖对黑碳气溶胶的影响,与春夏季节相比更为显 著,这可能也是秋冬季节黑碳浓度升高的重要原因 之一。通常,气象要素因子,例如:风速、温度、湿度 及光照等,均可能影响大气颗粒物、黑碳气溶胶的 迁移演化[29]。

2.3 黑碳气溶胶的来源解析

采用正交矩阵因子分析方法(PMF5.0, EPA;运 行条件:参数因子设置3,黑碳模拟值与实测值相关 系数 R²>0.99,组分信噪比 S/N>2),对大气黑碳的 潜在来源进行分析。由图4可知,因子1以K、Na、 OC为主要成分,占黑碳贡献的32.4%,代表了生物 质燃烧来源;因子2以OC、Al、Fe、Ca、Mn、Cu、Zn、 As、Pb为主要成分,贡献率为51.9%,代表了化石燃 料燃烧排放,包括燃煤、石油等来源;因子3以OC、 Na、Ca、Mg、Ni、Mo为主要成分,贡献率为15.7%,代 表了餐饮油烟类来源。这一结果表明,贵阳市黑碳

Fig. 3 Relationships between Black carbon and PM2.5 concentration and K⁺ concentration

气溶胶来源,主要包括化石燃料燃烧、生物质燃烧 和餐饮油烟排放。

3 结论

本研究以连续一年的大气细粒颗粒物 PM_{2.5} 为 对象,开展了贵阳市城区大气黑碳气溶胶含量特 征、季节变化规律、影响因素和污染物潜在来源等 方面的研究,取得以下主要结论:

1) 贵阳市大气黑碳日均浓度介于 1.17~12.77

 $\mu g/m^3$,平均值为 5. 19±1.91 $\mu g/m^3$,季节变化特征 呈现冬季>秋季>春季 ~ 夏季。大气黑碳浓度与大 气颗粒物 PM_{2.5} 质量浓度和钾离子浓度呈正相关关 系 相关系数分别为 R^2 =0.65(P<0.01) 和 R^2 =0.31 (P<0.01)。

 2)贵阳市大气黑碳气溶胶来源初步分析发现, 化石燃料燃烧、生物质燃烧及餐饮油烟排放是大气 黑碳气溶胶的3个主要来源,贡献率分别为51.9%、 32.4%和15.7%。

参考文献

- [1] 许黎,冈田菊夫,张鹏,等.北京地区春末-秋初气溶胶理化特性的观测研究[J].大气科学,2002,26(3):401-411.
- [2] Bond T C, Zarzycki C, Flanner M G, et al. Quantifying immediate radiative forcing by black carbon and organic matter with the specific forcing pulse [J]. Atmospheric Chemistry and Physics, 2011, 11(4): 1505–1525.
- [3] McConnell J R, Edwards R, Kok G L, et al. 20 Th-century industrial black carbon emissions altered arctic climate forcing [J]. Science, 2007, 317(5843): 1381–1384.
- [4] Chung C E, Ramanathan V, Carmichael G, et al. Anthropogenic aerosol radiative forcing in Asia derived from regional models with atmospheric and aerosol data assimilation [J]. Atmospheric Chemistry and Physics, 2010, 10(13): 6007–6024.
- [5] Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon [J]. Nature Geoscience, 2008, 1(4): 221-227.
- [6] Zhou J M, Zhang R J, Cao J J, et al. Carbonaceous and ionic components of atmospheric fine particles in Beijing and their impact on atmospheric visibility [J]. Aerosol and Air Quality Research, 2012, 12(4): 492–502.
- [7] Geng F H , Hua J , Mu Z , et al. Differentiating the associations of black carbon and fine particle with daily mortality in a Chinese city [J]. Environmental Research , 2013 , 120: 27–32.
- [8] Janssen N A, Hoek G, Simic-Lawson M, et al. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM₁₀ and PM_{2.5}[J]. Environmental Health Perspectives, 2011, 119(12): 1691–1699.
- [9] Hvidtfeldt U A, Geels G, Ketzel M, et al. Long-term residential exposure to PM_{2.5} constituents and mortality in a Danish cohort [J]. Environment International, 2019, 133: 105268.
- [10] United States Environmental Protection Agency (USEPA). Report to Congress on Black Carbon [R]. 2012. http://www.epa.gov/blackcarbon/ 2012report/fullreport.pdf.
- [11] Chameides W L , Bergin M. Climate change soot takes center stage [J]. Science , 2002 , 297(5590): 2214-2215.
- [12] Zhang Q, Streets D G, Carmichael G R, et al. Asian emissions in 2006 for the NASA INTEX-B mission [J]. Atmospheric Chemistry and Physics, 2009, 9(14): 5131-5153.
- [13] Bond T C , Doherty S J , Fahey D W , et al. Bounding the role of black carbon in the climate system: A scientific assessment [J]. Journal of Geophysical Research-Atmospheres , 2013 , 118(11): 5380-5552.
- [14] Zhang T R, Wooster M J, Green D C, et al. New field-based agricultural biomass burning trace gas, PM_{2.5}, and black carbon emission ratios and factors measured in situ at crop residue fires in Eastern China [J]. Atmospheric Environment, 2015, 121(SI): 22-34.
- [15] 张昕,李忠勤,明镜,等. 乌鲁木齐河源区黑碳气溶胶浓度特征及其来源分析[J]. 环境科学学报,2019,39(1):212-221.
- [16] 程丁,吴晟,吴兑,等.深圳市城区和郊区黑碳气溶胶对比研究[J].中国环境科学,2018,38(5):1653-1662.
- [17] 黄超,赵锦慧,何超,等. 2015年秋冬季武汉城区黑碳气溶胶的分布及源区分析[J]. 生态环境学报,2018,27(3): 542-549.
- [18] Wang Q Y, Huang R J, Cao J J, et al. Contribution of regional transport to the black carbon aerosol during winter haze period in Beijing [J]. Atmospheric Environment, 2016, 132: 11–18.
- [19] Yan C Q, Zheng M, Shen G F. Characterization of carbon fractions in carbonaceous aerosols from typical fossil fuel combustion sources [J]. Fuel, 2019, 254: 115620.
- [20] 花艳,汤莉莉,刘丹彤,等.南京春夏秸秆焚烧期间大气黑碳气溶胶来源解析[J].环境科学与技术,2017,40(1):147-155.
- [21] 孙天乐,何凌燕,曾立武,等.无锡市大气 PM_{2.5} 中黑碳的粒径分布与混合态特征[J].中国环境科学,2015,35(4):970-975.
- [22] 魏桢,朱余,张劲松,等.合肥市黑炭气溶胶浓度分布和变化特征研究[J].中国环境监测,2015,31(6):22-27.
- [23] 杨卫芬, 程钟, 沈琰. 常州城区秋冬季黑炭气溶胶的浓度变化特征[J]. 环境监测管理与技术, 2013, 25(5): 11-14.
- [24] Liu H, Pan X L, Liu D T, et al. Mixing characteristics of refractory black carbon aerosols at an urban site in Beijing [J]. Atmospheric Chemistry and Physics, 2020, 20: 5771–5785.
- [25] Xie X, Myhre G, Liu X, et al. Distinct responses of Asian summer monsoon to black carbon aerosols and greenhouse gases [J]. Atmospheric Chemistry and Physics, 2020, 20: 11823-11839.
- [26] Greilinger M, Drinovec L, Močnik G, et al. Evaluation of measurements of light transmission for the determination of black carbon on filters from different station types [J]. Atmospheric Environment, 2019, 198: 1–11.
- [27] 仇广乐,刘娜,冯新斌,等.贵阳市大气黑碳污染特征[J].生态学杂志,2011,30(5):1018-1022.
- [28] Cheng Y, Engling G, He K B, et al. Biomass burning contribution to Beijing aerosol [J]. Atmospheric Chemistry and Physics, 2013, 13(15): 7765-7781.
- [29] Chen Y, Schleicher N, Fricker M, et al. Long-term variation of black carbon and PM_{2.5} in Beijing, China with respect to meteorological conditions and governmental measures [J]. Environmental Pollution, 2016, 212: 269–278.

Characteristics and Source Apportionment of Black Carbon in the Atmosphere of Typical Plateau City in Southwest China

ZHOU Ruiguo^{1,3}, LIANG Longchao^{2,3}, XIAO Dean⁴, DONG Xian², CHEN Zhuo^{2,5}, OIU Guangle³

(1. Weifang Institute of Exploration and Mapping, Weifang 261041, China; 2. School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China; 3. State Key Laboratory of Environmental Geochemistry, Institute of

Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; 4. College of Resource and Environmental

Engineering , Guizhou Institute of Technology , Guiyang 550003 , China; 5. State Key Laboratory of Atmospheric Fine

Particles and Air Pollution Chemistry of Guiyang Guiyang 550001, China)

Abstract: Atmospheric fine particle in Guiyang City was collected with Laoying Model 2050 during May 2016 to April 2017 and measured for black carbon (BC) using Aethalometer (SootScanTM Model OT21). Results showed that concentrations of BC ranged from 1. 17 to 12. 77 μ g/m³, with an average of 5. 19±1. 91 μ g/m³. Seasonal variation of BC was in the order of winter > autumn > spring \approx summer. Significantly positive correlations between BC and PM_{2.5}($R^2 = 0.64$, P < 0.01) as well as between potassium ion ($R^2 = 0.31$, P < 0.01) were observed. Sources apportionment suggested BC originated from fossil fuels (51.9%), biomass burning dust (32.4%), and catering fume emissions (15.7%). Cluster analyses on back-trajectories illustrated that the impacted air mass mainly came from domestic regions, and was controlled by dominant wind directions in Guiyang.

Key words: black carbon; seasonal variation; influencing factors; source apportionment