阿哈湖水体丰枯水期重金属含量特征与来源解析

费志军¹,王柱红^{1,*} 唐 杨^{2,3}

(1.贵州医科大学 公共卫生学院 环境污染与疾病监控教育部重点实验室,贵阳 550025; 2.中国科学院地球化学研究所 环境地球化学国家重点实验室 ,贵阳 550081; 3.贵州大学 喀斯特环境与地质灾害防治重点实验室 ,贵阳 550025)

摘 要: 以中国西南季节性缺氧湖泊阿哈湖为主要研究对象 在湖区及周边设置了 12 个点分别采集了夏季(7月) 和冬季(11 月)的水体样品 测定了水样中13种重金属元素(As、Co、Cr、Cd、Fe、Cu、Zn、Ni、Pb、Mo、Mn、Hg及Se)的含量。与不同地区水体 水质标准进行了对比,并利用相关性分析与主成分分析剖析其分布特征与来源。结果表明:夏季丰水期(7月)湖区周边各重 金属元素含量依次为: Mn>Fe>Ni>Co>Zn>Cu>As>Cr>Cd>Pb>Hg,而冬季枯水期(11月)则为: Mn>Fe>Zn>Ni>As>Cu>Co>Cr> Pb>Hg>Cd。水体重金属元素含量分布可能受季节性 Fe-Mn 氧化还原反应影响较大; 游鱼河作为库区主要支流 煤矿开采对 水体中 Fe、Mn 等元素贡献量很大,而白岩河与金钟河则分别主要受农业耕作、城镇生活污水的影响;相关性与主成分分析表 明 夏季库区周边水体中 Co、Cd、Fe 与 Zn、Ni、Mn 呈显著的正相关关系 As 与 Cr、Mo、Se 呈显著的正相关关系 Cu 与 Pb 呈极显 著的正相关关系,而 Hg 与其它重金属元素之间无明显相关关系。Cd、Zn、Ni、Co、Fe 及 Mn 为库区周边流域水体中主要重金属, 并具同源性 主要受矿产开采因子的影响。

关键词: 阿哈湖; 重金属; 分布特征; 来源

中图分类号: X820 文献标识码: A 文章编号: 1672-9250(2021) 01-0042-09 doi: 10.14050/j.enki.1672-9250.2020.48.094

由于矿山开采和金属冶炼、工业废水等污染, 我国各大江河湖库水体中重金属含量急剧升高,其 底质污染率高达 80.1% [1-2]。重金属污染物进入水 中后 会以氧化还原、沉淀溶解、配位络合、吸附解 析等形式来参与到复杂的环境化学与物质循环过 程 最终以单一或多形态长期存留于环境之中,而 造成永久性的潜在危害^[3]。重金属长期在水中积 累,对水生和动植物生态系统存在潜在危害,继而 可通过食物链威胁人体健康^[4]。

贵阳市阿哈湖为贵州喀斯特高原湖泊,且是重 要的饮用水源地。目前针对阿哈湖开展的研究主 要集中于水体及沉积物中个别金属(如汞)的含量 及形态分布^[5]、微生物活动对重金属二次迁移的影 响以及铁锰界面循环^[6-8]等。但是对阿哈湖不同季 节(夏季和冬季)多种重金属元素含量及其分布特征 及源解析仍缺乏系统研究。因此 本研究选取阿哈湖 为研究对象,旨在探讨其夏季丰水期(7月份)和冬季 枯水期(11月份) 库区周边水体中重金属元素的含量 及分布特征,并对部分重金属元素进行源分析,为高 原湖泊水环境综合治理提供重要的科学依据。

研究区概况 1

阿哈湖地处贵阳西南 属弱氧化至还原型沉积 环境 位于小车河(南明河支流)上游的沙河、白岩 河、游鱼河、沙河、蔡冲河与烂泥沟河交汇处¹⁹¹,汇 水区主要分布有二叠系灰岩与煤系地层^[10]。阿哈 湖水文特征详见表1。

由于早期大量中小型煤矿遍布于集水区内 ,含 有溶解性重金属离子的废液流入湖泊,重金属在沉 积物中蓄积并伴随有季节性水质恶化[11]。

收稿日期: 2019-10-14; 改回日期: 2020-05-25

基金项目:国家自然科学基金项目(41603020);贵州省科技支撑计划[2019]2832;贵州医科大学博士启动基金项目(YJ2017-26);国土资源部 喀斯特环境与地质灾害重点实验室开放基金项目(2016K03)。

第一作者简介:_费志军(1994-), 男,硕士研究生,研究方向为土壤中重金属元素。,F-mail: 1531395532@ qq.com.

^{*} 通讯作者: 王柱红(1983-) 文 博士 創教授 研究方向为水环境中重金属同位素。E-mail: cindywzh@ 163.com. http://www.cnki.net

	表 1 阿哈湖水文特征 ^[12-14]										
Table 1 Hydrological characteristics of Aha Lake ^[12-14]											
湖泊	正常水位	汇水面积	水面面积	补给	平均水深	最大水深	库容	寄宿时间	平均气温	水输送通量	
名称	/ m	$/km^2$	$/km^2$	系数	/ m	/ m	/ / Z m ³	/a	/℃	/ / Z m ³	
阿哈湖	1 110	190	4.31	55.9	13	24	0.54	0.44	15.3	1.04	

2 采样与分析

本研究于 2018 年 7 月和 11 月分别在阿哈湖库 区各支流进行表层水体采样,共收集 114 个水样 (一共 19 个采样点,每个采样点采集 3 个水样),并 选取代表性采样位点(采样点 1、3、4、5、6、8、9、10、 12、15、17 和 18)进行重金属元素分析,采样点设置 如图 1 所示。现场测定水样温度、pH 值等水质参 数,装入洁净的 PP 塑料瓶中 4℃冷藏保存,然后带 回实验室分析测试。

水样采用 0.22 μ m 的混合纤维微孔滤膜过滤 后 利用美国 PE 公司生产的 NEXION-300X 型电感 耦合等离子体质谱仪测定重金属元素含量,仪器测 试条件见表 2。测定过程中涉及到的试剂包括: 65%硝酸(工艺超纯); ICP-MS 多元素标准液(每种 元素 10 μ g/mL); 实验用水为超纯水(采用 Milli-Q A10 型超纯水系统制备), 电阻率为>18.2 MΩ/cm。

标准曲线的配制:用 3% 硝酸溶液将标准储备 液逐级稀释为 0.0、1.0、5.0、25.0、75.0、150.0 μg/L 的标准系列。实验样品上机测定:仪器真空度达到 要求后,点火并调整仪器参数,编辑方法并选择测 定元素与内标元素,在线引入 Rh 内标,观测内标灵 敏度及稳定性,进行 P/A 调谐,一切均符合要求后, 将试剂空白、标准系列和样品溶液分别引入仪器。 测试过程中采用 NIST-1640a 作为质量控制标准, 所得的测试误差估算为±5%,同一样品多次测试的 相对标准偏差为 8%。

3 结果与讨论

3.1 阿哈湖重金属含量总体特征分析

阿哈湖周边水样重金属元素含量与世界淡水 平均金属元素含量^[15]、世界卫生组织饮用水水质标 准^[16]、中国饮用水卫生标准^[17]及地表水环境质量

Fig.1 Sampling sites of Aha Lake

标准^[18]的对比见表3。夏季丰水期(7月)各元素含 量依次为:Mn>Fe>Ni>Co>Zn>Cu>As>Cr>Cd>Pb> Hg,而在冬季枯水期(11月)则为:Mn>Fe>Zn>Ni> As>Cu>Co>Cr>Pb>Hg>Cd,阿哈湖周边流域水体 Mn、Fe、Ni、Zn含量较高。

对于造成夏冬两季阿哈湖水样中重金属含量 差异的原因有以下三点:

(1)贵阳夏季降雨频繁且强度较大,土壤中大 量溶解有机碳(DOC)随雨水进入水体,同时阿哈湖 又是硅藻型湖泊,夏季藻类大量繁殖会增加水体中 的DOC,水体中DOC的大量存在有益于铁有机络合

रर 4	ICL -M	っ エリトオ	R1 T	

		1401	C 2 Running Co	inditions of re	1 -1415		
射频功率	等离子体气流量	载气流量	辅助气流量	采样深度	样品提升速率	积分时间	测定次数
/ W	/(L/min)	/(mL/min)	/(mL/min)	/mm	/(r/s)	/s	/次
(1.600,1.2	021 Chills Aged	1,03	Electropic Dub	liching 0 Louis	0.1	0.1	//www.5

-	Table 5 Heavy metal	concentrations in water	of Ana lake and with	n respect t	o the water	quanty stant	arus µg/L
元素	阿哈湖平均值(七月)	阿哈湖平均值(十一月)	世界淡水平均含量	WHO ^a	中国 ^b	CSWQS ^c I	CSWQS ^c II
As	0. 689	0. 708	2.0	100	10	50	50
Co	7.214	0. 278	0.05	-	-	-	-
\mathbf{Cr}	0.151	0.112	0.5	50	50	10	50
Cd	0.062	0.015	0.07	3	5	1	5
Fe	39. 185	17. 526	30	-	300	-	-
Cu	1.546	0. 541	2.0	2 000	1 000	10	1 000
Zn	7.209	2.171	10	-	1 000	50	1 000
Ni	15.774	1.911	0.3	20	-	-	_
\mathbf{Pb}	0.059	0.056	0.2	10	10	10	10
Mo	1.599	1.312	-	70	-	-	-
Mn	875.14	28.343	5.0	500	100	100	100
Hg	0.035	0.027	0.01	1	1	0.05	0.05
Se	0. 621	0.666	-	-	_	-	-

表 3 阿哈湖水样中重金属元素含量及与水质标准的比较

Table 3 Heavy metal concentrations in water of Aha lake and with respect to the water quality standards $~\mu {\rm g}/{\rm L}$

注: a. 世界卫生组织饮用水水质准则; b. 中国饮用水卫生标准(2005); c. 中国地表水环境质量标准 CSWQS ,GB3838-2002 "-". 数据缺失。

物的形成,水体中的含铁胶体颗粒又由于 DOC 的吸 附作用而更加稳定^[19-20];夏季丰水期为库区水体的 一个分层期间段,底层水体由于 DOC 的降解而呈缺 氧状态,水体悬浮颗粒物(SPE)中的 Fe、Mn 氧化物 作为电子受体而被还原和释放到水体中,加之夏季 藻类大量繁殖和外源输入所带来的大量 SPE,增强 了水-粒之间的相互作用,致使溶解态 Fe、Mn 在水 体中的含量大幅增加,且在水体某一层面的还原条 件下(大约7~19 m 处),非活性锰(Mni)与 Fe²⁺反 应强烈,活性锰(Mna)含量上升^[21]。

(2) 在"两湖一库"(两湖: 红枫湖、百花湖,一 库: 阿哈湖库区) 保护区内,共有 860 处废弃煤矿及 老窑,仅阿哈湖库区附近就有 200 多处大型煤 矿^[22-23],大量工业废水被排放到河流中,废水中所 含的大量 Fe、Mn 和其它重金属离子进入到河流沉 积物中,可导致沉积物相关重金属元素普遍偏高, 受到不同程度污染^[24]。同时,矿区开采的大量粉尘 (含重金属离子) 经干湿沉降、降水等,通过地表径 流进入湖泊水体,夏季雨水较多,贡献量较大,但也 存在一定的稀释作用。

(3) 冬季枯水期在沉积物-水界面以下,为库区 水体的氧化还原界面,此时有氧环境位于表层沉积 物处,重金属元素(诸如 Ni、Co、Zn、Cd、Pb 等)包裹 于该环境下生成的大量 Fe-Mn 氧化物内,或形成部 分氢氧化物沉淀;而夏季丰水期在沉积物-水界面 以上,为库区水体的氧化还原界面,此时表层沉积 物处为还原环境(厌氧环境),沉积物中的微量元素 向上覆水扩散^[25-26],此过程 Fe、Mn 的释放通量表现 (C)1994-2021 China Academic Journal Electronic F 不一,分别约为 0.02、1.26 mg/(cm²·a)^[27],对于水 体中 Fe、Mn 的增加亦有一定贡献,Pb、Cd、Co、Cu、 Zn 等微量元素多以硫化物形式相互缔合,而阿哈湖 底层水体有较强的硫酸盐还原作用,这一过程在冬 季较为强烈,Zn、Mo 等微量元素与 FeS 有共沉淀 作用^[28-29]。

故夏季水体中各重金属元素含量相对来说比 冬季高,且Fe、Mn在水体氧化还原界面所发生的地 球化学循环会影响各微量元素如Ni、Co、Zn、Cd等 在水体中的分布。

3.2 阿哈湖各支流水体中重金属含量特征

采集的三条河流为贵阳市阿哈湖的三条支流, 污染源来源各异,因此也就会导致阿哈湖各支流的 微量元素含量存在差别,最终对阿哈湖库区的微量 元素贡献量也就大小不一。图 2、图 3 和图 4 分别 为三条支流(游鱼河、白岩河和金钟河)不同季节水 样的 13 种金属元素(As、Co、Cr、Cd、Fe、Cu、Zn、Ni、

demic Journal Electronic Publishing House. Aduyightver of different shatspid www.cnki.net

图 3 不同季节白岩河水体重金属元素平均含量

Pb、Mo、Mn、Hg、Se) 的含量 结合表 4 可知:

(1)游鱼河的麦坪与打通村这两个采样点处, 水样中 Co、Fe、Zn、Ni、Mn 等元素含量较高。游鱼河 上游为矿山密集区,有郭家冲煤矿(Mn 排放量: 11.64 t/a,Fe 排放量:159.9 t/a)等矿区,是库区三 条支流中周边煤矿分布最多的河流。尽管目前大 多煤矿已关停,但废弃煤窑及煤堆、歼石经雨冲刷, 大量煤粉、泥、沙(含有大量 Fe、Mn 等元素) 输入并 淤积库区 ,库容减小并且水质受到污染(主要为 Fe、 Mn)^[30-31]。作为水库汇水主要支流 ,游鱼河输入库 区的污染物最多 ,其点源和面源污染分别占阿哈湖 库区污染负荷的 84.8%与 51%^[32]。夏季丰水期(7 月) 游鱼河内 Co、Fe、Zn、Ni 这四种元素含量为其余 各两条支流的 5~13 倍左右 ,Ni 最高达 25 倍(0.026 mg/L) ,Mn 则高达 1 000 倍以上(1.5 mg/L) ,冬季 枯水期这四种元素含量较其余两条支流在 2~3 倍 左右 除上述几种元素外 ,其余微量元素含量对于 时空变化存在一定差异(冬季略高) ,这可能是由于 夏季河流的水位较高且流速较快 ,各种元素得以快 速迁移并稀释。

(2) 尽管白岩河上游有冒沙煤矿等,但其水体 中 Fe、Mn 等元素含量并不高,且对库区水体 Fe、Mn 贡献量并不是很大,这是因为冒沙煤矿所排出的废 水在流经沟渠、农田与复杂的地形时会造成漫流或 渗漏,导致实际入库量变化较大。同时,白岩河周 边有农业生产耕作区,所使用的各种化肥(含As、 Mo、Se 等元素)进入土壤并经渗透、雨水淋溶而沿 地表径流进入水体。较之其它点位水样,河透底 (入湖口汇)水样各重金属元素含量略高,因其位于 河口或废水排放带,而河口是地球化学缓冲带,受 纳大量重金属元素沉积^[33]。

(3)金钟河流经贵阳市主城区,为典型的城 市河流,因此会有大量生产、生活污水排放到河 流水体中,因而水体中的Cu、Zn、Ni、Pb等元素含 量较高,加之贵阳降雨较多,富含人为污染元素 的大气粉尘及地表积尘易于随地表径流进入 水体。

3.3 重金属元素相关性分析

相关系数用于反映两组变量之间线性相关的 显著程度,系数越接近1,则说明变量之间相关性越 显著,同源性越好(对重金属来说,则表示不同重金 属元素间有共同来源或是多元素复合污染)^[34],阿

表 4 各支流水体重金属元素含量均值

Table 4	Average o	concentration	of heavy	metals in	each	tributary	
---------	-----------	---------------	----------	-----------	------	-----------	--

μg/L

				-							5			P- 0
流域	月份	As	Co	Cr	Cd	Fe	Cu	Zn	Ni	Pb	Mo	Mn	Hg	Se
游会词	7	0.267	12.273	0.104	0.098	60.350	1.127	11.370	25.820	0.056	1.174	1 500	0.043	0.502
府巴內	11	0.202	0.384	0.107	0.018	20.910	0.492	2.946	2.804	0.048	0.779	47.210	0.021	0.683
古史词	7	0.826	0.100	0.111	0.008	8.649	0.606	0.439	1.428	0.044	1.672	0.265	0.024	0. 691
日石끼	11	1.043	0.064	0.059	0.007	10.350	0.661	0.617	0.512	0.061	1.773	2.788	0.039	0.614
合纯词	7	1.960	0.179	0.379	0.014	10.930	4.423	2.813	2.131	0.094	2.980	0.102	0.026	0.934
±₩刈 (C)10	<u>941202</u>	1.979	0.233	0.211	0.012	16,450	9.532	bin.784	0.884	0.077	2.487	0.627	0,031	0,684
				11110 000	GITTERI TAT	000101110	1 00110		0001111	1101100	reberre	in inter	2 8/ / 1 1 1 1 1 1 1	+ 011111110

1.000

1,000

哈湖水体中13种元素的Pearson相关性分析结果如 表 5、6 所示。

对于夏季丰水期(7月),Co、Cd、Fe与Zn、Ni、 Mn 呈极显著的正相关关系, As 与 Cr、Mo 呈极显著 而与 Se 呈显著的正相关关系 Cu 与 Pb 呈极显著的 正相关关系,而 Hg 与其它重金属元素之间无显著 性相关关系 因此可解释为有3组重金属分别具有 相同源向性; 对于冬季枯水期(11月), Mn 与 Cd、Ni 呈极显著而与 Co 呈显著的正相关关系 ,As 与 Mo 呈 极显著的正相关关系 ,Cu 与 Hg 呈显著的正相关关 系 各元素之间相关性并不像夏季那样显著,这很 大程度上与水体中 Fe-Mn 氧化还原反应及不同季 节沉积物中元素释放通量差异所导致(具体分析可 见 3.1 节)。库区周边流域水体中重金属元素含量 变化较大 时间(夏季丰水期与冬季枯水期)、空间 (库区及各支流)变化具有一定的差异性,表明水体 已受到人类日常生产生活活动一定程度的影响。

为进一步探讨库区周边流域水体中各元素的 来源 对所采水样所测得的 13 种重金属元素(As、 Co、Cr、Cd、Fe、Cu、Zn、Ni、Pb、Mo、Mn、Hg、Se) 进行 了主成分分析 某一个因子的联系系数(即载荷)绝 对值越大 则该因子与其所对应的变量两者关系就 越近^[35] 结果见表 7 和 8。由表可知: 7 月与 11 月 所采水样其初始特征值大于1的均有4个,两个季 节所采水样其前4个主成分的累积方差贡献率分别 为 92. 503% 与 79. 251% 表明这 4 个主成分可分别 反应阿哈湖夏季与冬季水体中13种重金属元素总 计 92. 503% 与 79. 251% 的信息。

			Table 5	Correlati	on analys	is of heav	y metals	in water	of Aha la	ake in Jul	У		n = 12
元素	As	Co	Cr	Cd	Fe	Cu	Zn	Ni	Pb	Mo	Mn	Hg	Se
As	1.000												
Co	-0.413	1.000											
\mathbf{Cr}	0. 878 **	-0.391	1.000										
Cd	-0.360	0.964**	-0.338	1.000									
Fe	-0.324	0.756**	-0.270	0. 898 **	1.000								
Cu	0.544	0.012	0.416	-0.009	-0.077	1.000							
Zn	-0.302	0. 907 **	-0.270	0. 985 **	0.954**	-0.004	1.000						
Ni	-0.428	0. 996**	-0.398	0. 979 **	0.802**	0.004	0. 933 **	1.000					
$^{\rm Pb}$	0.479	-0.288	0.511	-0.252	-0.145	0. 797 **	-0.188	-0.280	1.000				
Mo	0. 863 **	-0.413	0.730**	-0.330	-0.241	0.418	-0.266	-0.422	0. 291	1.000			
Mn	-0.404	0. 990 **	-0.375	0. 991 **	0. 841 **	-0.007	0. 957 **	0. 996**	-0.267	-0.391	1.000		
Hg	-0.082	-0.180	0.014	-0.177	-0.166	-0.208	-0.172	-0.172	-0.080	0.063	-0. 181	1.000	
Se	0.691*	-0.121	0.520	-0.218	-0.444	0.331	-0.278	-0.174	-0.047	0.626^{*}	-0. 195	-0.226	1.000

注: **表示在 0.01 水平(双侧) 上显著相关; * 表示在 0.05 水平(双侧) 上显著相关。

− 表 0 11 月 門 哈 湖 水 体 里 玉 禹 元 系 怕 天 性 2	うわ いっしょう かいしょう かいしょう かいしょう かいしょう しょう かいしょう しょう しょう かいしょう しょう しょう しょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ
--	--

			衣 0	11月14	刂唁꼐水14	里金周刀	C系相大性	ᠫᡟ᠋᠋					
	Та	able 6 C	orrelation	analysis	of heavy	metals in	water of A	Aha lake	in Novem	ber		n = 12	,
As	Co	Cr	Cd	Fe	Cu	Zn	Ni	Pb	Mo	Mn	Hg	Se	
1.000													
-0.284	1.000												
0.326	-0.345	1.000											
-0.217	0.355	-0.249	1.000										
-0.496	-0.007	0.107	0.434	1.000									
0.139	-0.384	-0.016	-0.336	-0.195	1.000								
-0.078	-0.049	0.102	0.449	0.221	-0.177	1.000							
-0.567	0.804**	* -0.123	0.631*	0.346	-0.436	0.290	1.000						
0.486	-0.015	0.311	0.093	-0.315	-0.278	0.332	-0.060	1.000					
0.952*	-0.396	0.212	-0.164	-0.430	0.128	0.022	-0.621*	0.509	1.000				

0.875** 0.420 0.828** -0.121 Mn -0.4810.694* -0.465 -0.386 -0.478 1.000 0.230 Hg 0.313 -0.204 -0.124 -0.293 -0.157 0.627^{*} -0.310 -0.409 -0.161 0.351 -0.326 0.758** 0.081 0.158 0.510 0.195 -0.129 -0.179 Se -0.084 0.357 0.044 0.071 -0.138

注: **表示在 0.01 水平(双侧) 上显著相关; * 表示在 0.05 水平(双侧) 上显著相关。

元素 \mathbf{As} Co Cr Cd Fe Cu Zn Ni Pb Mo

如始田之		初始特征值			方差载荷提取分析	ŕ
初始因于	特征值	方差贡献/%	累积方差/%	特征值	方差贡献/%	累积方差/%
1	6.630	50. 999	50.999	6.630	50. 999	50.999
2	2.971	22. 851	73.850	2.971	22.851	73.850
3	1. 335	10. 267	84.117	1.335	10.267	84.117
4	1.032	7.936	92.053	1.032	7.936	92.053
5	0.629	4.839	96.892			
6	0.302	2.325	99.218			
7	0.061	0.470	99.687			
8	0.030	0. 228	99.915			
9	0.010	0.078	99.994			
10	0.001	0.005	99.999			
11	0.000	0.001	100.000			
12	0.000	0.000	100.000			
13	0.000	0.000	100.000			

表 7 7月阿哈湖水体重金属元素主成分分析的总方差解释 Table 7 Total variance of principal component analysis of heavy metals in water of Aha lake in July

表 8 11 月阿哈湖水体重金属元素主成分分析的总方差解释	
-------------------------------	--

Table 8	Total variance of	f principal compo	nent analysis of hear	vy metals in water of	Aha lake in November
---------	-------------------	-------------------	-----------------------	-----------------------	----------------------

如松田之 -		初始特征值		方差载荷提取分析			
彻如囚丁	特征值	方差贡献/%	累积方差/%	特征值	方差贡献/%	累积方差/%	
1	4.709	36. 224	36. 224	4.709	36.224	36.224	
2	2.743	21.104	57.328	2.743	21.104	57.328	
3	1.616	12.427	69.755	1.616	12.427	69.755	
4	1.234	9.496	79.251	1.234	9.496	79.251	
5	0.924	7.109	86.359				
6	0.740	5.689	92.049				
7	0.438	3. 371	95.419				
8	0.326	2.506	97.925				
9	0.165	1.268	99.194				
10	0.100	0.770	99.964				
11	0.005	0.036	100.000				
12	0.000	0.000	100.000				
13	0.000	0.000	100.000				

阿哈湖水体第一主成分在夏季与冬季的方差 贡献占总方差贡献分别为 50.999%和 36.224%,远 高于其他因子,是控制水体中各重金属元素来源及 分布的最关键因子。从表 9 和表 10 可以得知,旋转 前后因子载荷的变量结果差异较小,且结合夏冬水 样主成分分析可得知,Cd、Zn、Ni、Co、Fe 及 Mn 的分 布与来源于由第一主成分(即因子 1)所分配,根据 采样点及阿哈湖库区周边环境分析可知:贵州省有 色金属矿产种类繁多,有铅、锌、铝土矿、镍、钒及锑 矿等,贵阳市拥有较为丰富的矿产资源(矿山总量 为 355 个)^[36],许多矿山及矿产资源加工企业其装 备、生产技术、管理水平相对落后,导致贵阳市矿产 品深加工能力不强且产生大量工业废水、废渣(含 大量微量元素尤其是重金属)^[37],借助地表径流、 如此

Fe、Mn 等元素得到大量累积并通过地球化学循环 释放到水体中^[38],故因子1代表矿产开采污染性 因子。

阿哈湖水体第二主成分在夏季与冬季的方差 贡献占总方差贡献分别为 22.851%和 21.104%,是 控制水体中各微量元素来源及分布的不可或缺性 因子。As、Cr、Mo 及 Se 的分布与来源由第二主成分 (即因子 2)所分配,阿哈湖库区各支流周边分布着 较多村落,当地居民依旧大多以农业生产为主,使 用各种农用化肥,长期对耕作农业土壤施肥可累积 As(不同价态 As 约有 0.1%~10%可转化为可溶性 As^[39])、Mo(土壤是 Mo 的源与汇,其可携带部分溶 解态 Mo 进入水体并于碱性和氧化性强的条件下释 放,迁移性较强^[40])、Se(施肥可提高耕作土壤层中 为了。As Se 与交换性 Se 的含量,加之贵州土壤有机质及 粘粒含量较高且普遍呈酸性,对 Se 有一定富集作用,土壤 pH 发生改变会导致 Se 的流失^[41])等重金属元素,并经淋溶作用输入到湖泊水体,故因子2代表农业耕作污染性因子。

阿哈湖水体第三主成分在夏季与冬季的方差 贡献占总方差贡献分别为 10.267%和 12.427%,是 控制水体中各微量元素来源及分布的重要因子。 Cu 与 Pb 的分布与来源由第三主成分(即因子 3)所 分配,阿哈湖库区各支流附近城镇较多且基础设施 落后,生产生活污水(一般含高浓度 Cu 元素)^[42]未 经处理直接排入水体,且贵阳近年来房地产开发急 速增长,加上周边企业的入驻,残渣肥料的随意丢 弃及工业废水的排放加剧了水体沉积物中 Cu 等元 素的累积释放。贵阳市区及周边用煤量较大,尤以 冬季采暖期最盛,Pb 在燃煤干灰的细粒子中有显著 的富集倾向,以颗粒物的形式经大气沉降等方式向 土壤或水体底泥迁移^[43]。含铅农药与染料、农用机 器及交通运输的尾气排放等亦是 Pb 的重要来 源^[44] 故因子3代表城镇生产生活污染性因子。

阿哈湖水体第四主成分在夏季与冬季的方差 贡献占总方差贡献分别为 7.936%和 9.496%,是控 制水体中重金属元素来源及分布的次要因子。贵 阳市大气降水中的 Hg 主要来自于本市水泥厂与火 电厂的释放,部分来源于西藏地区的远距离大气输 送^[45],有机质及植物的释放对于 Hg 的贡献量亦不 可忽略,且 Hg 存在全球性地球化学循环,来源广泛 且较复杂^[46-47],故因子 4 可称为不确定源污染性因 子(或者说是单指标因子)。

表 9 7 月阿哈湖水体重金属元素主成分分析的因子载荷矩阵 Table 9 Loading matrix of principal component analysis of heavy metals in water of Aba lake in July

元素	初始因子				旋转后因子			
	1	2	3	4	1	2	3	4
As	-0.662	0. 689	0.159	0.116	-0.273	0.894	0.276	-0.032
Co	0.920	0. 298	0.103	-0.030	0.952	-0.121	-0.094	-0.131
Cr	-0.610	0. 613	0.061	0.246	-0.250	0.799	0.309	0. 123
Cd	0.934	0.344	0.053	0.080	0.994	-0.092	-0.038	-0.026
Fe	0.846	0. 284	-0.114	0.199	0.895	-0.149	0.087	0. 132
Cu	-0.244	0. 749	-0.444	-0.168	0.055	0.425	0.781	-0.228
Zn	0.903	0.377	-0.005	0.147	0.986	-0.066	0.028	0.043
Ni	0.938	0. 291	0.068	-0.003	0.967	-0.145	-0.071	-0.098
Pb	-0.404	0. 489	-0.762	-0.030	-0.200	0.182	0.954	0.016
Mo	-0.607	0. 582	0.270	0.287	-0.243	0.879	0.110	0. 133
Mn	0.941	0.312	0.061	0.024	0.981	-0.127	-0.057	-0.075
Hg	-0.137	-0.332	-0.056	0.855	-0.162	-0.028	-0.138	0.903
Se	-0.439	0.510	0.646	-0.216	-0.164	0.815	-0.244	-0.407

表 10 11 月阿哈湖水体重金属元素主成分分析的因子载荷矩阵

Table 10 Loading matrix of principal component analysis of heavy metals in water of Aha lake in November

元素	初始因子				旋转后因子			
	1	2	3	4	1	2	3	4
As	-0.734	0.366	0.438	0.086	-0.250	0.882	0.057	0.171
Co	0.676	-0.049	0. 528	-0.171	0.728	-0.035	-0.254	-0.414
Cr	-0.337	0. 457	-0.451	-0.321	-0.628	0.070	0.378	-0.295
Cd	0.707	0. 283	0.216	0.450	0.806	-0.112	0.406	-0.032
Fe	0. 525	-0.017	-0.567	0.242	0. 147	-0.694	0.388	0.043
Cu	-0.498	-0. 426	-0.190	0.493	-0.281	-0.033	-0.108	0.785
Zn	0.283	0. 723	-0.276	0.394	0. 193	-0.025	0.890	-0.067
Ni	0.906	0. 141	0.097	-0.044	0. 694	-0.379	0.158	-0.448
Pb	-0.215	0. 794	0.318	-0.098	-0.014	0.692	0.430	-0.350
Mo	-0.735	0.414	0.382	0.227	-0.229	0.867	0.178	0.270
Mn	0.909	-0.003	0.296	0.245	0.922	-0.299	0.083	-0.164
Hg	-0.513	-0.393	0.132	0.541	-0.088	0.217	-0. 199	0. 796
Se	-0.005	0. 799	-0.315	0.141	-0.135	0.139	0.826	-0.194

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

4 结论

 1)通过与不同水体水质标准对比分析,阿哈湖 水样在夏季丰水期(7月)各微量元素大小依次为: Mn>Fe>Ni>Co>Zn>Cu>As>Cr>Cd>Pb>Hg,而冬季 枯水期(11月)则为:Mn>Fe>Zn>Ni>As>Cu>Co>Cr
Pb>Hg>Cd,各重金属元素含量分布受季节性Fe-Mn氧化还原反应影响较大。阿哈湖水样的13种重 金属元素中,仅个别水体Mn的浓度超过世界卫生 组织饮用水标准及中国 I级地表水水质标准,其最 大浓度可达875.14 μg/L。 2) 对库区 3 条支流各采样点重金属元素分析 结果表明: 三条流域水体重金属元素分布特征明 显 游鱼河流域水体主要受早期煤矿生产影响,对 Fe、Mn 等贡献量较大; 白岩河主要受农业耕作影 响,As、Mo、Se 等含量相对较高; 金钟河为典型城市 河流,生产生活污水的排放对其影响较大。

3) 阿哈湖库区各支流的相关性与主成分分析 表明: 各支流主要重金属元素为 Cd、Cr、Zn、Ni、Co、 Fe 及 Mn 具有同源性,其中矿产开采为主要影响因 子。虽然流域周边大小煤矿关停数年,但对库区及 周边水体可能存在长远影响。

参考文献

- [1] 周怀东 彭文启.水环境与水环境修复[M].北京: 化学工业出版社 2005.
- [2] 王海东,方凤满,谢宏芳.中国水体重金属污染研究现状与展望[J].广东微量元素科学,2010,17(1):14-18.
- [3] 戴树桂.环境化学[M].北京:高等教育出版社,1996.
- [4] 孙铁珩 周启星 李培军.污染生态学[M].北京:科学出版社 2001.
- [5] 白薇扬、冯新斌、孙力、等.贵阳市阿哈湖水体和沉积物间隙水中汞的含量和形态分布初步研究[J].环境科学学报 2006(1):91-98.
- [6] 汪福顺,刘丛强,梁小兵,等.湖泊沉积物中微量金属二次迁移过程中微生物作用的实验研究[J].湖泊科学,2006(1):49-56.
- [7] 汪福顺,刘丛强,梁小兵,等.贵州阿哈湖沉积物-水界面微生物活动及其对微量元素再迁移富集的影响[J].科学通报,2003,48(19): 2073-2078.
- [8] 汪福顺,刘丛强,梁小兵,等.铁锰在贵州阿哈湖沉积物中的分离[J],环境科学 2005 26(1):135-140.
- [9] 史莉,尹璐,李越越,等.贵阳市阿哈水库饮用水源地现状及保护对策[J].贵州水力发电 2008 22(3):20-23.
- [10] 宋柳霆,王中良,滕彦国,等.贵州阿哈湖物质循环过程的微量元素地球化学初步研究[J].地球与环境 2012 40(1):9-17.
- [11] 秦樊鑫 李存雄 张明时 為.贵阳阿哈湖表层沉积物中重金属化学形态组成及污染研究[J].安徽农业科学 2009 37(22):10644-10647.
- [12] 邓立斌,颜伟,汪贵庆.贵州贵阳阿哈湖国家湿地公园湿地资源现状及保护研究[J].农业学报 2014 A(7):37-40.
- [13] 王思梦 李军 李勇 ,等.贵州阿哈湖溶解态稀土的垂向分布及形态特征 [J].中国稀土学报 2016 ,34(4):495-503.
- [14] 王宝利.高原湖泊微藻和微量金属元素的相互作用过程及实验模拟研究[D].贵阳:中国科学院地球化学研究所 2005.
- [15] 王忠玉 姚重华译.水环境的金属污染[M].北京:海洋出版社,1987:56-88.
- [16] 岳舜琳.世界卫生组织《饮用水水质准则》一安全饮用水的标准[J].净水技术 2004 [11):25-30.
- [17] 中华人民共和国卫生部.GB 5749-2005 生活饮用水卫生标准[S].北京:中国标准出版社 2006.
- [18] 国家环境保护总局科技标准司.GB 3838-2002 地表水环境质量标准[S].北京: 中国标准出版社 2002.
- [19] Taillefert M, Lienemann C P.Speciation, reactivity, and cycling of Fe and Pb in a meromictic lake [J]. Geochimica et Cosmochimica Acta, 2000 64(2): 169-183.
- [20] Tipping E, Rey-castro C, Bryan S E, et al.Al(III) and Fe(III) binding by humic substances in fresh waters, and implications for trace metal speciation [J].Geochimica et Cosmochimica Acta, 2002, 66(18): 3211–3224.
- [21] Burdige D J, Dhakar S P, Nealson K H.Effects of manganese oxide mineralogy on microbial and chemical manganese reduction [J]. Geomicrobiology Journal, 1992, 10(1): 27-48.
- [22] 白玉华,尤晓光 涨岩.废弃煤矿对贵阳水源地的污染及治理措施[J].北京工业大学学报 2010 36(7):977-980.
- [23] 贵州煤矿地质工程咨询与地质环境监测中心.贵州省"两湖一库"废弃煤矿污染治理工程规划[R](2008-2012).贵阳:贵州煤矿地质工 程咨询与地质环境监测中心 2007.
- [24] 康亭 宋柳霆 ,郑晓笛 ,等.阿哈湖和红枫湖沉积物铁锰循环及重金属垂向分布特征 [J].生态学杂志 2018 37(3):751-762.
- [25] Gashi F, Franciskovic-Bilinski S, Bilinski H, et al. Assessing the trace element content in water samples from Badovci Lake(Kosovo) using inductively coupled plasma-mass spectrometry analysis [J]. Arabian Journal of Geosciences, 2016, 9(6): 1–11.
- [26] Li F, Qiu Z Z, Zhang J D, et al.Spatial distribution and fuzzy health risk assessment of trace elements in surface water from Honghu Lake [J].Environmental Research and Public Health, 2017, 14(1011): 1–18.
- [27] 陈振楼, 普勇, 黄荣贵, 等. 阿哈湖沉积物-水界面 Fe、Mn 的季节性释放特征 [J]. 科学通报, 1996, 41(7): 629-632.
- [29] Balistrieri L S , Murray J W , Paul B. The geochemical cycling of trace elements in a biogenic meromictic lake [J]. Geochimica et Cosmochimica

Acta, 1994, 58(19): 3993-4008.

- [30] 徐毓荣 廖国华 周青.阿哈水库锰、铁、铅污染控制的研究[J].环保科技 ,1987(1):29-37.
- [31] 朴河春,黄荣贵,万国江.贵阳蔡冲煤矿煤砰石堆对周围环境的影响[J].环保科技,1995,17(2):22-26.
- [32] 颜强 涨勤 ,龙腾锐.贵阳市阿哈水库游鱼河废水处理厂方案的优选[J].重庆环境科学 2001 23(4):35-37.
- [33] 李阿梅.太湖入湖河道微量元素特征及指示意义[D].南京: 河海大学 2006.
- [34] Bastami K D, Bagheri H, Kheirabadi V, et al. Distribution and ecological risk assessment of heavy metals in surface sediments along southeast coast of the Caspian Sea[J].Marine Pollution Bulletin, 2014, 81(1): 262-267.
- [35] Gulgundi M S, Shetty A.Identification and apportionment of pollution sources to groundwater quality [J]. Environmental Processes, 2016, 3(2): 451–46.
- [36] 徐一帆 涨凯 汪源.贵州矿产资源开发利用现状[J].凯里学院学报 2016 34(6):139-141.
- [37] 李勇.加强贵阳市矿产资源就地转化的思考[J].贵阳市委党校学报 2011(4): 32-34.
- [38] Mico C , Recatala L , Peris M , et al. Assessing heavy metalsources in agricultural soils of an European Mediterranean area by multivariate analysis [J].Chemosphere , 2006 , 65(5): 863–872.
- [39] Liang S, Guan D X, Li J, et al. Effect of aging on bioaccessibility of arsenic and lead in soils [J]. Chemosphere , 2016(151): 94-100.
- [40] 于常武, 许士国, 陈国伟, 等. 水体中钼污染物的迁移转化研究进展 [J]. 环境污染与防治 2008(9): 70-74.
- [41] 骆永明 ,吴龙华 ,张甘霖 ,等.香港土壤研究 II.土壤硒的含量、分布及其影响因素 [J].土壤学报 ,2005(3):404-410.
- [42] Chen T B , Zheng Y M , Lei M , et al. Assessment of heavy metal pollution in surface soils of urban parks in Beijing , China [J]. Chemosphere , 2005 , 60(4): 542-551.
- [43] Sia S G , Abdullah W H.Enrichment of arsenic , lead , and antimony in Balingian coal from Sarawak , Malaysia: Modes of occurrence , origin , and partitioning behaviour during coal combustion [J].International Journal of Coal Geology , 2012(101): 1-15.
- [44] 朱莉娜.煤燃烧过程中微量元素铬、铅的迁移转化规律研究[J].电力环境保护 2001(4):27-30 53.
- [45] Wang Z H , Chen J B , Feng X B , et al. Mass-dependent and mass-independent fractionation of mercury isotopes in precipitation from Guiyang , SW China [J]. Comptes Rendus Geoscience , 2015: 358-367.
- [46] 王柱红 陈玖斌 冯新斌 ,等.Hg 稳定同位素地球化学研究进展[J].地球与环境 2012(4):599-610.
- [47] Selin N E.Global biogeochemical cycling of mercury: A review [J]. Annual Review of Environment and Resources , 2009 , 34(1): 43-63.

Characteristics and Source Analysis of Heavy Metals in Water of Aha Lake during the Rain and Dry Seasons

FEI Zhijun¹, WANG Zhuhong¹, TANG Yang²

(1. School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; 2. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; 3. Key Laboratory of Karst Environment and Geohazard Prevention, Guizhou University, Guiyang 550025, China)

Abstract: Aha lake , a seasonal anoxic lake and a drinking water source in southwestern China , was selected for this research. Summer (July , rain season) and winter (November , dry season) water samples were collected from 12 locations around the reservoir. Thirteen trace elements (As , Co , Cr , Cd , Fe , Cu , Zn , Ni , Pb , Mo , Mn , Hg and Se) were determined and compared with different water quality standards , furthermore , the distribution characteristics and possible sources were analyzed by correlation analysis and principal component analysis. The results showed that the order of heavy metal concentrations in summer was: Mn>Fe>Ni>Co>Zn>Cu>As>Cr> Cd>Pb>Hg , while , the order in winter was: Mn>Fe>Zn>Ni>As>Cu>Co>Cr>Pb>Hg>Cd. The temporal variations of heavy metal concentration was influenced by the seasonal Fe-Mn redox reaction. Youyu River , as the main tributary of the reservoir , was significantly impacted by the coal mining activities that contribute a lot of Fe and Mn in the water system. Baiyan River and Jinzhong River were mainly influenced by the agricultural cultivation and urban domestic sewage , respectively. Correlation and principal component analysis showed that Co , Cd , Fe were significantly positively correlated with Zn , Ni and Mn in summer , and As was positively correlated with Cr , Mo and Se. Besides , there was a distinct positive correlation between Cu and Pb , while insignificant correlation was found between Hg and other heavy metals. Cd , Zn , Ni , Co Fe and Mn were the main heavy metal elements around the reservoir and had the same origin that was influenced by the mineral exploitations.

Key words: Aha lake heavy metal: distribution characteristics usource House. All rights reserved. http://www.cnki.net