阿尔泰造山带青河地区哈巴河群变质岩地球化学 特征及稀有金属背景值研究

马占龙^{1,2,3},徐雨生^{2,4},唐勇²,张辉^{2*},吕正航²

 中国地质大学(武汉),武汉 430074;2.中国科学院 地球化学研究所,地球内部物质高温高压院重点实验室, 贵阳 550081;3.宁夏回族自治区矿产地质调查院,银川 750021;4.中国科学院大学,北京 100049

摘 要:新疆阿尔泰造山带是我国重要的稀有金属成矿带。区内众多的稀有金属矿化伟晶岩被认为是地壳深熔的产物,区域 上大量发育的哈巴河群变质岩被认为是潜在的物源。青河地区广泛分布哈巴河群变质岩,但该套地层能否通过深熔作用提 供适量的成矿物质尚不清晰。本文对采自该套地层的岩石样品开展了岩石学、矿物学及地球化学等研究。样品主、微量元素 组成分析结果表明,青河地区哈巴河群变质岩的原岩主要为泥砂质沉积岩,沉积碎屑主要来自酸性弧物源,碎屑成熟度较差, 经历了简单的沉积循环。哈巴河群上亚群和下亚群的稀有金属背景值较中亚群高,且相对富集 Li、Rb、Cs。部分熔融程度对 稀有金属元素在熔融体中富集很重要,小比例的部分熔融有利于稀有金属元素在初始熔体中富集。

关键 词:地球化学特征;原岩恢复;源区特征;稀有金属背景值;阿尔泰造山带

中图分类号: P588.3 文章编号: 1007-2802(2022) 06-1224-17 doi: 10.19658/j.issn. 1007-2802. 2022. 41.065

Geochemical Characteristics of Metamorphic Rocks and Metallogenic Potential of Rare Metals in the Habahe Group of the Qinghe Area in the Altai Orogenic Belt

MA Zhan-long^{1,2,3}, XU Yu-sheng^{2,4}, TANG Yong², ZHANG Hui^{2*}, LYU Zheng-hang²

 School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan 430074, China; 2. Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy Sciences, Guiyang 550081, China; 3. Mineral Geological Survey Institute of Ningxia Hui Autonomous Region, Yinchuan 750021, China; 4. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: The Altai orogenic belt is an important rare metal metallogenic belt. Many rare metal mineralized pegmatites in this area are thought to be products of the anatexis of crustal materials in which metamorphic rocks of the Habahe Group widely distributed in the region could be the potential source materials. The metamorphic rocks of the Habahe Group are widely distributed in the Qinghe area. However, it is not clear yet whether the anatexis of this stratum could provide adequate amount of metallogenic materials to the metallogeny of rare metals. In this work, we systematically collected rock samples from this stratum, and carried out their related petrological, mineralogical and geochemical studies. The major and trace element composition characteristics of samples show that the protoliths of metamorphic rocks, were mainly pelitic-arenaceous sedimentary rocks and their sedimentary clasts, mainly sourced from acidic arc rocks, were of poor maturity and had experienced a simple depositional cycle. The upper and lower subgroups of the Habahe Group in the Qinghe area have relatively high rare metal background values comparing to the middle subgroup, and are relatively enriched in Li, Rb, and Cs. The degree of partial melting is very important for the enrichment of rare metals in the melt, and a small proportion of partial melting is beneficial to the enrichment of rare metal elements in the initial melt.

Key words: geochemistry; protolith reconstruction; source characteristics; rare metal background; Altai orogenic belt

收稿编号:2022-066,2022-4-21 收到,2022-7-29 改回

基金项目:国家自然科学基金重点资助项目(91962222);贵州省补助资金支持项目(GZ2019SIG)

第一作者简介:马占龙 (1988-),男,博士研究生,研究方向: 伟晶岩型稀有金属矿床. E-mail: mazhanlong88@163.com.

^{*} 通信作者简介:张辉(1965-),男,研究员,研究方向: 伟晶岩及相关的稀有金属矿床. E-mail: zhanghui@ mail.gyig.ac.cn.

0 引言

新疆阿尔泰位于中亚造山带西段,是中亚造山 带的重要组成部分,以发育巨量花岗伟晶岩及盛产 Li、Be、Nb、Ta 等稀有金属矿产而闻名(王登红等, 2003;吕正航等,2018)。花岗伟晶岩是重要的赋存 稀有金属的岩石之一,传统观点认为它是花岗质岩 浆体系极端分异演化的产物,通常空间上能找到对 应的母花岗岩体(Selway et al.,2005;Vieira et al., 2011;Barnes et al.,2012;Hulsbosch et al.,2014)。 近年来,伟晶岩的深熔成因模型在中亚造山带、美 国阿利根尼造山带、欧洲海西造山带、和格林威尔 造山带中都得到证实(Zagorsky et al.,2014;Dill, 2015;Simmons et al.,2016;Müller et al.,2017;Lv et al.,2018,2021;张辉等,2019)。

已有研究表明,新疆阿尔泰造山带内重要的稀 有金属伟晶岩与其附近潜在的母花岗岩体之间在 年龄和同位素组成等方面都存在差异(马占龙等, 2015;Zhang et al.,2016;Lv et al.,2018,2021),区内 众多的稀有金属矿化伟晶岩被认为是地壳深熔的 产物,区域上大量发育的哈巴河群变质岩是潜在的 物源(Lv et al.,2021),稀有金属矿化类型和矿化程 度明显受物源和部分熔融程度控制(张辉等,2019; Chen et al.,2020)。

新疆阿尔泰造山带青河地区发育 8000 余条伟 晶岩脉(邹天人和李庆昌,2006),是阿尔泰地区白 云母矿产和稀有金属矿产的重要产区之一。区内 与花岗伟晶岩有关的绝大部分白云母矿产及相当 一部分稀有金属矿产,都产于哈巴河群上、下亚群 的云母石英片岩中,而在哈巴河群中亚群变质岩中 则少见,伟晶岩型稀有金属矿产分布特征明显受地 层控制。目前对青河地区广泛分布的哈巴河群变 质岩的原岩特征、物质组成、稀有金属含量以及其 通过深熔作用是否可以提供适量的成矿物质等问 题还不清楚。本文就青河地区广泛发育的哈巴河 群地层开展了系统采样,通过研究该套地层的岩石 学、矿物学、地球化学等特征,探讨其原岩组成、物 源特征及稀有金属背景值,以期对在该地区伟晶岩 型稀有金属矿床的找矿、成矿物源的识别方面有一 定的指导意义。

1 地质背景

新疆阿尔泰造山带位于新疆维吾尔自治区的 最北部,呈北西-南东走向,其东与蒙古、北与俄罗 斯、西与哈萨克斯坦毗邻,南以额尔齐斯大断裂为

界与准噶尔盆地相隔(吕正航等,2018)。前人根据 阿尔泰造山带内的地层分布、变质变形特征和岩浆 活动期次,将其由北至南划分为4个地体:北阿尔 泰、中阿尔泰、群库尔和额尔齐斯地体(图1)(Yuan et al. ,2007; Sun et al. ,2008; Cai et al. ,2012; Lv et al.,2018,2021)。北阿尔泰地体(图1中的地体 I) 位于红山嘴-诺尔特断裂以北,主要出露地层为泥 盆纪-石炭纪火山岩和碎屑沉积岩(Windley et al., 2002; Wang et al., 2006), 岩浆岩以泥盆纪的 I 型花 岗岩为主(秦纪华等,2016),伟晶岩数量较少(吕正 航等,2018)。中阿尔泰地体(地体 II)位于红山嘴-诺尔特断裂以南,阿巴宫-库尔提断裂以北,为新疆 阿尔泰造山带的主体部分,广泛分布奥陶纪-志留 纪的变质沉积岩,即哈巴河群和库鲁木提群(Windley et al. ,2002; Long et al. ,2007,2010; Jiang et al. , 2011),其中岩浆岩大量发育,主要为早-中古生代 I 型花岗岩(Sun et al., 2008; Zhang et al., 2016) 和部 分 S 型花岗岩(Cai et al., 2011; Zhang et al., 2017)。 此外,少量中生代花岗岩在可可托海和阿斯喀尔特 等地出露(张辉等,2019)。稀有金属矿化伟晶岩数 量较多且分布广泛,如著名的可可托海3号脉超大 型 Be-Li-Ta-Nb-Cs-Rb-Hf 矿床、柯鲁木特 112 号脉 中型 Li-Be-Ta-Nb 矿床及卡鲁安大型 Li 矿床(马占 龙等,2015;吕正航等,2018)。群库尔地体(地体 Ⅲ)位于阿巴宫-库尔提断裂以南、富蕴-锡伯杜断 裂以北,出露的地层主要为泥盆纪变沉积岩和火山 岩,即康布铁堡组和阿勒泰组(吕正航等,2018)。 岩浆岩以中生代-晚古生代 I 型花岗岩为主,其次是 二叠纪的 A 型花岗岩 (Yang et al., 2010; Tong et al.,2014)。伟晶岩在该区域也较为发育(吕正航 等,2018)。额尔齐斯地体(地体 IV)位于富蕴-锡 伯杜断裂以南、额尔齐斯断裂以北,地体的西北部 分大部被第四系沉积物所覆盖,其东南部出露泥盆 纪变沉积岩和石炭纪火山岩、沉积岩 (Windley et al., 2002), 晚古生代花岗岩在局部出露 (Tong et al.,2014)。伟晶岩在该地体内较少发育(吕正航 等,2018)。

新疆阿尔泰造山带中的哈巴河群是一套变质 碎屑岩,岩性主要为片岩及片麻岩,主要分布在中 阿尔泰地体和群库尔地体中(图1)。本文所研究的 哈巴河群位于阿勒泰市青河县境内,该套地层在研 究区主要分布在大、小青格里河流域及尚砍苏依等 地,区域上呈近北西-南东向展布(图2)。根据岩相 建造、变质程度及所出露的构造部位,1:20万青河 幅地质图中将其分为上、中、下三个亚群,沉积时代

据 Lv 等(2018)和董增产(2020)修改 图 1 阿尔泰造山带区域地质简图 Fig. 1 Geological sketch map of the Chinese Altai Orogen

定为奥陶纪(新疆地质局区域地质调查大队, 1979)。其中,哈巴河群上亚群主要岩性为云母石 英片岩夹变粒岩,为一套海相细碎屑岩-泥质岩建 造;哈巴河群中亚群岩性主要为一套变砂岩、绢云 绿泥千枚岩,属浅海相碎屑岩建造,受断层、岩浆侵 入活动的影响,岩性变化大,分布广而零散,与上覆 哈巴河群上亚群为和下伏哈巴河群下亚群呈断层 接触;哈巴河群下亚群为一套中深度的变质片岩、 片麻岩、混合岩、变粒岩等,属滨海-浅海相碎屑岩 建造。董增产(2020)对青河地区出露的哈巴河群 变质岩开展的碎屑锆石年龄研究,得到该套地层的 最大沉积年龄为(427±13)Ma,而其中最老侵入岩 的时代为(405±13)Ma,限定该套地层可能形成于 晚志留世至早泥盆世。本文沿用1:20万青河幅地 质图对哈巴河群地层时代的划分。

青河地区伟晶岩分布广泛,而且赋存有大量的 稀有金属和非金属矿产,是新疆阿尔泰白云母矿产 和稀有金属矿产的重要产区之一。研究区伟晶岩 主要呈脉状和透镜状顺层侵入哈巴河群变质岩中 (图 3),整体缺少明显的内部结构分带,冷凝边普遍 发育,多数伟晶岩具简单的内部结构分带,矿物颗 粒从边缘带的细粒到核部的粗粒,通常边缘发育文 象结构,内部发育石英-长石-白云母矿物共生组合 (Chen et al.,2020)。绿柱石矿化伟晶岩分布较广 泛,主要分布在阿尔沙特、沃尔特阔吉尔特、诺干、 塔拉特等地;锂辉石矿化伟晶岩主要分布在塔拉 特、诺干、拜城等地;铌钽铁矿矿化伟晶岩主要分布 在阿尔沙特、阿克布拉克、布勒克等地;铯榴石矿化 伟晶岩主要分布在塔拉特、拜城、诺干等地。这些 伟晶岩的形成年龄主要为泥盆纪-石炭纪(Lv et al.,2018),二叠纪年龄虽有报道(任宝琴等,2011; Zhou et al.,2018),但与区内超高温变质事件发生 时间高度一致,存在同位素体系被重置的可能性 (Cai et al.,2011)。

2 样品及分析测试方法

本次在青河地区选择远离岩浆岩侵入体及伟 晶岩脉体的哈巴河群地层中共采集样品 31 件,采样 位置见图 2。其中,哈巴河群上亚群地层 10 件(HB-1~HB-10);哈巴河群中亚群地层样品 10 件(HB-10 ~HB-20);哈巴河群下亚群地层样品 11 件(HB-21 ~HB-31)。样品主要为黑云母石英片岩、变粒岩、

Fig. 2 Geological map of the study area with sampling locations

片麻岩及混合岩等。其中,黑云母石英片岩呈灰绿 色,具鳞片变晶结构、粒状变晶结构,片状构造,黑 云母平行定向排列,主要组成矿物为黑云母(35%~ 40%)、石英(35%~40%)、斜长石(25%~30%)和矽 线石(<5%)(图4a、4b)。变粒岩呈浅灰褐色,具粒 状变晶结构,块状构造,主要组成矿物为石英(70% ~75%)、斜长石(20%~25%)和白云母(~5%) (图4c、4d)。片麻岩呈灰黑色,具鳞片花岗变晶结 构,眼球及片麻状状构造,云母类矿物定向排列,石 英和斜长石边缘都有被交代现象,主要组成矿物为 斜长石(30%~35%),石英(25%~30%)、白云母 (20%~25%)和黑云母(15%~20%)(图4e、4f)。 混合岩呈灰色,具叶片花岗变晶结构、交代结构,条 痕状构造,斜长石具宽板状聚片双晶,石英呈他形 变晶,波状消光强烈,黑云母和白云母呈不规则叶 片状,主要组成矿物为斜长石(35%~40%)、石英 (30%~35%)、黑云母(20%~25%)和白云母 (10%~15%)(图4g、4h)。

样品的主、微量元素分析在中国科学院地球化 学研究所矿床地球化学国家重点实验室完成。主 量元素采用熔片法分析:将 0.4g样品和8g助熔剂 (66% LiB₄O₇和 34% LiBO₂的混合物)装入铂金坩 埚中,用玻璃棒搅拌均匀后再加入适量 LiBr,然后将 铂金坩埚置于高温下熔融,再将样品熔体倒入铂金

图 3 伟晶岩脉顺层侵入云母片岩中 Fig. 3 Field photograph showing roughly parallel pegmatite veins that intruded into mica schist

模具冷却后制成用于上机测试的扁平玻璃片。分析测试仪器型号为Axios(PW4400)X射线荧光光谱仪,分析精度优于5%。微量元素分析在PlasmaQuant MS Elite型等离子体质谱仪进行,采用高温 高压封闭溶样内标法,溶样和分析流程见Qi和 Grégoire(2000),分析精度优于10%。

3 分析结果

3.1 主量元素

样品的主量元素分析结果见表 1。样品的 SiO₂ 含量变化较大(56.50%~91.53%,平均 67.92%); Al_2O_3 含量为 3.76%~18.97%,平均 67.92%); FFe_2O_3 为 2.55%~8.97%,平均 6.56%; MgO 为 0.45%~4.05%,平均 2.70%; CaO 为 0.39%~ 5.93%,平均 1.99%; Na₂O 为 0.20%~3.56%,平均 2.16%; K₂O 为 0.56%~3.42%,平均 2.34%; MnO、 P₂O₅和 TiO₂含量分别为 0.10%~0.40%、0.04%~ 0.25%、0.19%~1.01%, Al_2O_3/SiO_2 、Na₂O/K₂O 和 $Al_2O_3/(CaO+Na_2O)$ 值分别为 0.04~0.33、0.24~ 3.22、1.81~6.47。

3.2 微量元素

样品的微量元素分析结果见表 2。哈巴河群变 质岩的ΣREE 分布较为集中,除样品 HB-13 外,其 余样品的ΣREE 含量为 97.05×10⁻⁶~170.48×10⁻⁶, 平均值为 136.39×10⁻⁶,ΣREE 含量总体低于后太 古代澳大利亚页岩(184.75×10⁻⁶)。31 件样品的 δEu 值为 0.55~0.94,平均 0.72;δCe 为 0.92~ 1.22,平均 1.01; La_N/Yb_N 值为 4.89~18.13,平均 8.06; La_N/Sm_N 为 2.48~4.80,平均 3.29; Gd_N/Yb_N 为 1.27~2.27,平均 1.60。球粒陨石标准化 REE 分 布模式为 LREE 富集、Eu 弱负异常的右倾直线型, 样品的分布模式相互平行,并与后太古代澳大利亚 页岩及大陆上地壳相近(图 5b)。微量元素原始地 幔标准化蛛网图显示(图 5a),青河地区哈巴河群样 品具相似的配分曲线特征,相对富集大离子亲石元 素 Rb、Ba、Th、U 和 Pb,亏损高场强元素 Nb、Ta、Zr 和 Hf,含量低于太古代澳大利亚页岩及大陆上地壳 平均值。

4 讨论

4.1 原岩恢复及源区性质

变质原岩的类型恢复对了解源区物质组成及 沉积环境具有重要意义。沉积岩的地球化学特征 与其物源密切相关,过去几十年,泥质岩和砂岩的 地球化学特征被广泛运用在物源研究上(Taylor and McLennan,1985;McLennan et al.,1993)。近年来, 低程度的变质岩由于其与原岩成分较为一致并具 有较高的微量元素含量而被证明同样适合进行物 源研究(Bolhar et al.,2005;Joo et al.,2005)。K-A 图解、西蒙尼图解及 DF 指数判别法能够有效判别 变质岩的原岩类型(王仁民等,1987)。根据表1数 据计算出相关参数(表3),然后进行投图。图 6a 显 示,除少量样品落入火成岩区外(HB-4、HB-5、HB-6、HB-13、HB-25、HB-27),其余样品均落入泥质粉

(a) (b)黑云母石英斤石; (c) (d) 受私石; (e) (1) 斤麻石; (g) (h) 飛台石。
 矿物符号; Qtz-石英; Pl-斜长石; Bt-黑云母; Ms-白云母; Sil-砂线石
 图 4 青河地区哈巴河群变质岩样品宏观及显微照片
 Fig. 4 Macroscopic and microscopic photos of metamorphic rocks from the Habahe Group in the Qinghe area

	1 abi	e i ine n	iani chemis	try compos	itions of th	e naballe v	From Trom	Qingne ai	ea	(%)
地层					哈巴河刺	詳上亚群				
岩性	二云母	二云母	二云母	二云母	黑云母	黑云母	黑云母	黑云母	黑云母	黑云母
	口央斤石 	石 央 斤 石		口央斤石 	白央斤石 □	石央斤石 □	石央斤石 	石央斤石	口央斤石 	石央斤石
	HB-1	HB-2	HB-3	HB-4	HB-5	HB-6	HB-7	HB-8	HB-9	HB-10
SiO ₂	63.85	62.27	78.94	62.24	61.95	58.85	67.13	60.60	63.18	61.60
Al ₂ O ₃	16.96	16.99	9.70	15.59	15.61	18.97	14.24	16.87	15.65	17.22
$\mathrm{Fe}_2\mathrm{O}_3$	7.18	8.15	3.60	8.04	8.06	8.71	6.44	8.66	8.34	7.98
MgO	2.88	3.58	1.17	3.65	3.59	3.99	2.67	3.90	3.61	3.72
CaO	1.62	1.40	1.98	1.93	2.05	1.62	1.74	1.54	1.98	1.52
Na_2O	2.45	2.06	2.34	2.52	2.52	1.90	2.78	2.59	2.72	2.22
K ₂ O	2.54	2.92	1.13	2.96	3.42	3.36	2.50	3.28	3.07	3.05
MnO	0.16	0.17	0.10	0.14	0.15	0.16	0.15	0.18	0.17	0.18
P_2O_5	0.16	0.10	0.15	0.17	0.07	0.24	0.06	0.07	0.07	0.21
TiO_2	0.82	0.88	0.44	0.88	0.85	0. 90	0.65	0.88	0.87	0.78
烧失量	1.13	1.30	0.74	1.51	1.91	1.16	0.84	1.14	0.87	1.08
总计	99.75	99.82	100.30	99.63	100.17	99.85	99.20	99.70	100. 52	99.55
Fe_2O_3 +MgO	10.06	11.73	4.77	11.69	11.65	12.70	9.11	12.56	11.95	11.70
Al ₂ O ₃ /SiO ₂	0.27	0.27	0.12	0.25	0.25	0.32	0.21	0.28	0.25	0.28
Na_2O/K_2O	0.96	0.71	2.07	0.85	0.74	0.57	1.11	0.79	0.89	0.73
$Al_2O_3/(CaO+$										
Na ₂ O)	4.17	4.91	2.25	3.50	3.42	5.39	3.15	4.08	3.33	4.60
					哈巴河刺	詳中亚群				
岩性	千枚岩	千枚岩	变粒岩	千枚岩	千枚岩	千枚岩	变粒岩	变粒岩	千枚岩	千枚岩
	HB-11	HB-12	HB-13	HB-14	HB-15	HB-16	HB-17	HB-18	HB-19	HB-20
SiO ₂	66.13	67.15	86.11	71.08	71.28	70.00	91.53	88.06	69.55	73.26
Al ₂ O ₃	14.95	14.48	4.49	13.20	12.86	12.85	3.76	5.48	13.54	11.52
Fe ₂ O ₃	6. 79	7.27	4.77	4.59	5.56	5.43	2.55	2.58	6.60	5.34
MgO	3.12	3.56	0.63	1.38	1.28	2, 20	0.45	0.47	2.85	2.14
CaO	1.07	0.99	0.95	3.08	3.37	2.36	0.39	0.95	1.19	1.74
Na ₂ O	1.24	1.55	0.20	3.17	3.03	2.64	0.29	0.85	1.55	1.76
<u>к</u> ,0	2.90	2 37	0.85	1 67	0 94	2. 22	0.56	0.84	2.55	2.37
2 MnO	0 14	0.15	0.18	0 11	0.15	0.15	0 11	0.12	0.17	0.15
PaOr	0.15	0.14	0.06	0.13	0.19	0.12	0.04	0.05	0 10	0.13
TiO	0.69	0.61	0.22	0.56	0.67	0.60	0 10	0.22	0.67	0.62
1102 战火县	0.09	1.47	1.00	1.21	0.07	0.00	0.19	0.22	1 19	0. 02
元 天里 百十	2. 39	1.47	00.54	1. 21	100.00	0.97	100.06	100.08	00.05	0.78
юи Fe. Ο. +МαΟ	97.11	10 02	5 10	5.07	£ Q1	7 62	2 00	2 05	97.90	7 10
	9.91	10. 83	5.40	5.97	0. 84	/. 03	5.00	5.05	9.45	7.48
$A1_2 O_3 / S1O_2$	0. 23	0.22	0.05	0.19	0.18	0.18	0.04	0.06	0.19	0.16
$Na_2 O/K_2 O$	0.43	0.65	0.24	1.90	3.22	1.19	0.52	1.01	0.61	0.74
$Al_2O_3/(CaO+Na_2O)$	6.47	5.70	3.90	2.11	2.01	2.57	5.53	3.04	4.94	3.29

表 1 青河地区哈巴河群主量元素分析结果

(C)1994-2023 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

续	表	1
\sim	~r~	-

					哈	·巴河群下亚	Z群				
岩性	混合岩	混合岩	混合岩	片麻岩	片麻岩	混合岩	二云母 片岩	二云母 片岩	片麻岩	片麻岩	黑云母 石英片岩
样号	HB-21	HB-22	HB-23	HB-24	HB-25	HB-26	HB-27	HB-28	HB-29	HB-30	HB-31
SiO ₂	66.09	72.01	64.69	63.31	61.36	66.84	63.07	70.46	60.01	66.51	56.50
Al_2O_3	14.61	12.24	14.84	16.64	15.95	14.07	17.13	13.12	15.90	15.99	18.80
$\mathrm{Fe}_{2}\mathrm{O}_{3}$	7.44	6.06	7.01	7.46	7.23	5.60	7.22	6.42	7.57	5.71	8.97
MgO	2.78	2.28	3.30	3.43	2.86	2.89	3.20	2.80	3.15	2.17	4.05
CaO	1.60	1.07	2.38	1.89	5.31	2.68	1.82	0.93	5.93	1.59	3.00
Na ₂ O	2.02	1.90	2.52	2.43	2.52	2.71	2.09	1.32	2.84	2.59	3.56
$K_2 O$	2.39	1.51	2.95	2.62	2.02	2.08	2.62	2.38	2.21	3.34	2.87
MnO	0.25	0.31	0.16	0.17	0.21	0.15	0.11	0.40	0.19	0.12	0.14
P_2O_5	0.09	0.06	0.17	0.14	0.17	0.25	0.17	0.09	0.20	0.17	0.25
TiO_2	0.66	0.50	0.79	0.76	0.69	0.58	0.88	0.54	0.78	0.67	1.01
烧失量	2.35	2.04	1.32	1.12	1.39	1.81	1.16	1.42	1.06	1.54	1.13
总计	100.27	99.98	100.12	99.97	99.70	99.66	99.48	99.88	99.83	100.40	100. 28
$\mathrm{Fe}_{2}\mathrm{O}_{3}$ +MgO	10.22	8.34	10.31	10.89	10.09	8.49	10.42	9.22	10.72	7.88	13.02
Al_2O_3/SiO_2	0.22	0.17	0.23	0.26	0.26	0.21	0.27	0.19	0.26	0.24	0.33
Na_2O/K_2O	0.85	1.26	0.85	0.93	1.25	1.30	0.80	0.55	1.29	0.78	1.24
Al ₂ O ₃ /(CaO+ Na ₂ O)	4.04	4.12	3.03	3.85	2.04	2.61	4. 38	5.83	1.81	3. 83	2.87

表 2 青河地区哈巴河群微量元素分析结果

 Table 2
 The trace element compositions of the Habahe Group from Qinghe area

 $(\times 10^{-6})$

样号	HB-1	HB-2	HB-3	HB-4	HB-5	HB-6	HB-7	HB-8	HB-9	HB-10
Li	34.40	46.40	17.70	43.90	33.00	44.00	36.30	38.00	44.90	54.70
Be	1.21	1.30	1.08	2.18	2.28	2.39	2.29	1.76	1.39	1.54
Sc	18.10	19.80	8.21	20.50	19.80	17.90	15.60	4.48	19.90	18.60
V	129.00	152.00	45.10	136.00	137.00	141.00	97.10	131.00	141.00	112.00
Cr	144.00	145.00	97.30	152.00	155.00	136.00	114.00	122.00	115.00	124.00
Co	18.60	20.80	8.36	20.50	21.20	21.50	16.30	21.40	20.90	19.90
Ni	64.40	70.60	25.10	78.00	79.70	82.30	56.80	80.30	70.70	69.80
Cu	20. 20	10.20	20.60	25.90	21.80	18.70	14.90	39.70	12.00	8.46
Zn	142.00	98.10	38.30	109.00	108.00	115.00	79.70	121.00	105.00	123.00
Rb	91.50	106.00	33.90	114.00	102.00	101.00	88.80	27.20	121.00	130.00
Sr	235.00	169.00	218.00	260.00	238.00	181.00	292.00	213.00	247.00	171.00
Y	36.00	34.40	18.50	28.90	28.00	30.50	27.50	13.50	27.60	31.60
Zr	220.00	263.00	180.00	172.00	164.00	182.00	181.00	174.00	167.00	168.00
Nb	9.85	11.20	5.31	10.30	10.50	10.80	8.37	10.50	11.10	10.10
Mo	0.62	0.50	0.54	0.65	0.62	0.60	0.43	2.14	0.80	0.86
Cd	0.11	0.11	0.06	0.10	0.10	0.12	0.10	0.12	0.12	0.11
Sn	3.02	3.36	1.51	3.04	2.92	3.47	2.84	3.36	3.57	3.13
\mathbf{Sb}	0.10	0.08	0.14	0.12	0.10	1.05	0.08	0.07	0.10	0.10
Cs	7.20	7.06	2.79	9.30	8.04	6.27	6.53	5.46	7.07	9.47
Ba	377.00	435.00	160.00	874.00	1130.00	453.00	343.00	466.00	380.00	350.00
Hf	5.26	5.41	4.31	4.31	4.09	4.57	4.45	4.63	4.52	4.55
Та	0.65	0.71	0.33	0.65	0.66	0.67	0.53	0.67	0.78	0.71
W	0.69	1.10	0.33	1.18	0.71	1.14	1.14	1.01	0.91	0.60
Pb	13.90	12.70	12.10	18.10	16.70	14.90	16.00	15.70	20.00	16.00
Th	9.82	9.74	5.77	8.82	8.57	9.20	9.11	1.02	9.26	10.40
U	2.53	2.53	1.60	2.20	2.12	2.53	2.36	2.74	2.31	2.96

续表2

样号	HB-1	HB-2	HB-3	HB-4	HB-5	HB-6	HB-7	HB-8	HB-9	HB-10
La	36.00	35.00	21.10	27.90	29.40	28.00	28.20	17.30	26.40	30.60
Ce	66.80	64.40	42.20	56.50	59.10	61.20	58.90	47.90	56.70	67.50
Pr	7.83	7.63	5.09	6.81	7.17	7.47	7.15	5.25	6.66	8.06
Nd	31.10	30.30	19.60	26.80	28.30	29.70	27.90	21.30	26.50	32.40
Sm	6.57	6.35	3.80	5.49	5.92	6.28	5.65	4.50	5.52	6.86
Eu	1.45	1.40	0.99	1.30	1.41	1.39	1.30	0.94	1.38	1.38
Gd	6.00	5.84	3.39	5.02	5.39	5.77	5.08	3.89	4.90	6.09
Tb	0. 92	0, 90	0.51	0.77	0.83	0.89	0.77	0.65	0.78	0.94
Dv	5. 52	5.41	3. 04	4. 77	4.82	5, 39	4. 58	4. 28	4.79	5.78
Ho	1 12	1 10	0.61	1 00	0.97	1 10	0.94	0.90	1 01	1 17
Fr	3 17	3 08	1 71	2 84	2 71	3 10	2 66	2 56	2 83	3 31
Tm	0.47	0.46	0.26	0.43	0.41	0.47	0.40	0.30	0.43	0.49
Thi Vb	3.07	2 02	1.70	2 85	2 65	3 05	2.64	2 54	2.86	3, 20
10	5.07	5.02	1.70	2. 63	2.05	5.05	2.04	2. 54	2.80	5.20
	170.49	165 24	104.26	0.43	140.46	154.07	146 56	112.77	141 10	0.48
Z REE	170.48	105. 54	104.20	142.91	149.40	134.27	140. 50	07.10	141.19	168.20
<u>></u> LREE	149.75	145.08	92.78	124.80	131.30	134.04	129.10	97.19	123.16	146. 80
<u>></u> HREE	20.73	20.26	11.48	18.11	18.16	20.23	17.46	15.58	18.03	21.46
δEu	0. 69	0.69	0.83	0.74	0.75	0.69	0.73	0.67	0. 79	0.64
δCe	0. 93	0.92	0.97	0.97	0.97	1.02	0.99	1.22	1.02	1.03
La _N /Yb _N	8.41	8.31	8.90	7.02	7.96	6.59	7.66	4.89	6.62	6.86
La_N/Sm_N	3.54	3.56	3.58	3.28	3.21	2.88	3.22	2.48	3.09	2.88
Gd _N /Yb _N	1.62	1.60	1.65	1.46	1.68	1.56	1.59	1.27	1.42	1. 57
样号	HB-11	HB-12	HB-13	HB-14	HB-15	HB-16	HB-17	HB-18	HB-19	HB-20
Li	41.00	36.10	11.80	21.30	14.00	30.10	6.99	9.71	42.90	28.90
Be	1.37	2.18	0.65	1.28	1.68	2.40	0.28	0.91	2.11	1.25
Sc	14.70	12.80	5.81	11.30	10.30	11.90	3.07	3.30	14.20	11.30
V	119.00	103.00	47.30	73.60	75.50	78.50	23.50	26.00	107.00	70.80
Cr	116.00	131.00	28.90	59.20	81.70	111.00	53.50	42.50	168.00	105.00
Co	17.80	19.70	5.95	9.86	11.20	14.10	4.68	4.56	17.00	12.60
Ni	64.60	83.40	18.70	17.20	21.00	44.70	11.00	12.10	64.70	36.90
Cu	41.20	42.50	50.70	16.70	24.10	21.70	3.74	8.69	19.40	21.30
Zn	116.00	86.80	35.10	48.00	51.60	61.90	15.40	15.70	77.60	65.40
Bb	112.00	81.80	24,00	54, 60	31, 20	109.00	23, 10	35, 10	104.00	105.00
Sr	128 00	104 00	34 80	351 00	585 00	245 00	38 20	134 00	150.00	221 00
Y	27.70	19 00	8 87	21 70	22 30	22 50	14 70	14 90	23 80	27.20
- 7r	153 00	126.00	45 00	113 00	161 00	155 00	126.00	107.00	160,00	186.00
Nb	0 07	7 02	3 60	5 40	5 98	7 82	3 07	3 18	8 45	0.28
Mo	0.38	0.67	2 70	0.80	1 20	0.56	0.48	0.66	0.49	9.28
Cd	0.56	0.07	2.79	0.09	0.07	0.11	0.40	0.00	0.49	0.03
Sn	2 80	2.62	1 28	1 44	1 28	2 00	1 42	1.58	2.04	2 57
SL	0.07	2.02	0.22	0.19	0.12	2.90	0.08	0.11	2.94	0.12
SD	0.07	0.14	0.55	0.18	0.12	0.11	0.08	0.11	0.15	0.13
Cs D	5.70	3. 52	1.01	4. /1	2.13	0. 38	1.21	2.04	0.27	4.91
Ва	438.00	264.00	132.00	303.00	87.50	302.00	134.00	183.00	285.00	364.00
Hi	4.13	3. 32	1.14	2.91	4.14	4.15	3. 28	2.84	4.17	4.94
Ta	0.73	0.57	0.24	0.40	0.40	0.65	0.28	0.20	0.58	0.60
W	2.08	1.91	0.34	0.25	1.17	0.38	0.27	0.48	1.10	0.75
Pb	14.90	13.30	9.64	10.40	14.50	21.60	4.68	15.90	11.50	16.60
Th	11.00	7.61	3.37	5.47	6.24	8.67	10.90	8.99	9.66	11.40
U	2. 24	1.57	0.81	1. 59	1.74	2.43	1.55	1.30	2.15	2.44
La	30.40	23.10	7.83	20.00	21.50	24.90	32.60	26.10	28.40	32.50
Ce	64.10	48.10	19.20	40.30	48.80	50.90	58.70	51.50	58.60	65.90
Pr	7.59	5.74	2.10	5.07	5.38	6.11	6.58	5.37	6.98	7.80
Nd	29.60	22.30	8.20	20.40	21.70	24.10	24.30	19.60	26.80	30.40
Sm	6.07	4.57	1.80	4.28	4.62	4.90	4.38	3.62	5.32	6.18
Eu	1.20	1.01	0.42	1.28	1.22	1.08	0.73	0.70	1.11	1.31

	HB-11	HB-12	HB-13	HB-14	4 HB-	-15	HB-16	HB-17	HB-18	HB-19	HB-20
Gd	5.30	3.98	1.65	3.89	4. 1	15	4.40	3.54	3.00	4.60	5.37
Tb	0.81	0.60	0.27	0.60	0.6	55	0.68	0.51	0.45	0.70	0.81
Dy	4.95	3.53	1.64	3.71	3. 9	95	4.02	2.79	2.66	4.21	4.86
Но	0.99	0.70	0.34	0.77	0.8	30	0.81	0.53	0.54	0.84	0.96
Er	2.79	1.91	0. 98	2.20	2.2	21	2.24	1.39	1.50	2.35	2.71
Tm	0.41	0.29	0.15	0.33	0.3	33	0.33	0.20	0.22	0.35	0.40
Yb	2.70	1.93	1.04	2.17	2. 1	16	2.18	1.29	1.45	2.33	2.58
Lu	0.39	0.29	0.16	0.32	0.3	32	0.33	0.19	0.21	0.35	0.38
Σ REE	157.30	118.04	45.78	105.31	117. 7	79 1	26. 98	137.73	116.92	142.94	162.17
Σ LREE	138.96	104.82	39.55	91.33	103.2	22 1	11.99	127.29	106.89	127.21	144.09
Σ HREE	18.34	13.22	6.23	13.98	14. 5	57	14.99	10.44	10.03	15.73	18.08
δΕυ	0.63	0.71	0.73	0.94	0.8	83	0.70	0.55	0.63	0.67	0.68
δCe	1.01	1.00	1.14	0.96	1. (08	0.98	0.93	1.01	0.99	0.98
La _N /Yb _N	8.08	8.59	5.40	6.61	7. 1	14	8.19	18.13	12.91	8.74	9.04
La_N/Sm_N	3.23	3.26	2.81	3.02	3. (00	3.28	4.80	4.65	3.45	3.39
Gd _N /Yb _N	1.62	1.71	1.31	1.48	1. 5	59	1.67	2.27	1.71	1.63	1.72
	HB-21	HB-22	HB-23	HB-24	HB-25	HB-26	HB-27	ИВ-28	HB-29	HB-30	HB-31
Li	38.10	37.70	31.60	34.20	25.20	46.90	43.30	58.10	21.30	50.20	38.60
Be	1.85	1.89	3.03	2.32	1.64	1.69	2.09	1.67	1.76	2.32	1.66
Sc	15.60	11.40	16.30	17.40	19.20	12.30	18.10	12.00	19.90	14.10	22.90
V	101.00	78.90	119.00	114.00	131.00	84.50	129.00	91.10	168.00	92.00	151.00
Cr	98.30	69,60	155.00	119.00	56, 80	167.00	115.00	66.20	46.80	89.50	104.00
Co	22.00	16.30	17.90	18.20	16.70	16.10	15.70	16.60	19, 40	12.10	23.00
Ni	68.30	46.20	59.40	57.10	23.10	80.00	43.70	39.90	21.70	36.30	58.40
Cu	36, 80	6. 05	12.40	37.00	39.40	16.80	82.90	5, 59	43.70	22.10	27.90
Zn	81.90	67.70	83.30	83.70	70, 40	60, 40	93.20	73.60	71, 70	72.80	114.00
Rb	84.30	47.70	99.00	99.00	75.20	95.00	102.00	81.40	82,00	128.00	108.00
Sr	152.00	132.00	253.00	226.00	298.00	264.00	237.00	119.00	394.00	224.00	379.00
Y	23.60	18.00	22.40	28.10	22.80	18.70	29.30	20.60	22.80	25.30	31, 20
Zr	161 00	101 00	168 00	170 00	70 90	143 00	184 00	145 00	98 20	180.00	190.00
Nb	9 40	6 36	8 55	10 20	6 84	8 19	10 30	8 51	8 57	9 64	11 30
Mo	0.85	0.43	0.37	0.52	0.79	0.54	0.28	0.91	1 32	0 41	0.36
Cd	0.12	0.13	0.09	0.09	0.11	0.10	0.11	0.08	0 11	0.14	0.12
Sn	3 53	3 98	2 75	2 37	2 29	2 70	2 63	2 71	2 30	3 35	3.02
Sh	0.14	0.25	0.16	0.07	0.15	0.24	0.20	0.35	0.39	0.18	0.07
Ce	5 92	2 66	5 49	5 85	5 28	7 20	7 47	2.87	4 41	9.45	6 51
Ba	353 00	217 00	431 00	369 00	331 00	309.00	387 00	432 00	377 00	461 00	340.00
Ыű	4 32	2 70	4 40	4 45	1 96	3 82	4 88	3 97	3 02	4 87	4 91
Та	0.73	0 45	0 54	0 74	0 51	0 77	86 0 74	0.55	0.71	0.76	0.70
W	0 47	0.63	1 03	1 56	0 30	0 46	0.74	1 21	0.50	1 82	0.77
" Ph	14 80	16 20	12.30	19 20	14 10	17 60	16 70	16 80	13 30	18 00	19 00
Th	8 65	6 25	9 18	10 40	5 20	8 41	10.70	8.06	8 70	9 70	9 00
 U	1 72	1 14	1 49	2 45	0.80	1 54	2 07	1 70	0.79 2.54	2.19 2.11	2.05
 La	28 20	18 50	25 30	30.70	19 90	22 50	31 30	22 70	2. 54	2. 11	2. 15
La Ce	20.20 54 00	42 10	20.00 50.00	57 80	44 00	22.50 18 an	61 AC	52 70	24.90 51.60	20.20	61 10
Pr	6 76	4 74	6.07	7 26	4 99	5 24	7 87	5 65	6 28	7 04	7 00
Nd	26 80	16 60	23 80	28 40	7.22 20.10	20 40	7.07 31.10	22 40	25 60	28 00	28 40
Sm	5 50	3 10	23.00 A Q1	20.40 5.67	4 40	20.40 1 10	51. IU 6 27	22.40 1.66	23.00 5 40	20.00	6 17
5m Fu	1 20	5.40 0.74	+. 01	1 20		4.18	0.37	4.00	J. 49 1 40	J. /J 1 02	1.59
Eu Cd	1.20	0.74	1.11	1.29	1.1/	2.00	1.37	0.94	1.40	1.23	1. 38
Gu Th	4.84	5.07	4. 34	4.94	5.90 0.42	5.70	5.60	4.15	4. 79	J. U8	5.55
1D	0.74	0.50	0.07	0.70	0.62	0.58	0.86	0.04	0.72	0. //	0.8/
Dy	4.28	3.04	3.9/	4.00	5. 81 0. 79	5.45	5. 22	3.88	4.16	4.65	5.43
Но	0.85	0.64	0.80	0.99	0.78	0.67	1.08	0.78	0.83	0.93	1.11
Er	2.33	1.81	2.26	2.83	2.22	1.81	3.10	2.14	2.26	2.58	3.15
Tm	0.35	0.28	0 34	0 43	0 34	0.27	0 47	0.32	0.33	0.39	0 47

续表 2

样号	HB-21	HB-22	HB-23	HB-24	HB-25	HB-26	HB-27	HB-28	HB-29	HB-30	HB-31
Yb	2.28	1.86	2.28	2.85	2.32	1.77	3.15	2.09	2.21	2.58	3.10
Lu	0.34	0.28	0.34	0.43	0.35	0.26	0.48	0.31	0.33	0.39	0.46
Σ REE	138.46	97.05	126.39	149.00	109.86	114.79	162.36	123.36	130.90	148.39	150.46
Σ LREE	122.46	85.58	111.39	131.12	95.46	102.22	142.41	109.05	115.27	131.02	130.34
Σ HREE	16.00	11.47	15.00	17.88	14.40	12.57	19.95	14.31	15.63	17.37	20.12
$\delta \mathrm{Eu}$	0.70	0.69	0.73	0.73	0.84	0.76	0.69	0.64	0.82	0.68	0.81
$\delta \mathrm{Ce}$	0.93	1.12	0.96	0.92	1.08	1.06	0.98	1.11	0.99	1.03	1.08
$\mathrm{La}_{\mathrm{N}}/\mathrm{Yb}_{\mathrm{N}}$	8.87	7.13	7.96	7.73	6.15	9.12	7.13	7.79	8.08	7.84	6.02
La_N/Sm_N	3.31	3.51	3.40	3.50	2.92	3.47	3.17	3.14	2.93	3.17	2.72
$\mathrm{Gd}_{\mathrm{N}}/\mathrm{Yb}_{\mathrm{N}}$	1.76	1.37	1.57	1.43	1.41	1.76	1.47	1.64	1.79	1.63	1.48

球粒陨石和原始地幔标准化数据引自 Sun 和 McDonough(1989);后太古代澳大利亚页岩数据引自 Taylor 和 McLennan(1985); 大陆上地壳数据引自 Rudnick 和 Gao(2003)

图 5 哈巴河群变质岩原始地幔标准化蛛网图(a)和球粒陨石标准化稀土元素配分模式图(b)

Fig. 5 Primitive mantle normalized trace element spider diagrams (b) and chondrite-normalized REE patterns (a)

of metamorphic rocks from the Habahe Group

砂岩区。图 6b 显示,除样品 HB-4、HB-25、HB-29 完 全落入火山岩区外,其余样品均落入泥质粉砂岩 区。结合样品 DF 值(所有样品的 DF>0),可以认为 青河地区出露的哈巴河群变质岩原岩主要为泥砂 质沉积岩。

碎屑岩的化学组成受源区岩石性质和化学风化作用强度的制约(沈瑞峰等,2015),化学蚀变指数(CIA)和成分变异指数(ICV)常被用来追溯沉积物源的风化强度及推断源区特征(Nesbitt and Young,1982;Cox et al.,1995;Fedo et al.,1995;Cullers and Podkovyrov,2000;Bhat and Ghosh,2001)。 通常,CIA<70反映源区经历了寒冷、干燥条件下弱的化学风化作用;CIA为70~75反映源区经历了温暖、湿润条件下中等的化学风化作用;而 CIA>75则说明源区经历了炎热、潮湿条件下的强烈的化学风 化作用(Nesbitt and Young, 1982, 1989)。青河地区 哈巴河群样品化学的 CIA 为 47.77~68.82, 平均 60.41,低于后太古代澳大利亚页岩(PAAS: CIA = 70)(Taylor and McLennan, 1985),表明青河地区哈 巴河群变质岩的源区物质经历了较弱的化学风化 作用。通常, ICV>1表明原岩中含有少量黏土矿物, 沉积碎屑的成熟度差,代表活动大陆边缘的首次循 环沉积产物,反之, ICV<1则指示原岩中含有大量的 黏土矿物,沉积碎屑的成熟度较高,反映被动大陆 边缘多次循环过程或强化学风化条件下的首次沉 积过程(Van de Kamp and Leake, 1985; Cox et al., 1995)。青河地区哈巴河群样品的 ICV 为 1.03~ 1.32,高于后太古代澳大利亚页岩(ICV=0.85),指 示源区物质相对不成熟,可能为活动大陆边缘首次 循环沉积的产物(图 6c)。

					-	-	
样号	А	K	DF	(al+fm)-(alk+c)	Si	CIA	ICV
HB-1	72	51	-2	50	279	64.46	1.03
HB-2	73	59	-3	55	260	65.70	1.12
HB-3	64	33	-3	27	564	53.85	1.10
HB-4	68	54	-2	47	257	59.82	1.28
HB-5	66	58	-2	44	253	57.72	1.31
HB-6	73	64	-3	56	224	67.45	1.08
HB-7	67	47	-2	42	319	58.00	1.18
HB-8	69	56	-2	51	238	61.74	1.24
HB-9	67	53	-2	45	257	58.17	1.32
HB-10	72	58	-3	53	251	65.10	1.12
HB-11	74	70	-5	59	325	68.82	1.06
HB-12	75	60	-5	61	323	68.76	1.13
HB-13	69	81	-9	52	1183	61.18	1.70
HB-14	63	35	0	22	373	51.73	1.09
HB-15	64	24	- 1	24	378	52.40	1.15
HB-16	64	46	-2	33	359	54.45	1.20
HB-17	75	66	-9	58	1832	68.82	1.18
HB-18	67	50	-7	36	1195	58.36	1.08
HB-19	72	62	-5	54	361	65.14	1.14
HB-20	66	57	-4	41	426	58.07	1.21
HB-21	71	54	-3	50	315	62.92	1.16
HB-22	73	44	-5	54	421	65.08	1.09
HB-23	65	54	-2	41	277	56.82	1.28
HB-24	71	52	-3	49	265	62.58	1.12
HB-25	62	44	0	27	236	50.54	1.29
HB-26	65	43	-2	37	309	56.16	1.18
HB-27	72	56	-3	52	270	65.10	1.04
HB-28	74	64	-5	59	382	67.77	1.10
HB-29	59	44	1	24	218	47.77	1.41
HB-30	68	56	-1	40	313	60.65	1.00
HB-31	67	45	0	42	194	57.62	1.25

|--|

Table 3 The calculated correlation index of the Habahe Group from Oinghe area

注:A=Al₂O₃/(K₂O+Na₂O+Al₂O₃+CaO)×100, K=K₂O/(K₂O+Na₂O)×100; 西蒙尼图解中 Si'=SiO₂/60, al'=Al₂O₃/102, fm'=2×TFe₂O₃/160+ MgO/40+MnO/71, c'=CaO/56, alk'=Na₂O/62+K₂O/94, 合计=al'+fm'+c'+alk', Si=Si'/合计, al=al'/合计, fm=fm'/合计, c=c'/合计, alk = alk'/ 合计; DF=-0.21×SiO₂-0.32×TFe₂O₃-0.98×MgO+0.55×CaO+1.46×Na₂O+0.54×K₂O+10.44(质量分数); CIA=Al₂O₃/(Al₂O₃+CaO*+Na₂O+ K₂O)(其中氧化物为摩尔分数, CaO*为硅酸盐矿物中的 CaO,上述数据已校正); ICV=(TFe₂O₃+K₂O+Na₂O+CaO+MgO+TiO₂)/Al₂O₃(摩 尔分数)。

通常 K 和 Rb 在酸-中性火成岩中富集,而且对循环 沉积过程较为敏感,因此通过碎屑岩中的 Rb 含量 和 K/Rb 值可以有效的反映源区的物质组成(Shaw, 1968;Floyd et al.,1989)。青河地区哈巴河群变质 岩的 Rb 含量较低(23×10⁻⁶~130×10⁻⁶),低于后太 古代澳大利亚页岩平均值(160×10⁻⁶),K/Rb 值为 217~377,指示物源为酸-中性火成岩(图 6d)。另 外,Th/Sc-Zr/Sc 图解可以有效的判别源区碎屑性质 (Long et al.,2008;Chen et al.,2016)。因为碎屑物 质在沉积循环过程中,随着锆石矿物含量的逐渐富 集,沉积物中 Zr/Sc 值不断变大,而 Th/Sc 值变化较 小(Cullers,1994)。青河地区哈巴河群样品的 Zr/Sc 和 Th/Sc 值变化范围较大,在 Th/Sc-Zr/Sc 图(图 6e)上呈正相关关系,所有样品均落入花岗岩和安 山岩之间的过渡区域,并与阿尔泰造山带北部早古 生代碎屑沉积岩的源岩成分较为一致(龙晓平, 2007)。同样,在La/Th-Hf图解(图 6f)中绝大多数 样品落入酸性弧物源区,进一步指示青河地区哈巴 河群变质岩的酸性弧物源属性。

综上研究,我们认为青河哈巴河群变质岩的原 岩主要为泥砂质沉积岩,沉积碎屑主要来自酸性 弧,且碎屑成熟度较差,经历了简单的沉积循环。

4.2 稀有金属成矿潜力

Lv 等(2021)认为,新疆阿尔泰发育的二叠纪稀 有金属伟晶岩是地壳深熔的产物,区域上大量发育 的哈巴河群变质岩是潜在源区。Chen 等(2020)根

(a)(b)底图据王仁民等(1987);(c)底图据 Cox等(1995);(d)底图据 Floyd等(1989);
 (e)底图据 McLennan 等(1993);(f)底图据 Floyd等(1989)。PASS 相关值据 Taylor 和 McLennan(1985)
 图 6 青河地区哈巴河群变质岩原岩恢复及源区物质组成判别图

Fig. 6 Protolith reconstruction and source features discrimination diagrams for the metamorphic rocks in the Habahe Group of the Qinghe area

据对新疆阿尔泰青河县的贫锂伟晶岩的锂同位素 和钕同位素研究,提出贫锂伟晶岩为角闪岩相条件 下白云母脱水熔融形成(熔融程度5%~23%),原岩 主要由黑云母(25%~40%)、白云母(~10%)组成; 而富锂伟晶岩是麻粒岩相条件下黑云母脱水熔融 形成(熔融程度30%~40%),原岩主要由白云母 (30%~45%)、黑云母(5%~10%)组成。张辉等 (2019)认为地壳深熔形成稀有金属伟晶岩在阿勒 泰地区更为普遍,稀有金属矿化类型和矿化程度明 显受源区和部分熔融程度控制。

青河地区白云母矿化的伟晶岩主要产于哈巴 河群下亚群的片岩、砂线黑云斜长片麻岩中,如布 勒克—纳然萨克—阿尔沙特一带的白云母矿点;以 稀有金属矿化为主的伟晶岩脉主要产于哈巴河群 上亚群的云母石英片岩、混合岩及角闪片岩中,如 塔格尔巴斯他乌—塔拉特一带的稀有金属矿点;在 哈巴河群中亚群变质岩中稀有金属矿化伟晶岩则 较少,稀有金属矿产分布明显受地层控制(新疆地 质局区域地质调查大队,1979)。这在青河地区哈 巴河群变质岩样品稀有金属含量方面也有体现,整 体上哈巴河群上亚群和下亚群的稀有金属背景值 较中亚群高,并且相对于大陆上地壳富集 Li、Rb、Cs (图 7)。

element of the metamorphic rocks in the Habahe Group of the Qinghe area

实验数据表明,花岗质熔体中 Li 的浓度超过 11 000×10⁻⁶ 后才能结晶出锂硅酸盐矿物 (Maneta et al., 2015), 绿柱石饱和阈值为 35×10⁻⁶Be(London, 2015)。上地壳中 Li 和 Be 的平均含量分别为 35× 10⁻⁶(Teng et al., 2004)和 3×10⁻⁶(Grew, 2002)。伟 晶岩中Li、Be等稀有金属矿化(或超常富集)主要 有两方面因素:①部分熔融源区沉积物中稀有金属 的初始富集特征及部分熔融程度 (Simmons and Webber, 2008; Chen et al., 2020); ②伟晶岩岩浆-热 液的演化过程中稀有金属的富集机制,包括分离结 晶程度、岩浆不混溶机制以及熔体-流体相分离过 程(Thomas and Davidson, 2012; Maneta et al., 2015; London,2018)。本文以伟晶岩的深熔成因模型为基 础,仅就部分熔融原岩中稀有金属的初始富集特征 及部分熔融程度对熔体中稀有金属富集情况进行 讨论。

岩石部分熔融实验表明,变质岩的熔融作用主 要有饱和水固相线上的熔融,白云母的脱水熔融和 黑云母的脱水熔融(Brown,2002)。在天然岩石中, 饱和水固相线上的熔融反应可以产生不到 3%的富 水熔体(White et al.,2001),如此低量的熔体难以 汇聚形成较大的熔体;无水体系中白云母的脱水熔 融能够产生 5%~20%的熔体(白云母+斜长石+石 英→黑云母+钾长石+砂线石+熔体,650~760 ℃, 0.6~1.0 GPa)(Patiño Douce and Harris,1998;Zhao et al.,2022);黑云母的脱水熔融能够产生 30%~ 40%的熔体(黑云母+砂线石+石英+斜长石₁→钾长 石+石榴子石+堇青石+斜长石₂+熔体,760~830 ℃, 0.5~1.0 GPa)(Montel and Vielzeuf,1997;Stevens et al.,1997;Koester et al.,2002)。

本文基于模式平衡部分熔融模型简单的进行 了部分熔融过程中稀有金属元素富集情况的模拟 和分析。模式平衡部分熔融模型数学表达式为:

$$\frac{C_l}{C_o^i} = \frac{1}{\overline{D_i}(1-F) + F}$$

式中, C_i^i 和 C_o^i 分别是微量元素 *i* 在未熔融原岩和部 分熔融体中的浓度; $\overline{D_i}$ 为微量元素 *i* 的总分配系 数: F 为部分熔融程度。

通常稀有金属 Li、Be、Nb、Ta、Rb、Cs、Zr 和 Hf 在部分熔融过程中表现为不相容,在硅酸盐熔体中 相对富集,不考虑残余相对稀有金属元素分配的影 响,假设部分熔融过程中稀有金属元素都富集到了 硅酸盐熔体中,即 $\overline{D_i}$ =0的情况。以青河地区哈巴 河群下、中、上变质岩样品为原岩(Li、Be、Nb、Ta、 Rb、Cs、Zr 和 Hf 的平均含量分别为: 39/39/24× $10^{-6}, 2/1/2 \times 10^{-6}, 9/6/10 \times 10^{-6}, 1/0.5/1 \times 10^{-6}, 91/$ 92/68×10⁻⁶, 6/4/7×10⁻⁶, 146/133/187×10⁻⁶, 4/5/4 ×10⁻⁶),当部分熔融程度为 5%时,Li、Be、Nb、Ta、 Rb、Cs、Zr 和 Hf 在熔体中的浓度分别为 773/486/ 787×10⁻⁶,40/28/35×10⁻⁶,178/129/196×10⁻⁶,13/9/ 13×10^{-6} , $1821/1360/1831 \times 10^{-6}$, $115/77/138 \times 10^{-6}$, 2929/2664/3742×10⁻⁶,79/70/92×10⁻⁶;而当部分熔 融程度为 30% 时, Li、Be、Nb、Ta、Rb、Cs、Zr 和 Hf 在 熔体中的浓度则分别为 129/81/131×10⁻⁶,7/5/6× 10^{-6} , $30/22/33 \times 10^{-6}$, $2/2/2 \times 10^{-6}$, $304/227/305 \times 10^{-6}$ 10⁻⁶, 19/13/23×10⁻⁶, 488/444/624×10⁻⁶, 13/12/15× 10-6。随着部分熔融程度的增大,稀有金属元素在初 始熔体中的浓度值降低,小比例的部分熔融有利于稀 有金属元素在初始熔体中的富集。青河地区哈巴河 群下、上亚群变质岩发生小比例的部分熔融,产生的 熔融体中 Be 的浓度可达到绿柱石的饱和阈值。

5 结论

(1) 青河地区哈巴河群变质岩的原岩主要为泥

砂质沉积岩,沉积碎屑主要来自酸性弧物源,碎屑 成熟度较差,经历了简单的沉积循环。

(2) 青河地区哈巴河群上亚群和下亚群比中亚 群具更高的稀有金属背景值,并且相对于大陆上地 壳富集 Li、Rb、Cs。部分熔融程度对稀有金属元素 在熔融体中的富集很重要,小比例的部分熔融有利 于稀有金属元素在初始熔体中的富集。

参考文献 (References):

- Barnes E M, Weis D, Groat L A. 2012. Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada. Lithos, 132-133: 21-36
- Bhat M I, Ghosh S K. 2001. Geochemistry of the 2.51 Ga old Rampur group pelites, western Himalayas: Implications for their provenance and weathering. Precambrian Research, 108(1-2): 1-16
- Bolhar R, Kamber B S, Moorbath S, Whitehouse M J, Collerson K D. 2005. Chemical characterization of earth's most ancient clastic metasediments from the Isua Greenstone Belt, southern West Greenland. Geochimica et Cosmochimica Acta, 69(6): 1555-1573
- Brown M. 2002. Retrograde processes in migmatites and granulites revisited. Journal of Metamorphic Geology, 20(1): 25-40
- Cai K D, Sun M, Yuan C, Zhao G C, Xiao W J, Long X P, Wu F Y. 2011. Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China. Lithos, 127 (1-2): 261-281
- Cai K D, Sun M, Yuan C, Xiao W J, Zhao G C, Long X P, Wu F Y.
 2012. Carboniferous mantle-derived felsic intrusion in the Chinese Altai, NW China: Implications for geodynamic change of the accretionary orogenic belt. Gondwana Research, 22(2): 681-698
- Chen B, Huang C, Zhao H. 2020. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization. Chemical Geology, 551: 119769
- Chen M, Sun M, Cai K D, Buslov M M, Zhao G C, Jiang Y D, Rubanova E S, Kulikova A V, Voytishek E E. 2016. The early Paleozoic tectonic evolution of the Russian Altai: Implications from geochemical and detrital zircon U-Pb and Hf isotopic studies of meta-sedimentary complexes in the Charysh-Terekta-Ulagan-Sayan suture zone. Gondwana Research, 34: 1-15
- Cox R, Lowe D R, Cullers R L. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940
- Cullers R L. 1994. The chemical signature of source rocks in size fractions of Holocene stream sediment derived from metamorphic rocks in the wet Mountains region, Colorado, U. S. A. Chemical Geology, 113(3-4): 327-343
- Cullers R L, Podkovyrov V N. 2000. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling. Precambrian Research, 104(1-2): 77-93

- Dill H G. 2015. Pegmatites and aplites: Their genetic and applied ore geology. Ore Geology Reviews, 69: 417-561
- Fedo C M, Nesbitt H W, Young G M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10): 921-924
- Floyd P A, Winchester J A, Park R G. 1989. Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Research, 45(1-3): 203-214
- Grew E S. 2002. Mineralogy, petrology and geochemistry of beryllium: An introduction and list of beryllium minerals. Reviews in Mineralogy and Geochemistry, 50(1): 1-76
- Hulsbosch N, Hertogen J, Dewaele S, André L, Muchez P. 2014. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochimica et Cosmochimica Acta, 132: 349-374
- Jiang Y D, Sun M, Zhao G C, Yuan C, Xiao W J, Xia X P, Long X P, Wu F Y. 2011. Precambrian detrital zircons in the Early Paleozoic Chinese Altai: Their provenance and implications for the crustal growth of central Asia. Precambrian Research, 189 (1-2): 140 -154
- Joo Y J, Lee Y I, Bai Z. 2005. Provenance of the Qingshuijian Formation (Late Carboniferous), NE China: Implications for tectonic processes in the northern margin of the North China block. Sedimentary Geology, 177(1-2): 97-114
- Koester E, Pawley A R, Fernandes L A D, Porcher C C, Soliani Jr E. 2002. Experimental melting of cordierite gneiss and the petrogenesis of syntranscurrent peraluminous granites in southern Brazil. Journal of Petrology, 43(8): 1595-1616
- London D. 2015. Reading pegmatites: Part 1-What beryl says. Rocks & Minerals, 90(2): 138-153
- London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349-383
- Long X P, Sun M, Yuan C, Xiao W J, Lin S F, Wu F Y, Xia X P, Cai K D. 2007. Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: Implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt. Tectonics, 26(5): TC5015
- Long X P, Sun M, Yuan C, Xiao W J, Cai K D. 2008. Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution. Sedimentary Geology, 208(3-4): 88-100
- Long X P, Yuan C, Sun M, Xiao W J, Zhao G C, Wang Y J, Cai K D, Xia X P, Xie L W. 2010. Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: New constrains on depositional age, provenance and tectonic evolution. Tectonophysics, 480(1-4): 213-231
- Lv Z H, Zhang H, Tang Y, Liu Y L, Zhang X. 2018. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U-Pb age and Hf isotope. Ore Geology Reviews, 95: 161-181
- Lv Z H, Zhang H, Tang Y. 2021. Anatexis origin of rare metal/earth

pegmatites: Evidences from the Permian pegmatites in the Chinese Altai. Lithos, 380-381: 105865

- Maneta V, Baker D R, Minarik W. 2015. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts. Contributions to Mineralogy and Petrology, 170(1): 4
- McLennan S M, Hemming S, McDaniel D K, Hanson G N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson M J, Basu A (eds.). Processes Controlling the Composition of Clastic Sediments. Special Papers-Geological Society of America, 21-21
- Montel J M, Vielzeuf D. 1997. Partial melting of metagreywackes, Part II. Compositions of minerals and melts. Contributions to Mineralogy and Petrology, 128(2-3): 176-196
- Müller A, Romer R L, Pedersen R B. 2017. The sveconorwegian pegmatite province-thousands of pegmatites without parental granites. The Canadian Mineralogist, 55(2): 283-315
- Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885): 715-717
- Nesbitt H W, Young G M. 1989. Formation and diagenesis of weathering profiles. The Journal of Geology, 97(2): 129-147
- Patiño Douce A E, Harris N. 1998. Experimental constraints on himalayan anatexis. Journal of Petrology, 39(4): 689-710
- Qi L, Grégoire D C. 2000. Determination of trace elements in twenty six Chinese geochemistry reference materials by inductively coupled plasma-mass spectrometry. Geostandards Newsletter, 24(1): 51 -63
- Rudnick R L, Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1-64
- Selway J B, Breaks F W, Tindle A G. 2005. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits. Exploration and Mining Geology, 14(1-4): 1-30
- Shaw D M. 1968. A review of K-Rb fractionation trends by covariance analysis. Geochimica et Cosmochimica Acta, 32(6): 573-601
- Simmons W, Falster A, Webber K, Roda-Robles E, Boudreaux A P, Grassi L R, Freeman G. 2016. Bulk composition of Mt. mica pegmatite, maine, USA: IMPLICATIONS for the origin of an lct type pegmatite by anatexis. The Canadian Mineralogist, 54(4): 1053 -1070
- Simmons W B S, Webber K L. 2008. Pegmatite genesis: State of the art. European Journal of Mineralogy, 20(4): 421-438
- Stevens G, Clemens J D, Droop G T R. 1997. Melt production during granulite-facies anatexis: Experimental data from "primitive" metasedimentary protoliths. Contributions to Mineralogy and Petrology, 128(4): 352-370
- Sun M, Yuan C, Xiao W J, Long X P, Xia X P, Zhao G C, Lin S F, Wu F Y, Kröner A. 2008. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the early to middle Palaeozoic. Chemical Geology, 247 (3-4): 352-383
- Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes.

Geological Society, London, Special Publications, 42(1): 313-345

- Taylor S R, McLennan S M. 1985. The continental crust: Its composition and evolution. The Journal of Geology, 94(4): 57-72
- Teng F Z, McDonough W F, Rudnick R L, Dalpé C, Tomascak P B, Chappell B W, Gao S. 2004. Lithium isotopic composition and concentration of the upper continental crust. Geochimica et Cosmochimica Acta, 68(20): 4167-4178
- Thomas R, Davidson P. 2012. Water in granite and pegmatite-forming melts. Ore Geology Reviews, 46: 32-46
- Tong Y, Wang T, Jahn B M, Sun M, Hong D W, Gao J F. 2014. Postaccretionary permian granitoids in the Chinese Altai orogen: Geochronology, petrogenesis and tectonic implications. American Journal of Science, 314(1): 80-109
- Van de Kamp P C, Leake B E. 1985. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 76(4): 411-449
- Vieira R, Roda-Robles E, Pesquera A, Lima A. 2011. Chemical variation and significance of micas from the Fregeneda-Almendra pegmatitic field (Central-Iberian Zone, Spain and Portugal). American Mineralogist, 96(4): 637-645
- Wang T, Hong D W, Jahn B M, Tong Y, Wang Y B, Han B F, Wang X X. 2006. Timing, petrogenesis, and setting of paleozoic synorogenic intrusions from the Altai Mountains, Northwest China: Implications for the tectonic evolution of an accretionary orogen. The Journal of Geology, 114(6): 735-751
- White R W, Powell R, Holland T J B. 2001. Calculation of partial melting equilibria in the system Na₂O-CaO-K₂O-FeO-MgO-Al₂O₃-SiO₂ -H₂O(NCKFMASH). Journal of Metamorphic Geology, 19(2): 139-153
- Windley B F, Kröner A, Guo J H, Qu G S, Li Y Y, Zhang C. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: New zircon age data and tectonic evolution. The Journal of Geology, 110(6): 719-737
- Yang F, Mao J, Liu F, Chai F, Guo Z, Zhou G, Geng X, Gao J. 2010. Geochronology and geochemistry of the granites from the Mengku iron deposit, Altay Mountains, northwest China: Implications for its tectonic setting and metallogenesis. Australian Journal of Earth Sciences, 57: 803-818
- Yuan C, Sun M, Xiao W J, Li X H, Chen H L, Lin S F, Xia X P, Long X P. 2007. Accretionary orogenesis of the Chinese Altai: Insights from Paleozoic granitoids. Chemical Geology, 242(1-2): 22 -39
- Zagorsky V Y, Vladimirov A G, Makagon V M, Kuznetsova L G, Smirnov S Z, D' yachkov B A, Annikova I Y, Shokalsky S P, Uvarov A N. 2014. Large fields of spodumene pegmatites in the settings of rifting and postcollisional shear-pull-apart dislocations of continental lithosphere. Russian Geology and Geophysics, 55(2): 237-251
- Zhang C, Liu L F, Santosh M, Luo Q, Zhang X. 2017. Sediment recycling and crustal growth in the Central Asian Orogenic Belt: Evidence from Sr-Nd-Hf isotopes and trace elements in granitoids of the

Chinese Altay. Gondwana Research, 47: 142-160

- Zhang X, Zhang H, Ma Z L, Tang Y, Lv Z H, Zhao J Y, Liu Y L. 2016. A new model for the granite-pegmatite genetic relationships in the Kaluan-Azubai-Qiongkuer pegmatite-related ore fields, the Chinese Altay. Journal of Asian Earth Sciences, 124: 139-155
- Zhao H, Chen B, Huang C, Bao C, Yang Q, Cao R. 2022. Geochemical and Sr-Nd-Li isotopic constraints on the genesis of the Jiajika Lirich pegmatites, eastern Tibetan Plateau: Implications for Li mineralization. Contributions to Mineralogy and Petrology, 177(1): 4
- Zhou Q F, Qin K Z, Tang D M, Wang C L, Sakyi P A. 2018. LA-ICP-MS U-Pb zircon, columbite-tantalite and ⁴⁰ Ar-³⁹ Ar muscovite age constraints for the rare-element pegmatite dykes in the Altai orogenic belt, NW China. Geological Magazine, 155(3): 707-728
- 董增产.2020.中国阿尔泰造山带富蕴-青河地区古生代地质演化 及其对古亚洲洋增生造山过程的约束.博士学位论文.西安: 西北大学
- 龙晓平.2007.新疆阿尔泰古生代碎屑沉积岩的沉积时代、物质来 源及其构造背景.硕士学位论文.广州:中国科学院研究生院 (广州地球化学研究所)
- 吕正航,张辉,唐勇,赵景宇,刘云龙,郭柳.2018. 新疆阿尔泰不 同矿化类型伟晶岩中磷的分布特征及其找矿指示.矿物岩石地 球化学通报,37(2):260-270

马占龙,张辉,唐勇,吕正航,张鑫,赵景宇. 2015. 新疆卡鲁安矿

区伟晶岩锆石 U-Pb 定年、铪同位素组成及其与哈龙花岗岩成 因关系研究.地球化学,44(1):9-26

- 秦纪华,耿新霞,温超权,郭建新,任宇晨. 2016. 阿尔泰小土尔根 铜矿区岩体 LA-ICP-MS 锆石 U-Pb 定年及地质意义. 矿床地质, 35(1):18-32
- 任宝琴,张辉,唐勇,吕正航. 2011. 阿尔泰造山带伟晶岩年代学及 其地质意义. 矿物学报,31(3):587-596
- 沈瑞峰,张辉,唐勇,吕正航. 2015. 阿尔泰造山带古生代地层的地 球化学特征及其对沉积环境的制约.地球化学,44(1):43-60
- 王登红, 陈毓川, 徐志刚. 2003. 新疆阿尔泰印支期伟晶岩的成矿 年代学研究. 矿物岩石地球化学通报, 22(1): 14-17
- 王仁民, 贺高品, 陈珍珍, 郑松彦, 耿元生. 1987. 变质岩原岩图解 判别法. 北京: 地质出版社
- 新疆地质局区域地质调查大队. 1979. 德柳、青河幅 1:20 万地质图 (内部资料)
- 张辉,吕正航,唐勇. 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向. 矿床地质,38(4): 792-814
- 邹天人,李庆昌. 2006. 中国新疆稀有及稀土金属矿床. 北京: 地质 出版社

(本文责任编辑:龚超颖;英文审校:张兴春)

·亮点速读·

大火成岩省岩浆侵入作用引发全球变暖

大火成岩省是在较短的地质时间 尺度内(<5 Ma) 大规模(>105 km3) 基 性岩浆喷发的产物。大火成岩省会释 放大量二氧化碳到地表大气,导致全 球气候变暖。最新的高精度定年数据 显示,白垩纪末期的德干地盾和中新 世的哥伦比亚河大火成岩省的主要火 山活动和岩浆主体喷发时间均晚于该 地质时期的全球变暖时间,滞后约30 万年。该现象使大火成岩省因岩浆喷 发排放二氧化碳而导致全球变暖的理 论遇到挑战。前人研究表明,在岩浆 发生侵入作用时,冷却结晶过程同样 会使溶解于玄武岩岩浆中的大量二氧 化碳释放到大气中,而岩浆侵入作用 早于喷发作用。因此,大火成岩省岩 浆侵入作用释放的二氧化碳可能是全 球变暖早于大火成岩省岩浆剧烈喷发 的原因,但对该过程的动力学机制还 缺乏约束。

为了研究该问题,来自哥伦比亚 大学的学者们使用地球动力学模型, 模拟了德干地盾和哥伦比亚河大火成 岩省的岩浆活动过程。当岩浆从地幔 侵入地壳时,密度较大的基性岩床 (2800 kg/m³)侵入密度较低的地壳(7 km 深处密度为 2700 kg/m³)。在地壳 体积不变的情况下,入侵岩床冷凝导 致地壳的单位密度增大(7 km 深处密 度可增加为 2900 kg/m³)。由此原理, 他们建立了随时间变化的大火成岩省 侵入作用和喷发作用的动力学模型, 其中模型的输入数据为岩浆通量、岩 床半径、地壳密度及热传导效率, 输出 结果则是岩浆侵入作用释放的二氧化碳与岩浆最终喷发的时间间隔。

模型结果显示, 大火成岩省大规 模的岩浆侵入, 首先造成了地壳密度 增大,同时先侵入的岩浆冷却凝固释 放大量二氧化碳。这些二氧化碳由断 层等裂缝进入大气, 由此引发了全球 变暖。模型显示约 30 万年后, 岩浆密 度小于上覆地壳平均密度达到了喷发 条件, 成为大火成岩省主峰期的喷发 岩浆。该工作解释了白垩纪-古近纪 交 暖事件均早于大火成岩省岩浆主体 喷发的时间约 30 万年左右的观测现 象, 有力地支持了大火成岩省与全球 变暖之间的成因联系。

[以上成果发表在国际著名学术期刊 Nature Geoscience 上: Tian X, Buck W R. 2022. Intrusions induce global warming before continental flood basalt volcanism. Nature Geoscience, 15(5), 417-422]

(夏群科 编译)