改性施氏矿物治理砷复合污染废水的研究

臧淑艳¹,蔚蓝^{1,2},李波¹,陈云声¹,刘秀明^{2*}

(1. 沈阳化工大学 理学院, 辽宁 沈阳 110142;2. 中国科学院地球化学研究所环境地球化学国家重点实验室, 贵州 贵阳 550081)

摘 要:通过对施氏矿物改性,使其具有较大比表面积和丰富的官能团,并且能够同时去除重金属和有机物。以改性施氏矿物为处理剂,以洛克沙胂和 As(V)作为有机砷与无机砷典型代表性砷复合污染物,探究砷复合污染废水治理。运用傅里叶红外光谱(FTIR)、X 射线衍射(XRD)表征方法对比改性前后施氏矿物的变化,推测污染物质去除机理。同时,探究在不同条件下改性施氏矿物对吸附砷复合污染物的影响。结果表明:当洛克沙胂和 As(V)质量浓度分别为 10 mg·L⁻¹和 1 mg·L⁻¹、溶液 pH 为 6.0、吸附剂投入量为 0.6 g·L⁻¹、反应时间为 6 h、温度为 35℃时去除效果最好,去除率接近 100%。该吸附过程符合二级动力学模型,以化学吸附为主。 关键词:施氏矿物; ROX; As(V);复合污染;动力学

中图分类号: TQ013 文献标识码: A 文章编号: 1671-0460(2022)07-1555-06 DOI:10.13840/j.cnki.cn21-1457/tq.2022.07.013

Study on the Treatment of Roxarsone and As (V) Polluted Wastewater by Modified Schwertmannite

ZANG Shu-yan¹, WEI Lan^{1,2}, LI Bo¹, CHENG Yun-sheng¹, LIU Xiu-ming^{2*}

 School of science, Shenyang University of Chemical Technology, Shenyang 110142, China;
 State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China)

Abstract: Modified schwertmannite has a large specific surface area and rich functional groups, and the heavy metal and organic matter can be simultaneously removed by the modified schwertmannite. Taking modified schwertmannite as treatment agent, roxarsone and AS (V) as organic arsenic and inorganic arsenic composite contaminants, arsenic composite pollution wastewater treatment was carried out. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) characterization methods were used to compare the changes of schwertmannite before and after modification, which confirmed that the modified schwertmannite had better adsorption effect. At the same time, the effect of modified schwertmannite on the adsorption of arsenic compound pollutants under different conditions was explored, and the optimal reaction conditions were found. The results showed that when the mass concentrations of roxarsone and As (V) were 10 mg L^{-1} and 1 mg L^{-1} , respectively, the pH value of the solution was 6, the dosage of adsorbent was 1 g L^{-1} , the reaction time was 6 h, and the temperature was 35°C, the removal efficiency was close to 100%. The adsorption process conformed to the second-order kinetic model and was dominated by chemical reaction. **Key words**: Schwertmannite; ROX; As(V); Composite pollution; Kinetics

洛克沙胂(ROX)是一种有机砷饲料添加剂, 因具有很强的杀菌性,能够预防畜禽疾病,并且在 一定程度上可以提高饲料的利用率,被越来越广泛 地应用于农业及养殖业^[1]。但 ROX 在畜禽体内无法 分解,只能以原形式随粪便排出体外,因此粪便中 的洛克沙胂便会迁移到环境中^[2]。在光照及微生物 作用下,洛克沙胂便会转化为毒性更强的 As(V), 从而对环境造成二次伤害。水源中含有 ROX 或 As(V)可引发健康疾病甚至砷中毒死亡,据报道, 全世界大约有 1.4 亿人在饮用砷超标的地下水^[3]。 因此,如何去除水体中所含的 ROX 和 As(V),从 而消除砷污染,变得至关重要。 为了控制水中砷污染,国内外开展了大量的研究工作。传统的除砷技术包括化学沉淀法、离子交换法、生物法、膜分离法和吸附法等^[4]。但生物法、 膜分离方法等效率受到吸附材料性质的限制,吸附 容量有限,回收较为困难。吸附法相对简便、可操 作性强、成本相对低廉,对水中砷的去除也有较好 的效果,因此本实验选用吸附法对废水中砷复合污 染进行处理。经过大量的实验数据分析,人们发现 矿物吸附剂对于水体中的砷有着良好的吸附效果, 逐渐成为当前研究者的研究重点。前人研究发现, 蒙脱石去除 Cr(Ⅵ),吸附量为 340 mmol·kg^{-1[5]};铁 改性香菇废弃物吸附 As(Ⅲ)离子,去除率达

基金项目: 国家自然科学基金项目(项目编号: 41773136);基础研究项目(项目编号: XXLJ2019007)。 收稿日期: 2021-06-29

作者 俞子: 臧淑艳(1973-)博士, 教授, 研究方向: 环境污染治理与修复。 通信作者: 刘秀明(1974-), 研究员, 博士, 研究方向: 环境地球化学。

⁽C)1994-2022 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

96.85%^[6]

施氏矿物(Schwertmannite)是一种具有较大的 比表面积、结晶度较差或者无定形的铁硫酸盐次生 矿物,其表面含有大量羟基、硫酸根等基团,对重 金属离子有良好的吸附能力^[7-8]。施氏矿物是一种亚 稳态矿物,研究还表明,施氏矿物通过掺杂或吸持 其他物质能促进自身的稳定^[9]。因此本实验以 FeSO4·7H₂O和高锰酸钾为原材料配制出施氏矿物。 同时,为了提高施氏矿物的比表面积,增大吸附面 积,用碳酸氢钠对其进行改性得到改性后的施氏矿 物吸附剂。将改性后的施氏矿物处理剂同时处理含 有机砷与无机砷的复合污染废水,避免过去只研究 单一种类砷污染的弊端。将处理剂投入到含砷复合 污染废水中,通过治理效果判断最佳改性条件和废 水处理条件,为后续研究含砷废水提供参考。

1 材料与方法

1.1 仪器与试剂

主要仪器:傅里叶红外光谱(FLIR);扫描电镜(SEM);日立 Primaide 高效液相色谱,广州普 立奇仪器仪表有限公司;AFS-2202E 双道原子荧光 光度计,北京海光仪器公司;GM-0.5 隔膜真空泵, 天津市津腾实验设备有限公司;双层气浴振荡器, 金坛市杰瑞尔电器有限公司。

主要试剂: KMnO₄、FeSO₄·7H₂O、NaHCO₃、 NaOH、HCl、硼氢化钾、砷酸钠、硫脲等,均为分 析纯。

1.2 施氏矿物的改良

取1g施氏矿物倒入250 mL7%的 NaHCO₃溶 液中,摇匀,置于恒温摇床中,在30℃下以 180 r·min⁻¹的转速震荡24 h,然后用0.45 µm 滤膜进 行抽滤,用蒸馏水反复清洗滤饼至中性,放入50℃ 烘箱中12 h。将所得产物研磨至粉状,过200 目 (0.074 mm)筛子,再次放入烘箱,在50℃下烘 12 h,即可得到改性施氏矿物。

1.3 试验方法

本试验依次研究单因素 pH、施氏矿物添加量、 反应时间、反应温度对废水中砷复合污染物去除率 的影响。

1.3.1 溶液初始 pH 对砷复合污染物去除率的影响

分别取 10 mL 100 mg·L⁻¹ ROX+10 mg·L⁻¹ As(V)定容至100 mL 后倒入5个250 mL 锥形瓶中, 向其加入1g·L⁻¹ 施氏矿物(0.1g),用 0.1 mol·L⁻¹ NaOH和0.1 mol·L⁻¹ HCl 调节 pH 分别为 3.0、5.0、 6.0、7.0、9.0,测定去除率随时间变化,研究溶液 初始 pH 对砷复合污染物去除率的影响。 1.3.2 矿物投放量对砷复合污染物去除率的影响
 同 1.3.1 实验步骤,调节 pH 为 6.0,改变改性
 施氏矿物初始质量浓度,研究矿物投入量对砷复合

1.3.3 时间对砷复合污染物去除率的影响

同 1.3.1 实验步骤,调节 pH 为 6.0,加入改性施氏矿物投入量为 0.6 g·L⁻¹,研究吸附时间对砷复合污染物去除率的影响。

1.3.4 温度对砷复合污染物去除率的影响

同 1.3.1 实验步骤,调节 pH 为 6.0,加入改性 施氏矿物投入量为 0.6 g·L⁻¹,研究不同温度对砷复 合污染物去除率的影响。

2 结果与讨论

污染物去除率的影响。

2.1 分析与表征

2.1.1 FTIR 表征

图 1 为改性前与改性后施氏矿物的红外光谱图, a 为改性前,b 为改性后。图中 3 279 cm⁻¹附近为 —OH 伸缩振动吸收峰,1 634 cm⁻¹附近为 H—O— H 吸收峰,1 127、981、705 cm⁻¹附近分别归属于 SO₄²⁻吸收的 v₃、v₁、v₄吸收,609、439 cm⁻¹附近的 吸收带是由于 FeO₆ 正八面体的振动所致^[10]。这些 振动带正是施氏矿物的基础震动带。通过改性前与 改性后施氏矿物的红外光谱对比,发现其结构大致 相似,进而说明改性后的施氏矿物结构并没有发生 改变。

Fig.1 FTIR spectra of schwertmannite before and after modification

2.1.2 XRD 表征

采用 XRD 对改性前与改性后施氏矿物的进行 物相分析,步时为 0.1 s,步长为 0.02°,扫描范围 为 10°~70°,结果如图 2 所示, a 为改性前, b 为 改性后。对应特征峰的 2θ 值分别为 26.38°、35.17°、 46.44°、55.23°、61.37°,对比前人合成施氏矿物 XRD 衍射图谱,表明矿物为施氏矿物^[11]。比较 a、b 发

第 51 卷第 7 期

现并没有明显变化,改性后的施氏矿物并没有形成 新的矿物相。这与周顺桂^[12]等对施氏矿物进行盐处 理后的结果一致。

图 2 施氏矿物改性前后的 XRD 图 Fig.2 XRD patterns of schwertmannite before and after modification

2.2 吸附实验

2.2.1 施氏矿物改性前后吸附效果对比

施氏矿物改性前后对砷复合污染物吸附效果对 比结果如图 3 所示。由图 3 可看出,随着时间的推 移,未改性的施氏矿物和改性后的施氏矿物对于废 水中砷污染的去除率都在不断增加。两条折线最接 近的地方在 2 h 处,但仍有大约 7%的差值,两条曲 线相差最大的地方在 12 h 处,差值高达大约 12.4%, 且未改性施氏矿物的去除率始终未超过同等吸附时 间的改性后的施氏矿物,由此可见,改性后的施氏 矿物相比于未改性施氏矿物对于废水中砷污染的去 除率有了很大的提升。

图 3 施氏矿物改性前后对砷复合污染物吸附效果对比图 Fig.3 Comparison of adsorption effect of modified and unmodified schwertmannite on arsenic pollutants

2.2.2 溶液初始 pH 对砷复合污染物去除率的影响 溶液初始 pH 对 ROX 及 As(V)去除率的影响如
图 4 所示。由图 4 可以看出,不同 pH 对 ROX 去除
率有着很大的影响。pH=6.0 时砷去除率始终高于 pH=7.0 时,分别为 99.99%和 99.80%,因此可以判定,去除水中 ROX 的最佳 pH 为 6.0。不同 pH 对于 As(V)的去除率影响并没像 ROX 那么大,总体差距不超过 10%。但 pH=6.0 时,去除率最高且始终明显高于其他 pH,为 99.90%。因此可以判定,去除水中 As(V)的最佳 pH 为 6.0。

当施氏矿物处在酸性条件下,矿物的吸附能力 较低,这是由于矿物发生部分溶解,导致矿物结构 不稳定以及表面活性中心数量降低。当 pH 从 3.0 增大到 9.0 时,溶液中的 As(V)含氧阴离子逐渐由 H₂AsO₄转变为 HAsO₄²⁻,矿物表面的正电荷逐渐减 少,与 ROX 及 As(V)产生静电斥力,同时溶液中 OH⁻与 ROX 及 As(V)竞争吸附,减少了矿物表面对 砷污染物的吸附作用^[13-14]。当 pH 接近中性时,此 时砷污染物所带的负电荷和矿物所带的正电荷均较 多,故静电吸附作用强^[15]。

2.2.3 改性矿物投入量对砷复合污染物去除率的影 响

图 5 反映了施氏矿物质量浓度对 ROX 及 As(V) 去除率的影响。如图 5 所示, ROX 及 As(V)的去除 率随着改性吸附剂投加量的增加而升高。当投入量 为 0.6、0.8、1.0、1.2 g·L⁻¹时, ROX 及 As(V)的去 除率均会达到最高。考虑节省成本等因素,选取投入量0.6 g·L⁻¹为最佳,ROX去除率为99.75%,As(V)的去除率接近 100%。当改性施氏矿物投加量由 0.2 g·L⁻¹增加至 1.2 g·L⁻¹时,砷污染物的去除率也逐渐增大。

图 5 施氏矿物质量浓度对 ROX 及 As(V)去除率的影响 Fig.5 Effect of schwertmannite concentration on the removal rates of ROX and As(V)

在砷污染物质量浓度一定的情况下,吸附剂的 质量浓度增大可以提供更多的吸附位点,更有利于 吸附砷污染物。但当改性施氏矿物投加量为

0.6 g·L⁻¹时已经提供足够多的位点吸附一定量的砷污染物,所以当投加量达到1.2 g·L⁻¹时,砷污染物的去除率并没有明显的增大。由此可以推断出,去除砷复合污染物的最佳改性吸附剂投加量为0.6 g·L⁻¹。

2.2.4 时间对砷复合污染物去除率的影响

时间对 ROX 及 As(V)去除率的影响如图 6 所示。由图 6 可知, ROX 与 As(V)的去除率均随着时间的增加而升高,当反应时间达到 6 h 时,砷复合污染物的吸附反应逐渐趋于平衡状态,达到最大吸附量。6~12 h 反应时间里,吸附反应已经达到平衡,砷复合污染物的去除率基本与反应 6 h 时一致。由此可以推断出,去除水中砷复合污染物最佳反应时间为 6 h。

图 6 时间对 ROX 及 As(V)去除率的影响 Fig.6 Effect of time on the removal rates of ROX and As(V)

2.2.5 温度对砷复合污染物去除率的影响 温度对 ROX 及 As(V)去除率的影响如图 7 所

从图 7 可以看出, ROX 与 As(V)的去除率随着 温度的升高而升高。吸附反应在 6 h 时基本达到吸 附平衡, ROX 与 As(V)均表现为 35℃时去除率最 高,其去除率均接近 100%。这是由于温度的升高, 加快了分子的运动,分子平均动能增加,加大了分 子间的碰撞的可能性,有利于砷污染物在吸附剂上

第 51 卷第 7 期

的吸附反应进行。由此可以判断出,去除 ROX 与 As(V)的最佳温度为 35 ℃。

2.3 吸附动力学

改性施氏矿物对砷污染物的吸附过程可分为快 速吸附阶段、慢速吸附阶段和平衡阶段。吸附过程 的动力学研究主要用来描述吸附剂吸附溶质的速率 快慢,通过动力学模型对数据进行拟合,从而探讨 吸附机理。通常情况下准一级动力学模型适合描述 吸附的初始阶段,而准二级动力学可以描述吸附全 过程,包括液膜扩散、表面吸附、内扩散等,且吸 附过程伴随着化学键的形成^[16]。

准一级动力学模型如式(1)所示:

$$\log (q_{e} - q_{t}) = \log q_{e} \frac{k_{1}t}{2.303}$$
 (1)

准二级动力学模型如式(2)所示:

$$\frac{t}{q_{t}} = \frac{1}{k_{2}q_{e}^{2}} + \frac{1}{q_{e}}t_{\circ} \qquad (2)$$

- 式中: q_e —ROX 被吸附平衡时的吸附量, mg·g⁻¹; q_t —t 时刻施氏矿物的吸附量, mg·g⁻¹; $k_1 \ k_2$ 一吸附速率常数。
- 2.3.1 ROX 动力学模型

图 8 分别为改性吸附剂吸附 ROX 的一级和二级动力学模型,相关参数见表1、表2。

Fig.8 First and second order kinetic models of adsorption of ROX

根据 *R*²的数值对比可得,改性吸附剂吸附 ROX 的准二级动力学拟合优于一级动力学拟合,说明改 性施氏矿物吸附 ROX 主要不是受物质传输步骤所 控制而是受化学作用控制。速率常数 *k*₂ 随着 ROX 的初始质量浓度的增大而减小,说明 ROX 在质量 浓度较低时更有利于吸附。

表 1 改性施氏矿物吸附 ROX 一级动力学参数 Table 1 First order kinetic parameters of adsorption of ROX by modified schwertmannite

ROX 初始质量	一级动力学拟合			
浓度/(mg·L ⁻¹)	$q_{\rm e}({\rm mg}\cdot{\rm g}^{-1})$	$k_1/(\min^{-1})$	R^2	
5	9.328 9	0.596 0	0.827 4	
10	12.797 6	0.452 1	0.883 1	
20	31.768 7	0.460 6	0.924 9	

表 2 改性施氏矿物吸附 ROX 二级动力学参数 Table 2 Second order kinetic parameters of adsorption of ROX by modified schwertmannite

ROX 初始质量 浓度/(mg·L ⁻¹)	一级动力学拟合		
	$q_{\rm e}({\rm mg}\cdot{\rm g}^{-1})$	$k_1/(\min^{-1})$	R^2
5	8.403 3	0.070 8	0.999 9
10	16.949 2	0.017 4	0.999 9
20	30.030 0	0.006 5	0.999 9

2.3.2 As(V)动力学模型

图 9 分别为改性施氏矿物吸附 As(V)的一级和 二级动力学模型,相关参数见表 3、表 4。

图 9 As(V)一级动力学拟合和二级动力学拟合

什 Fig.9 First and second order kinetic model of adsorption of As(V)

根据 R^2 的数值对比可得,改性施氏矿物吸附 As(V)的二级动力学拟合优于一级动力学拟合,由此 可推断改性施氏矿物对砷污染物的吸附以化学吸附 为主。速率常数 k>随着 As(V)的初始质量浓度的增 大而减小,说明 As(V)在质量浓度较低时更有利于 吸附。

表 3 改性施氏矿物吸附 ROX 一级动力学参数 Table 3 First order kinetic parameters of adsorption of ROX by modified schwertmannite

ROX 初始质量浓度 /(mg·L ⁻¹)	一级动力学拟合		
	$q_{\rm e}({\rm mg}\cdot{\rm g}^{-1})$	$k_1/(\min^{-1})$	R^{2}
0.5	0.140 4	0.625 3	0.930 5
1.0	0.534 9	0.576 0	0.992 8
2.0	1.490 9	0.409 7	0.992 3

表 4 改性施氏矿物吸附 ROX 二级动力学参数 Table 4 Second order kinetic parameters of adsorption of ROX by modified schwertmannite

ROX 初始浓度 /(mg·L ⁻¹)	一级动力学拟合		
	$q_{\rm e}({\rm mg}\cdot{\rm g}^{-1})$	$k_1/(\min^{-1})$	R^2
0.5	0.834 7	0.101 7	0.999 8
1.0	1.649 9	0.027 3	0.999 9
2.0	2.948 6	0.006 0	0.998 8

3 结论

本文对废水中的砷复合污染物进行研究,将改 性的施氏矿物作为吸附剂,通过改变单一变量考察 了溶液初始 pH、改性施氏矿物投入量、反应时间、 反应温度对砷污染物吸附的影响,并得到主要结论 如下:

1) 改性施氏矿物吸附砷复合污染物的最佳溶 液初始 pH 值为 6.0。

2)吸附剂用量与砷污染物的去除率成正比, 吸附剂适宜的用量为 0.6 g·L^{-1} 。

3)吸附反应达到平衡时,形成动态平衡,去 除率基本不发生变化,此时反应时间为6h。

4)随着温度的升高,改性施氏矿物对砷复合 污染物的去除率也逐渐变大,本实验选取 35 ℃为 最佳反应温度。

5)本实验中吸附砷复合污染物的动力学更符 合二级动力学模型,说明该实验中主要以化学作用 为主。

改性施氏矿物增大了表面积,使更多的砷污染 物能够被吸附,解决了废水中重金属污染的问题。

参考文献:

化

T.

- [1] 刘宇.针铁矿对废水中洛克沙砷的吸附动力学研究[J].科技信息, 2014 (12) : 87-88.
- [2] 臧淑艳, 胡静娴, 王娟, 等.高铁酸钾同时去除废水中砷(Ⅲ)与 4-羟基-3-氨基苯砷酸的技术[J].当代化工, 2020, 49(11): 2375-2378.
- 「3〕王威,冯坤,王晓萌,等.施氏矿物和水铁矿对砷(Ⅲ)吸附性能的 比较研究[J].南京农业大学学报, 2020, 43(6): 1116-1123.
- [4]罗铭宇,张丽娜,杨海艳,等.废水中砷去除的研究进展与展望[J]. 精细化工中间体, 2018, 48(6): 1-5.
- [5] GUPTA G, GARCI A, MURRAY B S, et al. Synthesis, molecular structure, computational study and in vitro anticancer activity of dinuclear thiolato-bridged pentamethylcyclopentadienyl Rh(III) and Ir(III) complexes[J]. Dalton Transactions, 2013, 42(43):15457-15463.
- [6] 邓天天,李晗晟,郭珍珍,等.铁改性香菇废弃物优化制备及其对 微砷污染水的吸附[J].河南理工大学学报(自然科学版), 2021, $40(3) \cdot 75-84$
- [7] JONSSON J, PERSSON P, SJOBERG S, et al. Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties[J]. Applied Geochemistry, 2005, 20(1): 179-191
- [8] FUKUSHI K. A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump[J]. Applied Geochemistry, 2003, 18(8): 1267-1278
- [9] BLGHAM J M, SCHWERTMANN U, CARLSON L, et al. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters[J]. Geochimica Et Cosmochimica Acta, 1990, 54(10):2743-275.
- [10] 朱立超. 改良化学合成施氏矿物及其对地下水中 Cr(W)吸附试验 研究[D].重庆:重庆大学, 2017.
- [11]李旭伟, 贺静, 张健, 等.透析对施氏矿物微观结构及其砷吸附能 力的影响[J].环境科学学报, 2020, 40(2): 546-553.
- [12] 周顺桂,周立祥,陈福星.施氏矿物 Schwertmannite 的微生物法合 成、鉴定及其对重金属的吸附性能[J].光谱学与光谱分析, 2007 (2) : 367-370.
- [13] 王威,冯坤,王晓萌,等.施氏矿物和水铁矿对砷(Ⅲ)吸附性能的 比较研究[J].南京农业大学学报, 2020, 43(6): 1116-1123.
- [14] 高美娟, 王英旭, 蔡洪英, 等. 酸碱性环境对含砷施氏矿物长期稳 定性的影响[J].环境污染与防治, 2021, 43(4): 464-469.
- [15] 庞达, 王崇臣, 王鹏, 等.ZIF-67 高效吸附去除水中的洛克沙胂[J]. 环境化学, 2020, 39(6): 1451-1463.
- [16] AKPOMIE K G, DAWODU F A . Efficient abstraction of nickel(II) and manganese(II) ions from solution onto an alkaline-modified montmorillonite[J]. Journal of Taibah University for Science, 2014, 8(4):343-356.