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Abstract The Tiangiao Zn-Pb-Ag deposit in SW China,
hosted by Devonian and Carboniferous limestone and clay
rocks, is composed of sulfides such as sphalerite, galena,
and pyrite. Pyrite is present in different paragenetic stages
and can be divided into four types based on textures and
mineral assemblages. Pyrite from the adjacent Shanshulin
deposit (Py-SSL) is also used for comparison. Pyl shows
framboid texture with grain diameter up to 1 mm and was
commonly replaced by sphalerite. Py2 is characterized by
overgrowth texture and displays inner oscillatory zoning.
Py2 is associated with abundant sphalerite and galena. Py3
shows replacement relics textures where galena fills the
fractures of pyrite. Py4 is a euhedral to subhedral crystal
disseminated in dolomite and is characterized by defor-
mation and fragmentation textures. Minor sphalerite and
galena are associated with Py4. Py-SSL is subhedral and
disseminated in dolomite, similar to Py4. Pyl was formed
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by a diagenetic or sedimentary process, whereas Py2 and
Py3 were formed by multiple stages of ore fluids. Py4 and
Py-SSL were formed at the carbonate-sulfide stage, but Py4
suffered from deformation after its formation. Pyl, Py2,
and Py3 are characterized by relative enrichment of Sb, Cu,
and As, in contrast to Py4 and Py-SSL with higher Cr, W,
Ge, Sn, T1, Ni, and Ga contents. However, critical metals
such as Ge, Ga, and In in pyrite are generally lower than
10 ppm, which are not economically important. The trace
element variation in Tiangiao pyrite with paragenesis
results from fluid evolution in the Pb—Zn ore system and
competition with co-precipitating minerals. Diagenetic and
ore-forming hydrothermal fluids are responsible for the
formation of different types of pyrite. Ore-related pyrite
from the Tiangiao and Shanshulin deposits has Co and Ni
distribution features similar to pyrite from sedimentary
pyrite and submarine hydrothermal vents, different from
those in volcanogenic massive sulfide, iron oxide-copper—
gold, and porphyry Cu deposits, indicating their derivation
of relatively low-temperature (< ~ 250 °C) hydrothermal
fluids, similar to basin brines or seawater., via fluid-rock
interaction. This conclusion is also supported by the sulfur
isotope composition of sulfides which are 13.0-13.5 %o,
and 15.6-20.5 %o for Tianqiao and Shanshulin deposits,
respectively.

Keywords Trace elements - Pyrite - Sulfur isotopes -
Tianqgiao and Shanshulin Zn-Pb-Ag - Origin of ore-
forming fluids
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1 Introduction

The Sichuan-Yunnan-Guizhou (SYG) Pb-Zn metallogenic
belt, located in the western Yangtze Block (Fig. 1a), is one
of the largest Pb—Zn producers in the world. The belt
comprises over 400 Pb—Zn deposits and has Pb—Zn ore
resources of more than 200 million tons (Mt) @ 5 wt% Pb
and 10 wt% Zn (Fig. 1b) (Han et al. 2007; Zhou et al.
2013; Bao et al. 2017; Hu et al. 2017; Zhang et al. 2019; Li
et al. 2020). These Pb—Zn deposits are hosted in Sinian
(Ediacaran) to Permian carbonate rocks and are controlled
by thrust fault-fold structures, which are spatially related to
pervasive Permian Emeishan flood basalts (Fig. 1b) (Liu
and Lin 1999; Han et al. 2007).

The Tiangiao medium-size Pb—Zn deposit along the
Yadu—Mangdong fault has been mined for over past dec-
ades (Mao et al. 2001; Jin 2008). Numerous studies of this
deposit include geology, geochronology, and geochemistry
(Mao et al. 2001; Jin 2008; Zhou et al. 2013, 2014; Li et al.

Fig. 1 a A simplified
geological map showing the
location of the study area in the
Yangtze Block ( modified from

2016). Jin (2008) and Mao et al. (2001) considered that the
Tiangiao deposit can represent all the Pb—Zn deposits in the
Guizhou area of SYG based on geological features.
According to the ages and origin of the ore-forming metals,
it is generally considered to be a sediment-reworked
deposit related to the host carbonate rocks and the thrust-
fold structure and is an example of Mississippi Valley-type
(MVT) Zn—Pb deposits (Zhang et al. 2015; Li et al. 2016;
Hu et al. 2017). For a specific deposit type, the origin of
ore-forming fluids will be diverse from one deposit to
another. Therefore, the origin of the Tianqiao deposit is
further evaluated here using pervasive pyrite in Pb-Zn
deposits.

A series of trace elements are present in pyrite as lattice
substitution or nanoinclusions (Huston et al. 1995; Abraitis
et al. 2004; Large et al. 2009; Reich et al. 2013; Deditius
et al. 2014; Cook et al. 2016). Pyrite is a good indicator
mineral for ore genesis research (Cook et al. 2009, 2016;
Reich et al. 2013, 2016; Gregory et al. 2016; Tanner et al.
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2016; Ward et al. 2017; Meng et al. (2018, 2019) and
mineral exploration (Baker et al. 2006; Franchini et al.
2015; Mukherjee and Large 2017). Pyrite occurs in the
whole paragenetic stages of the Tiangiao Pb—Zn deposit,
and thus records the variation of fluids evolving from
barren to mineralization.

In this study, mineralogy and detailed textures of pyrite
from the Tiangiao deposit were characterized by optical
microscope and back-scattered imaging in electronic
microprobe. Four types of pyrite are defined based on
textures and mineral assemblages. Pyrite from the adjacent
Shanshulin deposit is also studied for comparison. Trace
elements in pyrite were determined by laser ablation
inductively coupled plasma mass spectrometry (LA-ICP-
MS), and investigated by principal component analysis to
highlight the chemical variation of different pyrite types. In
combination with sulfur isotopes of sulfides, the trace
element data was used to unravel the origin of pyrite and
thus the ore-forming fluids.

2 Geological background
2.1 Regional geology

The Yangtze Block is separated from other blocks by a
series of orogenic belts and suture zones. In the north, the
Triassic Qinling—Dabie orogenic belt separates the Yangtze
Block from the North China Craton, whereas in the
southeast the Jiangshao Neoproterozoic suture zone
(~ 830 Ma) marks the boundary between the Yangtze
Block and the Cathaysia Block (Zhou et al. 2008; Zhao
et al. 2011) (Fig. 1a). In the southwest, the Yangtze Block
is separated from the Indochina Block by the Songma
suture zone (Fig. 1a). The Yangtze Block is composed of a
Late Archean basement covered by Neoproterozoic to
Cenozoic sedimentary rocks of shallow marine origin
(Zhou et al. 2002; Yan et al. 2003). The crystalline base-
ment is different in the northern and western part of the
Yangtze Block, which consists of ~ 2.9 to 3.3 Ga tona-
lite-trondhjemite-granodiorite (TTG) and metamorphic
rocks in the north (Qiu et al. 2000; Gao et al. 2011),
and ~ 1.7 Ga Dongchuan and ~ 1.0 Ga Huili Groups in
the west (Sun et al. 2009; Zhao et al. 2011).

In the western Yangtze Block, Permian Emeishan flood
basalts are widespread, which is possibly related to ~
260 Ma mantle plume activity (Fig. 1b) (Chung and Jahn
1995; Zhou et al. 2002). The flood basalts and interlayered
Permian limestone constitute the Emeishan Large Igneous
Province (ELIP). There are also some mafic—ultramafic
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intrusions in ELIP where magmatic sulfide or oxide
deposits are present (Zhou et al. 2008). Over 400 Pb—Zn
deposits in the western Yangtze Block are distributed in a
limited area which is called as SYG Pb-Zn metallogenic
belt (Fig. 1b) (Liu and Lin 1999). These Pb—Zn deposits
are composed of irregular ore bodies with simple miner-
alogy, weakly wall rock alteration, high contents of Zn +
Pb, and economically important Ag, Ge, Cd, Ga, and In
(Liu and Lin 1999). These deposits show a close spatial
relationship with Permian Emeishan basalts.

2.2 Deposit geology

The Tianqiao Zn—Pb—Ag deposit in the Guizhou province,
an important component of the SYG metallogenic belt,
contains about 0.38 million tons Pb and Zn metals grad-
ing > 15 % Pb + Zn (Zhou et al. 2013). Other economical
elements such as Ge, Ga, Cd, and Ag are also present in
some ores with sphalerite and galena as main host minerals
(Zhou et al. 2011). Major ore bodies, including Shazidi,
Yingpanshang, and Haozidong, are hosted in Devonian and
Carboniferous limestone and clay rocks and are controlled
by a thrust fault and anticline (Fig. 2). Diabase dykes are
also locally present along the fault.

Oxidized Pb-Zn ores of the Tianqgiao deposit are dom-
inant near the surface, whereas primary ores occur
below ~ 120 m. Oxidized ores are composed of acrusite,
anglesine, siderite, smithsonite, calamine, hydrozinkite,
antunesite, and malachite (Jin 2008). Massive and dis-
seminated ores have similar mineral assemblages of spha-
lerite, galena, pyrite, calcite, and dolomite. Chalcopyrite,
quartz, and fluorite are locally present. Sphalerite shows
reflected light from light brown, dark brown to dark.
Galena mainly occurs as massive aggregates associated
with pyrite and locally is disseminated in sphalerite (Zhou
et al. 2013, 2014). The paragenetic sequence in Tianqiao
includes sedimentary diagenesis, hydrothermal mineral-
ization, and oxidization stages (Zhou et al. 2013, 2014).
The hydrothermal mineralization stage can be further
divided into sulfide-carbonate and carbonate stages.

Wall rock alteration includes dolomite, calcite, Fe—-Mn
carbonate, and limonite. Fe-Mn carbonate and limonite are
the main minerals indicating mineralization (Zhou et al.
2013). Fe—Mn carbonatization of the dolostone is consid-
ered to be key for mineralization by increasing the porosity
of the wall rocks which facilitates further fluid infilling or
replacement (Jin 2008). Ferritization results in Fe-capping
of sulfide Pb—Zn ore bodies, which correlates positively
with Pb—Zn mineralization.
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Fig. 2 A geological map of the
Tiangiao Pb—Zn deposit
showing the distribution of the
major orebodies (modified from
Jin, 2008)
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3 Methods
3.1 Sampling

Six pyrite-bearing samples were collected from the Tian-
giao deposit, while only one pyrite-bearing sample was
from the Shanshulin deposit for comparison. These sam-
ples have various mineral assemblages and are related to
different paragenetic stages of Zn—Pb mineralization.
Major and trace element analyses of pyrite are carried out
on the thin sections by EPMA and LA-ICP-MS, respec-
tively. Pyrite samples for sulfur isotope analysis are sepa-
rated by handpicking under an optical microscope, whereas
some samples are prepared by micro-drilling.

3.2 EPMA analysis

Major and minor elements in pyrite were measured using a
JEOL JXA-8230 EPMA at the Testing Center of Shandong
Bureau of China Metallurgical Geology Bureau, Jinan,
China. Elements were analyzed using the conditions same
as those of Meng et al. (2018, 2019). The accelerating
voltage is 15 kV, the beam current is 20 nA and the beam
spot is 1 pum. JEOL ZAF software was used to correct
matrix effects. Element content was calculated based on a
series of SPI metal and mineral standards. The background
time is 5-20 s and the peak time for element analysis is

1040 s. The analysis yields an accuracy of 1-5 %. The
detection limits are 36 ppm for S, 77 ppm for Ge and
Au, ~ 90-100 ppm for As, Se, Ag, and Co, ~ 120-180
ppm for Fe, Ni, Cu, Zn, Cd, Sb, and Pb. Element mapping
of a selected area was carried out using an accelerating
voltage of 15 kV, a probe current of 100 nA, point size of
1 x 1 pm, and a dwell time of 3.3 ms for each point.

3.3 LA-ICP-MS analysis

Trace element contents of pyrite were determined with an
Agilent 7700 x quadrupole ICP-MS coupled to a Photon
Machines Excite 193 nm excimer laser ablation system at
Nanjing FocuMs Technology, Nanjing, China. The ana-
lytical method is similar to that described by Meng et al.
(2018), but the equipment types and analytical conditions
for the laser ablation system and mass spectrometer are
different. The analysis was performed using a laser ablation
spot of 40 um, a frequency of 8 Hz, and an energy inten-
sity of ~ 5 mJ per pulse. The analysis time is 15 s for gas
blank and 40 s for samples. Original data was dealt with
using the software ICPMSDataCal (Liu et al. 2008), where
elemental concentrations were calculated from signal
intensities by external calibration against USGS GSE-1G
(synthetic basaltic glass) and GSC 12,744 (pyrite) stan-
dards. The total contents of all the analyzed elements are
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Fig. 3 Photomicrographs of
reflected light (a, c, e, g, i) and
back-scattered electron (b, d, f,
h) showing the different types
of pyrite in Tiangiao and
Shanshuilin deposits. (a, b) The
first type of pyrite (Pyl) from
the Tianqgiao deposit shows
framboid texture and is
associated with sphalerite. (c, d)
Second type of pyrite (Py2)
from the Tiangiao deposit
characterized by overgrowth
textures. Py2 is in equilibrium
with sphalerite and was replaced
by galena. Oscillatory zoning is
also identified in pyrite. (e, f)
Third type of pyrite (Py3) from
the Tiangiao deposit showing
relic core-rim texture due to
replacement. Galena grows
along the fracture of pyrite due
to previous replacement. (g, h)
Fourth type of pyrite (Py4) from
the Tianqgiao deposit is
dominated by subhedral to
euhedral crystal with fracture
texture. Sphalerite is locally
present between pyrite grains.
(i, j) Pyrite from the Shanshulin
Pb—Zn (Py-SSL) deposit is
subhedral disseminated in
dolomite. Minor fine-grained
galena occurs in the fracture of
pyrite. Mineral abbreviations:
Py, pyrite; Sp, sphalerite; Gn,
galena; Dol, dolomite
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Fig. 4 Back-scattered electron images of pyrite and the wavelength dispersive X-ray elemental maps. a Pyl shows the relative enrichment of As
in the core but depletion of Zn in the core (MYMTQ-9-1). b Py2 shows oscillatory zoning of S and As. Pb, Cu, and Cd are relatively

homogenous (MYMTQ-9)

assumed to be 100 % to obtain the relative content of each
element (Halicz and Giinther 2004).

3.4 Sulfur isotope analysis

Sulfur isotopes were analyzed by a Thermo Scientific Flash
2000 high-temperature elemental analyzer coupled to a
Thermo Scientific MAT 253 mass spectrometer at the
SKLODG, IGCAS. The method used in this study was
similar to that described by Huang et al. (2015). The sulfur
isotopic compositions are reported as per mil (%o) relative

to Vienna-Canyon Diablo Troilite (VCDT). The analytical
precision is better than &+ 0.2 %o.

4 Results

4.1 Petrography

Reflected light microscope and BSE images reveal four

types of pyrite (Pyl to Py4) in the Tianqiao deposit which
have different textures and mineral assemblages. Pyl is a
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Table 1 Average trace element

oL b Pyrite type  Ti \" Cr Mn Co Ni Cu Zn Ga Ge As
contents (ppm) in different
types of pyrite Pyl 13.8  0.13 139 27 0.04 1.0 1559 88 020 4.1 14,686
Py2 16.6  0.37 60 40 0.05 0.6 1026 52 0.03 3.1 9917
Py3 25.8  0.46 94 27 1.84  28.1 115.1 275 0.08 34 6144
Py4 13.1 040 101 43 0.14 0.7 10.3 80 0.10 37 85
Py-SSL 133 025 316 2.1 3.13 4.6 2.8 6.1 005 44 106
Mo Ag Cd In Sn Sb Te w Au Tl Pb
Pyl 0.02 16.0 13.0 0.10 0.36 14.8 0.23 0.03 0.07 0.20 97
Py2 0.04 47.1 0.12 0.01 0.23 17.0 0.49 0.06 0.04 0.06 91
Py3 1.42 10.7 0.20 0.02 0.28 62.5 0.70 0.05 0.18 0.22 278
Py4 0.04 7.8 0.19 0.02 0.43 4.6 0.50 0.95 0.05 0.16 379
Py-SSL 0.34 2.2 0.22 0.01 0.40 1.8 0.32 0.04 0.03 0.16 72
Fig. 5 Box and whisker plot 100000 5
showing the compositional E [ Py1
differences between different 100004 B Py2
types of pyrite. Boxes outline 1 Eyz
the 25th to 75th percentiles and 1000 -] % Py-SSL
whiskers extend to the c o
minimum and maximum values. Q ]
The short line in the box e 100}
represents the median value, g EDD i
whereas the circle filled white b= 10 4 @
represents the mean value *E‘ E adp
S ]
o 14
c 3
= "
§ e e i
0.014
0001 T T T T T T T T T T T T T T T T T T T T T T
Ti V Cr Mn Co Ni Cu Zn Ga Ge As Mo Ag Cd In Sn Sb Te W Au TI Pb

pyrite framboid, which was replaced by sphalerite (Fig. 3a,
b). Pyl is coarse-grained with a diameter up to 1 mm. Pyl
represents the pyrite formed at the sedimentary diagenesis
stage. Py2 and Py3 represent pyrite with overgrowth and
replacement relic textures, respectively (Fig. 3a, e), cor-
responding to the sulfide-carbonate stage. Py2 also shows
oscillatory zoning under BSE imaging (Fig. 3d). Sphalerite
and galena commonly grow in the space between pyrite
grains or the fractures of pyrite (Fig. 3d, f). Py4 represents
the euhedral pyrite of the sulfide-carbonate stage (Fig. 3g,
h), which shows deformation and fragmentation texture.
Pyrite from Shanshulin (Py-SSL) is subhedral and dis-
seminated in dolomite (Fig. 3i, j), similar to Py4 but free of
deformation.

4.2 EPMA results

Back-scattered electron microphotographs of pyrite and the
wavelength dispersive X-ray elemental maps are shown in

@ Springer

Fig. 4. The EPMA mapping of pyrite framboid (Pyl)
shows relatively enrichment of As in the core and Zn in the
margin (Fig. 4a). Py2 has S and As contents distribution
patterns consistent with zoning (Fig. 4a). Zinc, Pb, Cu, and
Cd are not detectable in both Pyl and Py2, which indicates
that no sphalerite, galena, and chalcopyrite inclusions in
these two pyrite types (Fig. 4a). EPMA analyses of selec-
ted samples show that Pyl, Py2, and Py3 have variable As
contents from below detection limit to 4.94 wt%, whereas
Py4 and Py-SSL have As contents below the detection limit
(Appendix 1). Cobalt contents for all types of pyrite are
below 0.2 wt%, whereas Ni, Cu, Zn, Au, Ag, Sb, Se, Ge,
and Cd are mostly below the detection limit (Appendix 1).
Lead contents for all pyrite types range from 0.08 to 0.53
wt%.
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Fig. 6 Biplots showing the
correlation between elements
and compositional comparison
for different types of pyrite

4.3 LA-ICP-MS results
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Average trace element data for the pyrite samples are listed
in Table 1. The trace element compositions of Pyl
(n = 12), Py2 (n = 10), Py3 (n = 20), Py4 (n = 20), and
one sample (n = 10) from Shanshulin Pb—Zn deposit were

determined. Full spot analytical results of pyrite from the
Tianqgiao and Shanshulin deposits are listed in Appendix 2.

Pyrite from the Tiangiao and Shanshulin deposits con-
tain a broad suite of measurable trace elements including
Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Mo, Ag, Cd, In,
Sn, Sb, Te, W, T, and Pb. The trace element contents differ
between the pyrite types (Fig. 5). Pyl is characterized by
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Fig. 7 a Loadings plot of the first and second principal components show element correlation. b Scores plot of the first and second principal
components showing the distribution of different types of pyrite. ¢ Loadings plot of the first and third principal components show element
correlation. d Scores plot of the first and third principal components constrained by the correlation in c. Data in parentheses represent which

degree a specific principal component accounts for the variation

relatively high average Cu, Ga, As, Cd, and In contents
(Fig. 5). Py2 shows higher Ag content. Py3 has a higher
average Co, Ni, Zn, Mo, and Sb contents than other pyrite
types. Py4 has relatively high W content, whereas Py-SSL
has higher Cr content (Fig. 5).

Nearly all pyrite types have Co/Ni ratios less than 1
(Fig. 6a). There is no obvious correlation between As and
Cu for all types of pyrite (Fig. 6b). Copper and Ag are
weakly correlated (Fig. 6¢). Lead shows a weak correlation
with Ag and Sb for Py3 and Py4 (Fig. 6d, e), whereas Pb is
weakly correlated with Te for Py4 (Fig. 6f). No obvious
correlation between Pb and T1, and between Cu and Zn are
identified for all types of pyrite (Fig. 6g, h).

To better identify the major features for different types
of pyrite, principal component analysis (PCA) was
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conducted using LA-ICP-MS data. The data pretreatment
method was the same as that described in Meng et al.
(2019). Three components (PC1-PC3) were extracted using
eigenvalues over 1, which accounts for 49 % of the vari-
ance in the dataset (Fig. 7). The biplots of loadings (e.g.,
PC1 vs. PC2) and scores (e.g., F1 vs. F2) for selected
principal components are used to interpret the PCA results
(Fig. 7). Different types of pyrite can be divided into two
groups by first the principal component (Fig. 7a, b). Pyl,
Py2, and Py3 are characterized by relative enrichment of
Sb, Cu, and As, in contrast to Py4 and Py-SSL which have
relatively high Cr, W, Ge, Sn, Tl, Ni, and Ga contents
(Fig. 7a, b). Samples from Pyl mainly plot in the positive
F1, negative F2 region due to relatively high Cu, Ga, Ge,
As, Ag, and Sn (Fig. 7a, b). Samples from Py2 have
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Fig. 8 Histogram showing sulfur isotope composition of sulfides
from Tiangiao and Shanshulin deposits

relatively high Cu, As, Ag, whereas samples from Py3
show relative enrichment of Co, Cu, As, and Sb (Fig. 7a,
b). Py4 can be distinguished from Py-SSL by the third
principal component due to the relative W enrichment for
the former and higher Cr, Ni, Ge, and Sn contents for the
latter (Fig. 7c, d).

4.4 Sulfur isotope composition of sulfides

Sulfur isotope data for pyrite from the Tiangiao deposit are
compiled in Appendix 3. In general, sulfides from the
Tianqgiao deposit have sulfur isotope composition cluster-
ing between 13.0 %o and 13.5 %o (Fig. 8a). Pyrite from the
Tiangiao deposit yields 8**S values of 11.8 %o—14.4 %o,
similar to those (11.5 %o0—13.5 %0) of sphalerite (Fig. 8a).
In general, sulfides from the Shanshulin deposit have 5°*S
values of 15.6 %0—20.5 %o, without compositional peak
(Fig. 8b). Pyrite from the Shanshulin deposit has 3°*S
values of 18.5 %0—19.8 %o, indistinguishable from those of
sphalerite (18.6 %0—20.5 %0) (Fig. 8b). Galena from the

Shanshulin deposit has a sulfur isotope composition rang-
ing from 15.6 wt% to 17.1 wt% (Fig. 8b).

5 Discussion
5.1 The formation of pyrite with different textures

Four types of pyrite have different textures and mineral
assemblages, indicating their formation at different stages
of Pb—Zn mineralization due to different processes. Pyl has
a characteristic framboid texture, typical of sedimentary
diagenesis. Py2 has overgrowth texture and oscillatory
zoning, indicating its formation by multiple hydrothermal
fluids. Py3 has a zoned texture similar to those found in the
Huize Pb—Zn deposit (Meng et al. 2019), which was pos-
sibly formed by fluid metasomatism. The existence of
microinclusions of sphalerite and galena between the
zoning of pyrite indicates that pyrite was replaced by Pb—
Zn-rich fluids. Py4 was mainly formed from the
hydrothermal process and was suffered from deformation
to form fragmented texture. Pyrite from the Shanshulin
deposit (Py-SSL) is closely associated with dolomite
(Fig. 3i) and minor dolomite inclusions are also present in
pyrite (Fig. 3j), indicating that pyrite was formed during
dolomitization.

The overlapped trace element composition among Pyl1,
Py2, and Py3 (Fig. 7b, d) indicates their compositional
link. These three types of pyrite are enriched in As, Cu, and
Sb relative to Py4 and Py-SSL (Figs. 6b, e, and 7b). It is
inferred that the formation of Py2 and Py3 is possibly due
to the replacement of Pyl or diagenetic fluids are involved
during the precipitation of Py2 and Py3. Because there are
no dissolution-reprecipitation textures or core-rim textures
are found in Py2 and Py3 to show relics of Pyl, the direct
replacement of Pyl maybe not the major mechanism for
the formation of Py2 and Py3. The involvement of the
diagenetic component is evidenced by the sulfur isotope
composition of pyrite. Ore pyrite including Py2 and Py3
has a sulfur isotope composition ranging from 11.8 to
14.4 %o, consistent with derivation of sulfur from coeval
seawater sulfate via thermochemical sulfide reduction or
bacterial sulfate reduction (Zhou et al. 2018).

Contrary to Pyl to Py3, Py4 and Py-SSL are relatively
enriched in Cr, W, Ge, Sn, and Ga, and are depleted in Sb,
As, and Cu (Figs. 6b, e, 7). Py4 and Py-SSL are mainly
associated with dolomite, and sphalerite and galena are
locally present, possibly indicating the formation of Py4
and Py-SSL at the carbonate stage. The relative enrichment
of dispersed elements such as Ga and Ge is likely due to
less competition of these elements from sphalerite at the
carbonate stage because these elements prefer partitioning
into sphalerite (Meng et al. 2015). However, critical
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Fig. 9 Comparison of Co and Ni contents of pyrite from Tiangiao and Shanshulin deposits with that from other geological environments
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elements such as Ga, Ge, and In are low in pyrite compared
to those in sphalerite (Meng et al. 2015), indicating that
pyrite is not the main host for these elements in the Tian-
giao deposit.

In summary, textures and chemical composition of dif-
ferent types of pyrite record evolution from diagenetic
fluids to Pb—Zn-rich hydrothermal fluids. Pyl was formed
by sedimentary diagenesis, Py2 and Py3 were formed by
multiple periods of hydrothermal fluids at the sulfide-car-
bonate stage, Py4 and Py-SSL were formed at the car-
bonate stage and suffered from deformation modification.

5.2 The origin of ore-forming fluids

Cobalt, Ni contents, and their ratios are important indica-
tors for the origin of pyrite (Bajwah et al. 1987). Similar to
Meng et al. (2019), pyrite Co and Ni values are compared
with compiled data to determine the source of these metals
(Fig. 9). Pyrite from Tianqgiao and Shanshulin deposits
have relatively low Co and Ni contents, different from
pyrite from MVT, SEDEX, VMS, porphyry Cu, and IOCG
deposits, but close to the lower part of sedimentary pyrite
and pyrite from submarine hydrothermal vents (Fig. 9).
Based on the deposit geology and tectonic setting, the
Tianqiao and Shanshulin deposits are grouped as MVT
deposits (Zhang et al. 2015; Li et al. 2016; Hu et al. 2017).
The inconsistency between the geology and Co/Ni ratio
discrimination indicates that only Co/Ni ratios cannot be
used for discriminating different types of deposits, but can
give some constraints on the nature of fluids. As shown in
Fig. 9, low-temperature diagenetic-hydrothermal fluids
such as those in the basin environment are responsible for
the formation of pyrite. Sulfides from Tianqgiao and Shan-
shulin are relatively enriched in heavy sulfur isotopes
(Fig. 8), similar to most Pb—Zn deposits in the NW Guiz-
hou district (Zhou et al. 2018). The sulfur of these deposits
was mainly derived from the reduction of salt-gypsum

rocks or coeval seawater sulfate. Considering Permian
thrust tectonic movement is responsible for the formation
of these Pb—Zn deposits, hydrothermal fluids for Py2, Py3,
and Py-SSL are most likely formed via interaction with the
host rocks containing salt-gypsum rocks. Therefore, com-
bined trace elements and sulfur isotopes indicate that the
Tiangiao and Shanshulin deposits were likely formed from
low-temperature (e.g., < 250 °C) basin-like hydrothermal
fluids via fluid-rock interaction.

6 Conclusions

Four types of pyrite (Pyl to Py4) are identified in the
Tiaoqiao deposit, and one pyrite from the Shanshulin
deposit (Py-SSL) is used for comparison. Textures, trace
elements, and sulfur isotope compositions are used to
constrain the origin of pyrite and ore-forming fluids. Py-
SSL is comparable to Py4 in terms of textures, paragenetic
stages, and chemical composition. Variation in trace ele-
ment composition between different pyrite types results
from fluid evolution from diagenetic to hydrothermal fluids
where co-precipitating minerals also play some role. Dur-
ing fluid evolves, Sb As, and Cu in the fluids decreased
whereas Ga and Ge increased. By comparison with pyrite
from different geological environments, we argue that ore-
related pyrite from Tiaoqiao (Py2 and Py3) and Shanshulin
(Py-SSL) deposits are derived from relatively low-tem-
perature (e.g., < ~ 250 °C) hydrothermal fluids like
basin brines or seawater via fluid-rock interaction. High-
temperature magma-related high-temperature hydrother-
mal fluids are not involved in the formation of pyrite.

Appendix 1

See Table 2.
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Table 2 EPMA analytical results (wt%) of pyrite from the Tianqiao and Shanshulin Zn-Pb—Ag deposits

Sample no. Pyrite Fe S As Co Ni Cu Zn Au Ag Sb Pb Se Ge Cd Total
type

Tiangiao deposit

MYMTQ- Pyl 452 492 494 0.065 bdl bdl bdl bdl bdl bdl 0.172  bdl bdl bdl 99.6
9-1

MYMTQ- Pyl 455 52.8 bdl 0.062 bdl bdl 0.055 0.013 0.011 bdl 0.139 ©bdl bdl 0.076  98.7
9-1

MYMTQ- Py2 45.1 51.5 1301 0.048 bdl bdl bdl bdl bdl bdl 0.088 bdl bdl bdl 98.1
9-1

MYMTQ-9  Py2 445 498 4.127 0.031 0.022 0.138 bdl bdl bdl 0.028 0.126 bdl bdl 0.051 988

MYMTQ-9  Py2 443 50.7 3.147 0.044 bdl 0.019 bdl 0.011 bdl bdl 0.141 bdl bdl bdl 98.4

MYMTQ- Py3 454 52.6 bdl 0.042 bdl 0.057 bdl bdl bdl bdl 0.109 bdl 0.01 bdl 98.2
12-1

MYMTQ- Py3 448 49.6 4764 0.027 bdl 0.045 bdl bdl 0.033 bdl 0.172 bdl bdl bdl 99.5
12-1

MYMTQ- Py3 45.8 532 bdl 0.024 ©bdl 0.039 bdl 0.011 bdl bdl 0.099 bdl bdl 0.078  99.3
12-1

MYMTQ- Py3 45.6 529 bdl 0.032  bdl bdl bdl bdl bdl 0.019 0.178 bdl 0.04 0.07 98.9
12-1

MYMTQ-12 Py3 449 51.7 1.078 0.055 bdl bdl 0.028 bdl bdl bdl 0.204 ©bdl bdl 0.017 98.0

MYMTQ-12 Py3 450 520 036 0.023 bdl bdl 0.06 0.02 0.01 bdl 0.526 bdl bdl bdl 98.1

MYMTQ-12 Py3 455 522 0411 0.047 bdl bdl bdl 0.019 bdl bdl 0.125 0.022 bdl bdl 98.3

MYMTQ-12 Py3 45.8 52.8 bdl bdl bdl bdl bdl 0.009 bdl bdl 0.134  bdl bdl bdl 98.8

MYMTQ-12  Py3 447 502 2.504 0.064 bdl bdl 0.069 bdl bdl bdl 0.164 bdl bdl 0.055 978

FSLTQ-15 Py4 45.8 52.8 bdl 0.053 bdl bdl bdl bdl 0.02  bdl 0.136 bdl bdl bdl 98.8

FSLTQ-15 Py4 457 53.0 bdl 0.054 ©bdl 0.034 0.035 bdl 0.01 bdl 0.138 ©bdl 0.051 0.018 99.0

FSLTQ-15 Py4 435 51.0 bdl 0.145 ©bdl bdl bdl 0.013 0.028 0.034 0.107 0.012 bdl bdl 94.8

MYMTQ-8  Py4 464 529 bdl 0.028 ©bdl 0.024 0.055 bdl bdl bdl 0.081 bdl bdl 0.02 99.6

Shanshulin deposit

SSL-1 Py-SSL 472 53.6 bdl 0.057 0.014 0.018 bdl bdl bdl 0.043 0.131 bdl bdl bdl 101.0

SSL-1 Py-SSL  47.0 52.8 bdl 0.031 bdl bdl 0.061 bdl bdl bdl 0.113 bdl bdl 0.033 100.1

SSL-1 Py-SSL  46.8 53.5 bdl 0.074 bdl 0.034 bdl 0.01 bdl bdl 0.122 bdl bdl bdl 100.6

“bdl” means one element has content below detection limit

Appendix 2

See Table 3.
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Appendix 3

See Table 4.

Table 4 Sulfur isotope composition of sulfides from the Tianqiao and
Shanshulin deposits

Smaple nos 634SV_CDT (%0)  Stage References
Tiangiao deposit

HTQ-T7S 134 Ore pyrite Gu (2004)
TQ-18-1 13.7 Ore pyrite Zhou et al. (2010)
TQ-19 14.4 Ore pyrite Zhou et al. (2010)
TQ-23 12.8 Ore pyrite Zhou et al. (2010)
TQ-24-1 12.9 Ore pyrite Zhou et al. (2010)
TQ-60-1 13.2 Ore pyrite Zhou et al. (2013)
TQ-12-1 13 Ore pyrite This study

TQ-8 13.3 Ore pyrite This study
MYMTQ-12 134 Py3 This study
MYMTQ-9 11.8 Py2 This study
TQ-12-1 13.0 Py3 Meng (2014)
TQ-8 13.5 Ore sphalerite  Meng (2014)
TQ-9 11.5 Ore sphalerite  Meng (2014)
TQ-10 12.3 Ore sphalerite  Meng (2014)
TQ-11 12.3 Ore sphalerite  Meng (2014)
TQ-12 12.2 Ore sphalerite  Meng (2014)
Shanshulin deposit

SSL-1 19.0 Ore sphalerite  Meng (2014)
SSL-2 19.3 Ore sphalerite  Meng (2014)
SSL-3 18.7 Ore sphalerite  Meng (2014)
SSL-4 18.6 Ore sphalerite  Meng (2014)
SSL-6 20.5 Ore sphalerite  Meng (2014)
SSL-8 18.8 Ore sphalerite  Meng (2014)
SSL-4 18.5 Ore pyrite Meng (2014)
SSL-6 19.6 Ore pyrite Meng (2014)
SSL-1 15.6 Ore galena Meng (2014)
SSL-3 15.7 Ore galena Meng (2014)
SSL-6 17.1 Ore galena Meng (2014)
SSL-4 18.5 Ore pyrite This study

SSL-6 19.6 Ore pyrite This study

SSL-1 19.8 Ore pyrite This study
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