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A B S T R A C T   

The Raman spectra of Ca2Fe2O5 were investigated up to 21.8 GPa at room temperature and up to 1073 K at 
ambient pressure, respectively. A phase transition begins around 13.6 GPa and it is reversible after decom
pression. No temperature-induced phase transition was observed due to the quality of Raman spectra at tem
peratures above 773 K. The effects of pressure and temperature on the Raman vibration were quantitatively 
analyzed. All the observed Raman active vibrations of Ca2Fe2O5 show positive linear pressure dependences and 
negative temperature dependences with different slopes. Combined with previous experimental results, the 
isothermal and isobaric mode Grüneisen parameters of Ca2Fe2O5 were estimated, and the intrinsic anharmonicity 
was discussed.   

1. Introduction 

Perovskite, general formula as A2+B4+X3, where A and B are cations 
and X is an anion, forms a very important class of inorganic crystals 
whose physical properties are extensively used in many technological 
applications [1]. Due to its broad applications and importance, a great 
number of perovskites have been widely investigated in past decades. 
Substitutions of quadrivalent ion by trivalent ions on the B coordination 
sites of perovskite introduce oxygen vacancies [2], i.e., 2B4+

B = 2 M3+
B +

VÖ, anion-deficient perovskite can thus be formed [3]. In CaSiO3 
perovskite, the Si4+ ions can be substituted by trivalent cations, such as 
Fe3+, i.e., 2Si4+ = 2Fe3+ + VÖ, to form Ca2Fe2O5 oxygen defect perov
skite. Ca2Fe2O5, a non-stoichiometric oxygen defect perovskite 
belonging to brownmillerite-subgroup [3], was naturally found and 
named as srebrodolskite [4]. Ca2Fe2O5 srebrodolskite with space group 
Pnma consists of two main building units: layers of perovskite-type 
corner-sharing [FeO6] octahedra and single chains of [FeO4] tetra
hedra [5–6], as shown in Fig. 1. 

The physical and chemical properties of Ca2Fe2O5 have been inves
tigated in previous studies [7–16]. High-pressure in-situ X-ray diffrac
tion measurements show that the compressibility of Ca2Fe2O5 is largely 

lower than that of CaSiO3 perovskite, indicating an elastic softening 
caused by vacancies on the oxygen positions [7–8]. High-temperature 
differential thermal analysis, neutron and X-ray diffraction studies of 
Ca2Fe2O5 show a temperature-induced phase transition to space group 
Ibm2 around 700 ◦C and the temperature dependence of lattice param
eters were also estimated [9–16]. 

In previous studies, the Raman spectrum of Ca2Fe2O5 has been re
ported at ambient conditions [17–19]. However, no available high- 
pressure or high-temperature Raman spectra of Ca2Fe2O5 were re
ported to date. Furthermore, no phase transition was observed in pre
vious high-pressure X-ray diffraction measurements since those studies 
were carried out at pressures less than 10 GPa [7–8]. In fact, pressure- 
induced phase transitions were observed in other brownmillerites 
including Ca2AlFeO5 and Sr2Fe2O5 at higher pressures [20–21]. In this 
paper, we report the micro-Raman spectra of Ca2Fe2O5 at pressures up to 
21.8 GPa at room temperature and up to 1073 K at ambient pressure, 
respectively. A reversible pressure-induced phase transition was 
observed at 13.6 GPa. The pressure- and temperature-dependent Raman 
active modes of Ca2Fe2O5 were quantitatively analyzed. Combined with 
previous results, the isothermal and isobaric mode Grüneisen parame
ters of Ca2Fe2O5 were determined, and the intrinsic anharmonicity was 

* Corresponding author. 
E-mail address: zhaishuangmeng@mail.gyig.ac.cn (S. Zhai).  

Contents lists available at ScienceDirect 

Spectrochimica Acta Part A:  
Molecular and Biomolecular Spectroscopy 

journal homepage: www.journals.elsevier.com/spectrochimica-acta-part-a- 

molecular-and-biomolecular-spectroscopy 

https://doi.org/10.1016/j.saa.2022.121436 
Received 24 March 2022; Received in revised form 24 May 2022; Accepted 25 May 2022   

mailto:zhaishuangmeng@mail.gyig.ac.cn
www.sciencedirect.com/science/journal/13861425
https://www.journals.elsevier.com/spectrochimica-acta-part-a-<?show $6#>molecular-and-biomolecular-spectroscopy
https://www.journals.elsevier.com/spectrochimica-acta-part-a-<?show $6#>molecular-and-biomolecular-spectroscopy
https://doi.org/10.1016/j.saa.2022.121436
https://doi.org/10.1016/j.saa.2022.121436
https://doi.org/10.1016/j.saa.2022.121436
http://crossmark.crossref.org/dialog/?doi=10.1016/j.saa.2022.121436&domain=pdf


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 279 (2022) 121436

2

estimated. 

2. Experimental 

Single phase Ca2Fe2O5 srebrodolskite was synthesized by high- 
temperature solid state reaction method, similar to previous studies 
[9–10,13–15]. A mixture containing an appropriate ratio of reagent- 
grade CaCO3 and Fe2O3 (99.99% purity) in a proportion correspond
ing to the Ca2Fe2O5 was sufficiently ground then heated to 1523 K and 
kept for 48 h in furnace. The obtained sample was characterized by the 
PAN analytical’s Empyrean X-ray diffractometer with monochromated 
CuKa radiation (λ = 1.54056 Å), operated at 40 kV and 45 mA. The 
powder X-ray diffraction pattern of the synthetic product indicates that 
the obtained sample was pure Ca2Fe2O5 phase. A refinement gives lat
tice parameters as a = 5.435(1) Å, b = 14.814(1) Å, c = 5.597(1) Å and 
V = 450.7(1) Å3, which are consistent with previous studies 
[9,11–12,14]. The 57Fe-Mössbauer spectrum of synthetic sample was 
recorded with an OXFORD-MS500 spectrometer using a 50 mCi 57CO/ 
Pd radioactive source at room temperature in an ordinary mode. The 
measured Mössbauer spectrum including two sextets corresponding to 
magnetically octahedral and tetrahedral Fe3+, is consistent with previ
ous reports [22–24] and the relative areas of the two sextets are equal 
within experimental error. This indicates the equal amount of tetrahe
dral and octahedral sites in the crystal structure. 

High-pressure Raman spectra were measured by using a symmetric 
type diamond anvils cell (DAC). The method and procedure is same as 
our previous study [20]. The synthetic Ca2Fe2O5 sample was placed 
inside a rhenium gasket with a sample chamber of 120 μm in diameter, 
with neon as the pressure medium. Tiny ruby spheres as pressure marker 
were also loaded into the sample chamber. The experimental pressures 
were calculated by the ruby fluorescence method [25]. Raman spectra 
were collected by a custom-built Raman system equipped with a 
monochromatic Ar ion laser and a charge coupled device (CCD) detector 
cooled with liquid nitrogen at the University of Western Ontario [26]. 
Raman signals were excited by a 514.5 nm monochromatic argon ion 
beam and recorded by the CCD detector with a 0.5-meter focal length of 
collimator. The precision in the frequency determination of this micro- 
Raman system was about 1 cm− 1. The duration for each spectrum was 
180 s, and the final spectrum was the average of five spectra collected at 
each pressure. The Raman shift of each band was obtained by Lorentzian 
curve fitting to get a reasonable approximation by using PeakFit pro
gram (SPSS Inc., Chicago). 

Small pieces of Ca2Fe2O5 sample were used for Raman spectroscopic 
measurements at various temperatures. The method and procedure is 
same as our previous studies [27–29]. Raman spectrometer (Horiba 
LabRam HR Evolution) equipped with an air-cooled CCD detector 
operating at 213 K and an 1800 gr/mm grating was used to collect over 
the frequency range from 200 to 800 cm− 1. The resolution of the Raman 
spectroscopy was 1 cm− 1 in the measured frequency region. An argon- 
ion laser was used as exciting source and a power of 20 mW at the 

sample. An SLM Plan 20 × Olympus microscope objective was used to 
focus the laser beam and collect the scattered light. A sintered poly
crystalline Ca2Fe2O5 sample with dimensions of about 150 × 100 × 80 
μm was put on a sapphire or silica window for high-temperature or low- 
temperature Raman spectroscopic measurements, respectively. The 
sapphire window was put into an alumina chamber in a Linkam TS 1500 
for heating, while the silica window was placed at the center of a small 
silver block for freezing runs using THMSG 600. In high-temperature 
measurements, a resistance heater was used along with a water cool
ing system and an S-type thermocouple was used. In low-temperature 
measurements liquid nitrogen was pumped through an annulus in the 
silver block and a resistance heater opposes the cooling effect of the 
nitrogen to yield the desired temperature. In both modes, the tempera
ture control unit is completely automatic and can be programmed to 
maintain at desired temperatures or to change temperature at a constant 
rate of 10 K/min. The measurement system has been calibrated at both 
high and low temperatures by observing phase changes in synthetic fluid 
inclusions placed in the center of the crucible. Horizontal thermal gra
dients may have errors of up to 1% in temperature measurements. The 
accumulation time for each spectrum was 60 s, and the final spectrum 
was the average of three collections. The Raman shift of each band was 
obtained by Lorentzian curve fitting using the PeakFit program (SPSS 
Inc., Chicago) to get a reasonable approximation. 

3. Results and discussion 

According to the factor group analysis of Pnma space group and 
general point group D2h (mmm) [30], the Ca2Fe2O5 structure yields the 
following Raman active vibrations [17]:  

Γ = 13Ag + 11B1g + 13B2g + 11B3g.                                                      

Therefore, totally 48 Raman vibrational modes are predicted. How
ever, the observed Raman bands are much less than those of predicted 
modes. It is due to some undetected weak Raman active modes and/or 
overlapping, and another reason is the limited wavenumber range 
(200–800 cm− 1). 

3.1. Raman spectra under high pressures 

Fig. 2(a) shows the typical Raman spectra of Ca2Fe2O5 at different 
pressures. The Raman spectrum collected at 0.3 GPa shows seven peaks 
at and 264, 294, 317, 383, 431, 567 and 708 cm− 1, which are compa
rable with previous reported bands at ambient conditions [17–19]. 
These bands were assigned as Ag modes and attributed to internal vi
brations of the FeO6 octahedra [17–19]. Further, the bands at 264, 294, 
317, 383 and 431 cm− 1 are attributed to the rotation of the FeO6 octa
hedra, the vibrational modes at 567 and 708 cm− 1 are associated with 
the symmetric breathing and stretching of the FeO6 octahedra [19,31]. It 
is noted that the Raman spectra of Ca2Fe2O5 gradually shift to higher 
wavenumbers with increasing pressures. It is reasonable because the 
chemical bonds become shorter due to compression with increasing 
pressure and shorter bonds imply larger bond force constant, and 
consequently higher vibrational wavenumber according to the expres

sion: υ = 1
2πc

̅̅
f
μ

√
, where υ is vibrational wavenumber in cm− 1, c is ve

locity of light, f is force constant, and μ is the reduced mass of the mode 
(for diatomic molecule 1/μ = 1/m1 + 1/m2, for polyatomic molecules 1/ 
μ =

∑ 1
mi

, where mi is the mass of atom). Some bands become weak 
during compression and news peaks appear at 13.6 GPa, as indexed by 
arrows in Fig. 2(a). With further compression, the relative intensities of 
these new peaks become stronger and the typical bands of initial 
Ca2Fe2O5 weaken and disappear. It indicates that a pressure-induced 
phase transition occurs during compression. The Raman spectrum 
collected after decompression to ambient pressure is same as the initial 
Ca2Fe2O5, which means the pressure-induced phase transition is 

Fig. 1. The crystal structure of Ca2Fe2O5.  
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reversible. Actually, our observed Raman bands of Ca2Fe2O5 at ambient 
conditions are in good agreement with the previous report of Piovano 
et al. [17]. These modes can be assigned to stretching vibrations with 
frequency >550 cm− 1 and deformation mode with frequency between 
250 and 550 cm− 1. The high-pressure phase of Ca2Fe2O5 shows three 
Raman active bands, as illustrated in Fig. 2, and two stretching modes 
with frequency >550 cm− 1 and one deformation mode with frequency 
between 250 and 550 cm− 1 might be similarly assigned. 

In previous high-pressure single-crystal X-ray diffraction studies on 
Ca2Fe2O5 [7–8], no pressure-induced phase transition was observed 
since the pressure is not enough high (less than 10 GPa). As mentioned 
above, pressure-induced phase transitions were observed on Ca2AlFeO5 
and Sr2Fe2O5 at higher pressures [20–21]. Both Ca2AlFeO5 and Sr2Fe2O5 
are typical oxygen-deficient perovskites and in the space group of Ibm2 
at ambient conditions, whereas Ca2Fe2O5 is in the space group of Pnma. 
High pressure X-ray diffraction and Raman spectroscopic study showed 
that Ca2AlFeO5 undergoes a reversible phase transition at around 26.5 
GPa at room temperature [20]. Previous experimental and theoretical 
study indicated that brownmillerite Sr2Fe2O5 transforms into a tetrag
onal perovskite-type phase (I4/mcm, Z = 4) at 12.0 GPa and room 
temperature, and then into a Sr2Mn2O5-type phase (Pbam, Z = 2) at 23.3 
GPa after high-temperature annealing [21]. The transition mechanism 
from brownmillerite Sr2Fe2O5 to the tetragonal perovskite-type phase is 
suggested as the displacement of four-coordinated Fe3+ cations to higher 
coordinated positions upon compression [21]. Based on the present 
Raman spectroscopic measurements, the mechanism for the pressure- 
induced phase transition of Ca2Fe2O5 and the structure of high- 
pressure phase cannot be deduced though it might relate to the evolu
tion of [FeO4] tetrahedra in Ca2Fe2O5 during compression. Further study 
is required to verify the transition mechanism and structure of high- 
pressure form of Ca2Fe2O5. 

The effect of pressure on the Raman shift of is illustrated in Fig. 2(b). 
Seven Raman active bands were distinguished for Ca2Fe2O5 sre
brodolskite and three bands for high-pressure form of Ca2Fe2O5 in the 
range of 200–800 cm− 1. The pressure coefficients (biP) for different 
bands are listed in Table 1. All the pressure coefficients are positive, 
indicating the Raman shifts of vibrations in Ca2Fe2O5 increase with 
pressure. Obviously, the pressure coefficients of high-frequency vibra
tions (4.14–4.69 cm− 1/GPa) are larger than those of low-frequency vi
brations (2.58–2.83 cm− 1/GPa) in Ca2Fe2O5 srebrodolskite. On the 
other hand, the pressure coefficients for vibrations of Ca2Fe2O5 

srebrodolskite (2.58–4.69 cm− 1/GPa) are different from those of high- 
pressure form of Ca2Fe2O5 (1.19–1.94 cm− 1/GPa). The discontinuous 
changes of the pressure coefficients also indicate a pressure-induced 
phase transition of Ca2Fe2O5 oxygen defect perovskite. Different pres
sure coefficients means the effect of pressure on the Raman vibrations 
are various, which is related to the different evolutions of chemical 
bonds under compression. 

3.2. Raman spectra at various temperatures 

The typical Raman spectra of Ca2Fe2O5 at different temperatures are 
illustrated in Fig. 3(a). It is obvious that the Raman spectra of Ca2Fe2O5 
gradually shift to lower wavenumbers with increasing temperatures. It is 
reasonable because the Fe-O bonds become longer due to expansion 

Fig. 2. (a) Typical Raman spectra of Ca2Fe2O5 at various pressures and room temperature. The arrows index the appearance of new Raman peaks, and the Raman 
spectra at pressures with asterisk were collected during decompression. (b) The Raman shifts of vibrational modes in Ca2Fe2O5 at various pressures and room 
temperature. 

Table 1 
The parameters of linear dependence on pressure νiP = aiP + biP P at room 
temperature and on temperature νiT = aiT + biT T at ambient pressure, the 
isothermal and isobaric mode Grüneisen parameter (γiT and γiP), and the intrinsic 
anharmonic mode parameter, βi, for Ca2Fe2O5.  

Raman 
no. 

aiP biP γiT aiT -biT ×

102 
γiP βi ×

105 

1 258.7 
(8) 

2.83 
(14)  

1.40 261.1 
(9) 

1.61 
(14)  

1.55  − 0.60 

2 289.1 
(5) 

2.73 
(12)  

1.21 292.3 
(8) 

1.23 
(15)  

1.05  0.64 

3 314.0 
(5) 

2.82 
(6)  

1.15 316.2 
(8) 

0.86 
(13)  

0.68  1.88 

4 380.1 
(1) 

2.58 
(2)  

0.87 382.1 
(9) 

0.92 
(14)  

0.60  1.08 

5 429.5 
(2) 

2.80 
(3)  

0.83 434.0 
(9) 

2.37 
(15)  

1.37  − 2.15 

6 560.3 
(7) 

4.14 
(16)  

0.95 565.2 
(7) 

2.52 
(20)  

1.12  − 0.68 

7 708.4 
(10) 

4.69 
(14)  

0.85 712.7 
(6) 

1.75 
(11)  

0.62  0.92 

1* 316.9 
(12) 

1.19 
(20)      

2* 633.4 
(15) 

1.94 
(18)      

3* 750.9 
(18) 

1.74 
(23)      

νiP, νiP, aiP and aiT in cm− 1, P in GPa, biP in cm− 1 GPa− 1, T in K, biT in cm− 1 K− 1, 
and βi in K− 1. The Raman nos. with * are of high-pressure phase. 
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with increasing temperature and longer bonds imply smaller bond force 
constant, and consequently lower vibrational wavenumber according to 

the above mentioned expression: υ = 1
2πc

̅̅
f
μ

√
. Some vibrational modes 

become weak and disappear during heating. 
In previous studies of Ca2Fe2O5 by high-temperature differential 

thermal analysis, neutron and X-ray diffraction measurements [9–16], a 
temperature-induced phase transition from space group Pnma to Ibm2 
was reported around 700 ◦C. In the present high-temperature Raman 
spectroscopic study, no phase transition was observed though the 
highest temperature was 1073 K. The reason is that the Raman signal 
becomes very weak and broad under higher temperature due to high 
background, as shown in Fig. 3(a). Therefore, it is impossible to distin
guish the vibrations above 773 K. 

The variation of Raman shift for Ca2Fe2O5 at different temperatures 
is plotted in Fig. 3(b), which shows nearly linear relationships with 
different slopes for different modes. As listed in Table 1, the temperature 
coefficients (biT) of vibrational modes in Ca2Fe2O5 show that the high- 
wavenumber modes are more sensitive to temperature compared to 
the low-wavenumber vibrations. In fact, the temperature coefficients of 
high-wavenumber modes in Ca2Fe2O5 are − 1.75 to − 2.52 × 10− 2 cm− 1 

K− 1, whereas the coefficients for low-wavenumber vibrations are − 0.86 
to − 1.61 × 10− 2 cm− 1 K− 1. 

3.3. Mode Grüneisen parameters and anharmonicity 

The Grüneisen parameter is of great importance for the thermal 
equation of state of materials at high pressures [32]. The variations of 
the different Raman vibrations under pressures and temperatures can be 
used to obtain the isothermal and isobaric mode Grüneisen parameter, 
γiT and γiP, based on the following expressions [33–34]: 

γiT = KT(lnνiP/P)T  

γiP = − 1/α(lnνiT/T)P  

where KT is the isothermal bulk modulus, α is the thermal expansion 
coefficient, νiP and νiT are the vibrational wavenumbers of the ith mode 
under pressures and temperatures. The isothermal bulk modulus of 
Ca2Fe2O5 was reported as 127.0 GPa [7] and 128.0 GPa [8]. The thermal 
expansion coefficient α of Ca2Fe2O5 was previously reported in different 
studies, as summarized in Table 2. It is noted that different studies yield 
discrepant thermal expansion coefficients. By adopting KT of 128.0 GPa 
[8] and α of 3.99 × 10− 5 K− 1 [15], the calculated values of γiT and γiP for 

different vibrational modes of Ca2Fe2O5 are also listed in Table 1. The 
isothermal and isobaric mode Grüneisen parameter (γiT and γiP) are in 
the ranges of 0.83–1.40 and 0.60–1.55. 

The intrinsic anharmonic mode parameter, βi, also can be calculated 
using the obtained isothermal and isobaric mode Grüneisen parameter 
(γiT and γiP) as follow [33–34]: 

βi = α(γiT − γiP).

Similarly, the thermal expansion coefficient α of 3.99 × 10− 5 K− 1 for 
Ca2Fe2O5 [15] was used to calculate βi, and the results are also listed in 
Table 1. It is noted that the values of βi are non-zero, indicating an 
intrinsic anharmonicity exists Ca2Fe2O5. 

4. Conclusions 

By using Raman spectroscopic measurements, the stability and effect 
of pressure and temperature on vibrational modes in Ca2Fe2O5 oxygen 
defect perovskite have been investigated up to 21.8 GPa at room tem
perature and up to 1073 K at ambient pressure, respectively. A reversible 
pressure-induced phase transition at 13.6 GPa in Ca2Fe2O5 was 
observed. The Raman shifts of all observed vibrations for Ca2Fe2O5 
linearly increase with increasing pressure and decrease with increasing 
temperature in different slopes. The isothermal and isobaric mode 
Grüneisen parameters of Ca2Fe2O5 were estimated at 0.83–1.40 and 
0.60–1.55, respectively. The intrinsic anharmonic mode parameters of 
Ca2Fe2O5 were estimated to be non-zero and in the range from − 2.15 ×
105 K− 1 to 1.88 × 105 K− 1. 

Fig. 3. (a) Typical Raman spectra of Ca2Fe2O5 at different temperatures and ambient pressure. (b) The Raman shifts of vibrational modes in Ca2Fe2O5 at different 
temperatures and ambient pressure. 

Table 2 
Thermal expansion coefficients (×10− 5 K− 1) of Ca2Fe2O5.  

a αa ab αc Sample 
state 

Method Ref. 

3.76 
(8) 

1.01 
(3) 

1.79 
(2) 

0.96 
(2) 

Powder Neutron 
diffraction 

[9] 

4.13 0.88 2.31 0.93 Powder X-ray diffraction [11] 
4.08 1.03 2.19 0.83 Powder X-ray diffraction [12] 
3.99 

(6) 
0.98 
(3) 

2.19 
(3) 

0.81 
(3) 

Powder X-ray diffraction [15] 

4.11 
(9) 

1.08 
(1) 

1.47 
(1) 

1.57 
(3) 

Single 
crystal 

Dilatometry [16] 

αa, αb, and αc represent the axial thermal expansion coefficients along a-, b- and 
c-axis, respectively. 
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