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Abstract
Conservative	survival	strategy	of	plants	growing	in	harsh	karst	habitats	is	observed	
from	the	view	of	plant	functional	traits,	such	as	morphological	traits	and	ecological	
stoichiometry.	However,	whether	 the	plant	 communities	 in	 karst	 forests	with	high	
species turnover adopt a conservative strategy remains undetermined. This study 
comprehensively investigated the characteristics of functional traits of dominant 
plant species in four forests (i.e. Platycarya strobilacea,	Quercus fabri,	Quercus vari-
abilis,	and	Pinus massoniana forests) in a trough- valley karst watershed in Northern 
Guizhou	Province,	Southwestern	China	 to	explore	 the	adaptation	strategy	of	karst	
forests	at	 the	community	 level.	At	 the	organ	and	 the	species	 levels,	 traits	differed	
among	species,	and	the	leaf	and	the	bark	morphological	traits	and	root	C:N:P	ecologi-
cal	stoichiometry	presented	large	interspecific	variations.	At	the	community	level,	the	
P. massoniana forest presented the lowest specific root length and dry matter content 
and	tissue	density	of	roots,	branch,	twig,	and	bark;	the	Q. fabri and the Q. variabilis 
forests displayed low specific leaf area and high dry matter content and tissue density 
of	roots,	branch,	and	twig;	and	the	Platycarya strobilacea	forest	exhibited	high	specific	
leaf area. The P. massoniana	 forest	was	subjected	 to	N	and	P	colimitation,	and	 the	
three	other	broad-	leaved	forests	were	limited	by	P	supply.	The	community-	weighted	
means rather than the arithmetic means of traits were preferential to represent the 
trait	characteristics	at	the	community	level.	From	the	view	of	plant	functional	traits	at	
the	community	level,	karst	forests	develop	multiple	functional	traits	like	low	specific	
leaf	area,	high	dry	matter	content	and	tissue	density	of	leaf,	roots,	branch,	and	twig,	
and decrease N and P investments in leaf for a conservative survival strategy to adapt 
to	harsh	habitats.
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1  |  INTRODUC TION

Plant	functional	traits	(PFTs)	are	the	inherently	physiological	and	ex-
ternally	morphological	 characteristics	 highly	 related	 to	 the	 ecesis,	
survival,	growth,	and	death	processes	of	plants	(Violle	et	al.,	2007).	
The	trait	assembly	of	the	different	organs	of	plants	can	embody	their	
resource acquisition and allocation strategies and reflect the func-
tional	characteristics	of	ecosystems	(Díaz	&	Cabido,	2001;	Garnier	
et	al.,	2004).	Thus,	PFTs	play	important	roles	in	connecting	plant	in-
dividuals	with	environments	and	ecosystem	structures,	processes,	
and	functions	(Koerselman	&	Meuleman,	1996;	McGill	et	al.,	2006;	
Westoby	 &	 Wright,	 2006).	 The	 study	 of	 PFTs	 provides	 another	
pathway	 to	 understand	 the	 population	 survival	 strategy,	 biodiver-
sity	maintenance,	biological	invasion,	and	vegetation	modeling	(Díaz	
&	Cabido,	1997;	Huang	et	al.,	2016;	Kraft	et	al.,	2008;	Sutherland,	
2004;	Wang	et	al.,	2017).

Most	PFT	studies	worldwide	focus	on	the	organ	and	the	species	
levels,	whereas	PFT	 studies	 conducted	at	 the	 community	 and	 the	
ecosystem	 levels	 are	often	underpowered	 (He	et	 al.,	 2018;	Zhang	
et	al.,	2018).	Furthermore,	the	arithmetic	means	of	several	dominant	
species	are	used	to	represent	the	community	trait	values.	Such	data	
analysis	may	bring	about	remarkable	uncertainties,	and	results	may	
not reflect the traits of a plant community. Natural plant communi-
ties	are	composed	of	species	adapted	to	certain	environments,	and	
different	 species	 play	 different	 roles	 in	 community	 assembly	 and	
function	 exertion	 (Grime,	 1998;	 Huston,	 1997).	 Arithmetic	 mean	
trait	values	evidently	fail	to	consider	the	complexity	of	species	com-
position,	 community	 structures,	 and	 functions	 in	 complex	 natural	
plant	 communities	 (Díaz	 et	 al.,	 2016;	Muscarella	 &	Uriarte,	 2016;	
Wright	et	al.,	2004).	Besides,	no	criterion	is	available	in	the	selection	
of	dominant	species	and	individuals,	for	example,	the	number	of	spe-
cies	that	should	be	chosen.	Thus,	PFT	 investigations	that	consider	
species	 composition,	 community	 structures,	 and	 functions	 at	 the	
plant	community	level	must	be	conducted.

Karst,	 an	 extremely	 unique	 geomorphology	 that	 has	 resulted	
from	the	solvation	of	carbonatite	 (limestone	and	dolomite)	 is	 spo-
radically	ubiquitous	 in	the	global	 land	area	but	widespread	around	
the	 southern	United	 States,	Mediterranean	 coasts	 of	 Europe,	 and	
Southwestern	 China	 (Jiang	 et	 al.,	 2014).	 In	 Southwestern	 China,	
vegetation degradation happens everywhere due to the fragility 
of	karst	ecosystems	and	 intensive	human	disturbances.	The	forest	
restoration	 of	 degraded	 vegetation	 has	 become	 an	 environmental	
topic	in	karst	regions.	PFTs	and	the	trait-	based	community	ecology	
theory	 (a	 theory	 using	 trait-	based	 approaches	 to	 determine	 com-
munity	 composition,	 structures,	 and	 functions)	 can	 reveal	 the	 ad-
aptation strategies of vegetation in different restoration stages and 
environmental	habitats	and	evaluate	the	restoration	effects	of	dif-
ferent	modes	(Hedberg	et	al.,	2013;	Lavorel	&	Garnier,	2002;	Pywell	
et	al.,	2003;	Roberts	et	al.,	2010;	Sandel	et	al.,	2011).	Existing	 re-
search	on	PFTs	in	Southwestern	China	indicates	that	plants	grow	in	
a	plateau-	surface,	peak-	clum	depression,	and	peak-	forest	plain	karst	
morphological	 terrains	with	harsh	habitats	 (e.g.,	high	 temperature,	
water	shortage,	and	shallow	soils)	exhibit	low	leaf	area	(LA),	specific	

leaf	area	(SLA),	and	fine	root-	specific	length	(SRL),	high	leaf	dry	mat-
ter	 content	 (LDMC),	 and	 leaf	 tissue	density	 (LTD).	 Plant	 growth	 is	
limited	by	N	and	P	supply,	and	the	interspecific	variations	of	PFTs	are	
generally	large	(Jiang	et	al.,	2016;	Liu	et	al.,	2014,	2015,	2019;	Pang	
et	al.,	2019;	Pi	et	al.,	2017;	Yang	et	al.,	2020;	Zhong	et	al.,	2018).	As	
a	result,	the	conservative	survival	strategy	with	low	growth	rate	and	
high	resource	utilization	of	karst	plants	is	commonly	observed	(Tang	
et	al.,	2016).

However,	 most	 previous	 PFT	 studies	 in	 karst	 areas	 focus	 on	
leaf	traits,	and	traits	of	other	organs	(root,	branch,	trunk,	and	bark)	
are	rarely	reported	(Liu	et	al.,	2019;	Yang	et	al.,	2020;	Zhong	et	al.,	
2018).	 Furthermore,	 nearly	 all	 previous	 PFT	 studies	 stay	 at	 the	
organ and the species levels. The arithmetic mean trait values of 
the chosen species are treated as the community trait values (Xi 
et	al.,	2011).	Such	community	trait	values	may	be	accompanied	by	
significant	uncertainties	caused	by	large	interspecific	variations	of	
traits,	and	biomass	and	individual	number	differences	of	the	chosen	
species	in	complex	natural	plant	communities.	For	example,	among	
the chosen five dominant tree species in a karst secondary forest 
in	Central	Guizhou	Province,	Carpinus pubescens presents consid-
erably	 lower	 leaf	 thickness	 (LT)	 and	LA,	 considerably	higher	SLA,	
lowest	biomass	stock,	and	smallest	 individual	number;	Lithocarpus 
confinis	displays	considerably	lower	leaf	N	and	P	contents,	highest	
biomass	stock	and	largest	individual	number.	The	arithmetic	mean	
and	community-	weighted	mean	 (CWM,	calculated	on	 the	basis	of	
the	 relative	biomass	or	 individual	number)	 trait	 values	of	 the	 for-
est	would	differ	considerably	(Liu	et	al.,	2019;	Zhong	et	al.,	2018).	
Zhang	et	al.	 (2018)	have	also	 found	 that	 the	CWM	(calculated	on	
the	basis	of	the	relative	biomass)	and	the	arithmetic	mean	values	of	
C:N:P	ecological	stoichiometry	in	China's	forests	differ	remarkably,	
and	the	former	is	better	to	represent	the	ecological	stoichiometry	
at	 the	community	 level.	Therefore,	 the	CWM	of	 traits	of	 the	 leaf	
together with other organs may reflect the community trait char-
acteristics and reveal the adaptation strategy of karst plants at the 
community level.

In	 the	present	study,	 three	natural	 secondary	 forests	and	an	
artificial forest with different restoration years in a trough- valley 
karst	 watershed	 in	 Southwestern	 China	 are	 investigated	 as	 ex-
amples.	Eighteen	morphological	traits	of	 leaf,	root,	branch,	twig,	
and	bark	and	the	C:N:P	ecological	stoichiometry	of	leaf,	root,	and	
branch	of	dominant	species	are	comprehensively	determined,	and	
the	CWM	values	of	all	traits	are	further	calculated	on	the	basis	of	
the	 relative	biomass.	Does	 this	 study	aim	to	answer	what	adap-
tation	strategy	do	 forests	growing	 in	harsh	karst	habitats	adopt	
from	the	view	of	PFTs	at	 the	community	 level?	Specifically,	 this	
study tests the following predictions: (1) karst plant species pres-
ent	large	interspecific	variations	in	PFTs;	(2)	the	CWM	and	arith-
metic mean trait values display great differences in karst forests; 
and (3) karst forests adopt conservative survival strategy with 
low	growth	 rate	 and	high	 resource	utilization.	 Such	 a	 study	will	
broaden	 the	 understanding	 of	 the	 vegetation–	environment	 in-
teractions and guide the ecological restoration in karst regions in 
Southwestern	China.
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2  |  MATERIAL S AND METHODS

2.1  |  Study area

The	Langxi	Watershed	in	Yinjiang	County,	a	typical	and	representa-
tive	basin	in	the	trough-	valley	karst	morphological	terrain,	is	located	
in	Northern	Guizhou	Province,	Southwestern	China	(Figure	1).	This	
terrain	 lies	 in	 mid-	subtropical	 China	 and	 has	 a	 monsoon	 climatic	
regime.	 According	 to	 records	 from	 the	 Yinjiang	 weather	 station	
(108°24′	E,	28°01′	N,	457	m)	in	1961–	2009,	the	mean	annual	air	tem-
perature	is	16.8°C,	with	the	lowest	monthly	mean	in	January	(5.6°C)	
and the highest monthly mean in July (27.0°C). The mean annual pre-
cipitation	is	1114.7	mm,	of	which	68.7%	occurs	between	April	and	
August.	The	mean	annual	sunshine	duration	is	1222.8	h,	with	a	low	
sunshine	percentage	of	25.5%.	The	parent	rock	is	limestone,	and	the	
dominant	soil	is	yellow	limestone	soil	(Yang	et	al.,	2020).	The	native	
vegetation	in	the	Langxi	Watershed	has	been	destroyed.	Degraded	
shrublands	and	grasslands,	man-	made	orchard	lands,	and	rice	fields	
are	distributed	at	the	foot	and	the	middle	of	mountains.	Natural	sec-
ondary	forests,	 including	Platycarya strobilacea forest (regenerated 
from	an	abandoned	land	in	1992),	Quercus fabri forest (regenerated 
from	a	clear	cutting	in	1978),	Quercus variabilis forest (regenerated 
from	a	clear	cutting	in	1958),	and	some	other	broad-	leaved	forests	
with	 small	 areas,	 and	 artificial	 coniferous	 forest	 (Pinus massoniana 
forest,	planted	 in	1968)	are	only	distributed	 in	mountaintops	with	
less	human	disturbances	(Figure	1)	(Yang	et	al.,	2020).

2.2  |  Vegetation survey and biomass estimation

After	 complete	 vegetation	 investigations	 in	 the	 watershed,	 four	
plots	(each	with	an	area	of	50	m	×	50	m)	of	the	four	dominant	forest	
types	were	established	(Table	1).	Each	woody	plant	with	a	diameter	
at	breast	height	(D)	≥1	cm	was	recorded	with	species	 identity	(bo-
tanical	nomenclature	was	based	on	Chen,	1982–	2004),	D (measured 
using	a	diameter	tape),	height	(measured	using	a	telescopic	rod	and	
a	steel	tape),	and	canopy	width	(canopy	projection	width,	measured	
using	 a	 steel	 tape).	 The	 total	 biomass	 of	 each	 individual	was	 esti-
mated	using	biomass	allometric	models	 (Table	S1).	The	biomass	of	
tree	species	with	≥15	 individuals	 in	each	plot	was	estimated	using	
their	own	biomass	allometric	models,	and	the	biomass	of	other	tree	
and	shrub	species	was	estimated	using	universal	allometric	models	
(Liu	et	al.,	2020).

In	 each	 forest,	 the	 species	 chosen	 for	 PFT	measurements	 ac-
counted	for	not	less	than	90%	of	the	total	forest	biomass.	According	
to	biomass	distribution	patterns	among	species	in	the	four	karst	for-
ests,	nine	species,	that	is,	P. strobilacea	(accounting	for	60.92%	of	the	
forest	biomass),	P. massoniana	(16.65%),	Albizia kalkora	(7.52%),	and	
Platycladus. orientalis	(7.13%)	in	P. strobilacea forest; Q. fabri	(57.55%),	
Quercus acutissima	(24.22%),	Camellia japonica	(5.23%),	and	P. masso-
niana	 (3.56%)	in	Q. fabri forest; Q. variabilis	 (95.09%)	in	Q. variabilis 
forest and P. massoniana	 (86.20%)	and	Lindera glauca	 (3.80%)	 in	P. 
massoniana	forest,	were	chosen.

2.3  |  Measurement of morphological traits

Twenty healthy dominant individuals per species in each forest were 
selected.	Four	branches	were	collected	from	four	different	positions	
of	the	sunlit	side	of	the	tree	canopy	in	each	sampled	individual.	Five	
healthy	mature	 leaves	 (10	healthy	mature	needles)	without	visible	
damage	 of	 each	 branch	 were	 collected.	 An	 approximately	 20	 cm	
length	terminal	twig	and	an	approximately	5	cm	length	branch	(diam-
eter	≥1	cm)	were	sampled	from	one	of	the	four	branches.	A	taproot	
of	each	individual	was	dug	out,	and	roots	were	separated	into	coarse	
(root	diameter	≥10	mm),	medium	(root	diameter	=	2–	10	mm),	and	fine	
(root	diameter	≤2	mm)	roots.	A	bark	sample	at	the	D position of each 
individual was collected.

Fresh	masses	of	leaf,	root,	branch,	twig,	and	bark	samples	were	
weighed	 using	 an	 electronic	 balance	 (accurate	 to	 0.001	 g).	 Bark	
thickness	 (BaT,	 mm)	 and	 LT	 (mm)	 values	 were	measured	 using	 an	
electronic	Vernier	caliper	 (accurate	to	0.01	mm).	The	LA,	fine	root	
length,	 and	 volume	 were	 scanned	 using	 the	WinFOLIA	 multipur-
pose	 leaf	 area	 meter	 (Regent	 Instruments,	 Canada)	 (Yang	 et	 al.,	
2020;	Zhong	et	al.,	2018).	The	volumes	of	coarse	and	medium	roots,	
branch,	twig,	and	bark	samples	were	determined	using	the	drainage	
method,	and	those	of	leaf	samples	were	obtained	as	the	product	of	
LA	and	LT	(Cornelissen	et	al.,	2003).	All	samples	were	dried	at	85°C	
for 72 h in an oven to determine their dry masses. The values of mor-
phological	traits	were	calculated	as	shown	in	Table	S2.

2.4  |  Determination of elemental contents

After	morphological	 trait	measurements,	 5	 leaves,	 5	 roots	 (mixed	
with	coarse,	medium,	and	fine	roots),	and	5	branch	samples	of	each	
species	were	selected.	All	plant	samples	were	powdered	and	sieved	
through a 0.2 mm sieve. The contents of total C (TC) and total N 
(TN)	 of	 the	 leaf	 (LC	 and	 LN),	 root	 (RC	 and	 RN),	 and	 branch	 (BrC	
and	BrN)	were	determined	using	the	Vario	MACRO	Cube	(Thermo	
Scientific,	Germany),	and	those	of	total	P	(TP)	of	the	leaf	(LP),	root	
(RP),	and	branch	 (BrP)	were	determined	using	the	 iCAP	6300	ICP-	
OES	Spectrometer	Analyzer	(Thermo	Scientific,	USA).

2.5  |  Data analysis

In	accordance	with	empirical	studies	 (He	et	al.,	2019;	Zhang	et	al.,	
2018),	the	relative	biomass	(i.e.,	the	biomass	of	one	species	as	a	per-
centage	 of	 the	 total	 forest	 biomass	 in	 each	 plot)	was	 used	 to	 ex-
trapolate	PFTs	from	the	species	 level	 to	the	community	 level.	The	
CWM	of	a	single	trait	was	treated	as	the	average	trait	value	in	the	
community,	and	was	calculated	using	the	following	equation:

where	CWMx	is	the	CWM	for	trait	x; s	is	the	number	of	species,	which	
accounts	 for	 not	 less	 than	 90%	 of	 the	 total	 biomass	 in	 the	 forest	

CWMx =
(

∑s

i=1
Bi × ti

)

∕Bs,
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community; Bi	 is	the	relative	biomass	of	the	 ith species in the forest 
community; ti is the trait value for the ith	species,	and	Bs	is	the	biomass	
percentage of the chosen species in the forest community.

The coefficients of interspecific variation (standard deviation 
divided	by	mean)	were	used	to	characterize	the	varying	degrees	of	
PFTs	among	plant	 species.	 LN,	 LP,	 and	 leaf	N/P	 ratio	 (LN/P)	were	

F I G U R E  1 Location	(a)	and	physiognomy	(photographed	in	winter)	of	the	Langxi	Watershed	(b)	and	the	four	karst	forests	(c):	Platycarya 
strobilacea	forest,	(d):	Quercus fabri	forest,	(e):	Quercus variabilis	forest,	(f):	Pinus massoniana	forest)	in	the	distribution	map	of	karst	terrain	
(the	gray)	in	Guizhou	Province,	Southwestern	China
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TA B L E  1 Basic	information	of	four	karst	forest	plots	in	Northern	Guizhou	Province,	Southwestern	China

Items
Platycarya strobilacea 
forest Quercus fabri forest

Quercus variabilis 
forest Pinus massoniana forest

Location 108°30′15″	E,	
28°02′	12″	N

108°25′29″	E,	
27°56′54″	N

108°25′32″	E,	
27°57′02″	N

108°25′29″	E,	27°56′34″	N

Elevation	(m) 916 1193 1186 1243

Rock	coverage	(%) 17.59 11.24 24.70 25.92

Soil	thickness	(cm) 57.75 50.24 66.63 60.72

Stand	age 25 40 60 50

Species	richness 39 29 49 38

Stand	density	(individuals/hm2) 10908 7452 4320 4884

Average	diameter	at	breast	height	(cm) 2.86 ±	2.41 4.35	± 6.08 5.03	± 8.16 5.48	±	5.92

Height of tree layer (m) 8–	11 7–	11 15–	21 8–	14

Common species P. strobilacea,	P. 
massoniana,	
Albizia kalkora,	
Platycladus 
orientalis

Q. fabri,	Quercus 
acutissima,	
Camellia japonica,	
P. massoniana

Q. variabilis P. Massoniana,	Lindera glauca

F I G U R E  2 PCA	showing	the	distribution	of	the	morphological	traits	(a)	and	ecological	stoichiometry	(b)	among	dominant	species	in	
karst	forests	in	Northern	Guizhou	Province,	Southwestern	China.	Axis1	accounted	for	67.75%	(a)	or	42.38%	(b)	of	the	variables,	and	Axis2	
accounted	for	24.44%	(a)	or	38.49%	(b)	of	the	variables.	LT,	leaf	thickness;	LTD,	leaf	tissue	density;	LDMC,	leaf	dry-	matter	content;	SLA,	
specific	leaf	area;	CRTD,	coarse	root	tissue	density;	CRDMC,	coarse	root	dry-	matter	content;	MRTD,	medium	root	tissue	density;	MRDMC,	
medium	root	dry-	matter	content;	FRTD,	fine	root	tissue	density;	FRDMC,	fine	root	dry-	matter	content;	SRL,	fine	root	specific	length;	BrTD,	
branch	tissue	density;	BrDMC,	branch	dry-	matter	content;	TTD,	twig	tissue	density;	TDMC,	twig	dry-	matter	content;	BaT,	bark	thickness;	
BaTD,	bark	tissue	density;	BaDMC,	bark	dry-	matter	content;	LC,	leaf	total	carbon	content;	LN,	leaf	total	nitrogen	content;	LP,	leaf	total	
phosphorus	content;	LC/N,	leaf	carbon–	nitrogen	ratio;	LC/P,	leaf	carbon–	phosphorus	ratio;	LN/P,	leaf	nitrogen–	phosphorus	ratio;	RC,	root	
total	carbon	content;	RN,	root	total	nitrogen	content;	RP,	root	total	phosphorus	content;	RC/N,	root	carbon–	nitrogen	ratio;	RC/P,	root	
carbon–	phosphorus	ratio;	RN/P,	root	nitrogen–	phosphorus	ratio;	BrC,	branch	total	carbon	content;	BrN,	branch	total	nitrogen	content;	BrP,	
branch	total	phosphorus	content;	BrC/N,	branch	carbon–	nitrogen	ratio;	BrC/P,	branch	carbon–	phosphorus	ratio;	BrN/P,	branch	nitrogen–	
phosphorus ratio
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used	as	indicators	to	compare	the	resource	utilization	between	karst	
forests and plants in China and in the world. The one- sample t- test 
was	conducted	to	determine	differences	between	average	LN	and	
LP	of	plants	in	China	and	in	the	world	and	corresponding	elemental	
contents of the four karst forests. The principal component analysis 
(PCA)	was	done	to	evaluate	the	effects	of	plant	species	and	forest	
type	on	PFTs,	and	show	the	distributions	of	the	PFTs	among	plant	
species and forest type. Trait data were log- transformed prior to 
PCA	analysis.	All	statistical	analyses	were	performed	using	the	SPSS	
version	20	and	 the	CANOCO	5	 (ter	Braak	&	Smilauer,	2012;	Xue,	
2017).

3  |  RESULTS

3.1  |  Morphological traits of plant species

Morphological	traits	varied	among	plant	species	(Figure	2a,	Table	2).	
P. massoniana (the artificial species) dominated low values of traits. 
Twelve	 (i.e.,	 LDMC,	 CRTD:	 coarse	 root	 tissue	 density,	 CRDMC:	
coarse	root	dry	matter	content,	MRTD:	medium	root	tissue	density,	
MRDMC:	medium	root	dry	matter	content,	FRTD:	 fine	 root	 tissue	
density,	 FRDMC:	 fine	 root	dry	matter	 content,	 SRL,	BrTD:	branch	
tissue	density,	BrDMC:	branch	dry	matter	content,	TTD:	twig	tissue	
density	and	BaTD:	bark	tissue	density)	of	the	18	traits	of	P. massoni-
ana were the lowest. P. strobilacea and A. kalkora	showed	high	DMC	
and	TD	of	the	coarse,	medium,	and	fine	roots.	Q. acutissima	exhibited	
the	highest	LTD,	LDMC,	BrTD,	BrDMC,	and	TTD	and	the	lowest	SLA.	
Q. variabilis presented the highest BaT. L. glauca displayed the high-
est	SLA	and	the	lowest	LT.	C. japonica	had	the	highest	LT,	SRL,	TDMC	
(twig	dry	matter	content),	BaTD,	and	BaDMC	(bark	dry	matter	con-
tent),	and	the	lowest	LTD	and	BaT.	P. orientalis and Q. fabri presented 
intermediate	trait	values	(Table	2).

In	general,	 the	morphological	 traits	of	 leaf	and	bark	presented	
large	interspecific	variations	as	shown	by	large	coefficients	of	inter-
specific	variation;	and	those	of	roots,	branch,	and	twig	showed	small	
interspecific	 variations	 as	 indicated	 by	 small	 coefficients	 of	 inter-
specific	variation	(Table	2).	The	maximum	coefficient	of	interspecific	
variation	was	BaT	(96.89%.	Table	2).	SLA	(60.05%)	and	LT	(50.23%)	
also presented relatively large coefficients of interspecific variation 
(Table	2).	CRDMC	presented	the	minimum	coefficient	of	 interspe-
cific	variation	(9.52%,	Table	2).

3.2  |  Ecological stoichiometry of plant species

Ecological	 stoichiometry	 differed	 among	 plant	 species	 (Figure	 2B,	
Table	3).	P. massoniana	exhibited	 the	highest	and	P. strobilacea	ex-
hibited	 the	 lowest	 LC	 and	 RC.	A. kalkora	 showed	 the	 highest	 LN,	
RN,	BrN,	LN/P,	root	N/P	ration	(RN/P),	and	BrP	and	the	lowest	leaf,	
root	 and	branch	C/N	 ratios	 (LC/N,	RC/N,	 and	BrC/N)	 and	branch	
C/P ratio (BrC/P). P. orientalis	presented	the	highest	RC/N,	BrC/N,	
BrC/P,	root	C/P	ratio	(RC/P),	and	the	lowest	LN/P,	RN,	RP,	and	BrN.	

C. japonica	displayed	the	highest	LC/N	and	leaf	C/P	ratio	(LC/P)	and	
the	 lowest	 LN,	 LP,	 and	branch	B/N	 ratio	 (BrN/P).	Q. variabilis had 
the highest BrN/P and the lowest BrP. L. glauca showed the highest 
LP,	RP,	and	BrC	and	the	lowest	LC/P,	RC/P,	and	RN/P.	Q. acutissima 
presented	intermediate	ecological	stoichiometry	(Table	3).

The	TC	contents	of	leaf,	root,	and	branch	displayed	small	inter-
specific	 variations,	 indicated	 by	 small	 coefficients	 of	 interspecific	
variation,	 ranging	 from	4.63%	 to	6.63%	 (Table	3).	Whereas,	 other	
ecological	 stoichiometry	 exhibited	 large	 interspecific	 variations	
(Table	3).	The	ecological	stoichiometry	of	root	(37.01%–	74.81%)	and	
leaf	(20.82%–	33.02%)	presented	the	largest	and	smallest	interspe-
cific	variations,	respectively,	and	those	of	branch	(31.03%–	44.20%)	
presented	 intermediate	 interspecific	variations	 (Table	3).	The	max-
imum	coefficient	of	 the	 interspecific	 variation	was	RN/P	 (74.81%;	
Table	3).	RP	 (68.14%)	and	RC/P	 (60.84%)	also	presented	 relatively	
large	coefficients	of	 interspecific	variation	 (Table	3).	 LP	presented	
the	minimum	coefficient	of	interspecific	variation	(20.82%,	Table	3).

3.3  |  CWM of plant functional traits

At	 the	 community	 level,	 the	 P. massoniana forest presented low 
SRL,	DMC,	and	TD	of	 roots,	branch,	 twig,	and	bark,	LN	and	LN/P	
(Figure	3,	Table	S3).	Among	 the	 three	broad-	leaved	 forests,	 the	P. 
strobilacea	forest	exhibited	the	highest	SLA	and	the	lowest	LN,	LP,	
and	LN/P.	The	Q. fabri and Q. variabilis	forests	displayed	high	DMC	
and	TD	of	roots,	branch,	twig,	and	bark	(Figure	3,	Table	S3).

When	the	codominant	species	in	a	forest	community	displayed	
small	 interspecific	 variations	 in	 PFTs,	 the	 CWM	 and	 the	 arithme-
tic	mean	of	PFT	values	would	be	inevitably	similar.	For	example,	P. 
massoniana and L. glauca in the P. massoniana forest displayed small 
interspecific	 variations	 in	 LTD,	 LDMC,	 LC,	 BrC,	 BrN,	 BrC/N,	 and	
BrC/P,	 thus	 the	CWM	and	 the	 arithmetic	mean	of	 these	PFT	val-
ues	were	 inevitably	similar	 (Figure	4,	Table	S3).	Besides,	when	the	
product	 of	 higher	 (compared	with	 the	CWM)	 trait	 values	 and	 its/
their	relative	biomass	of	species	and	the	product	of	lower	(compared	
to	 the	CWM)	 trait	 values	and	 its/their	 relative	biomass	of	 species	
counterbalanced,	the	CWM	and	the	arithmetic	mean	of	PFT	values	
might	be	coincidently	similar.	For	example,	in	the	P. strobilacea for-
est,	BaT,	LN,	and	LN/P	presented	large	interspecific	variations,	while	
the	CWM	and	the	arithmetic	mean	of	these	PFT	values	were	similar	
resulting	from	the	counterbalances	of	higher	and	lower	trait	values	
(Figure	4,	Table	S3).	Otherwise,	the	CWM	of	PFT	values	were	pref-
erential to represent the trait characteristics at the community level 
(Figure	4,	Table	S3).

4  |  DISCUSSION

Few	PFT	studies	have	been	conducted	in	karst	geomorphology	com-
pared	with	normal	geomorphologies	in	Southern	China,	and	most	of	
the	existing	studies	only	focus	on	leaf	traits,	such	as	LA,	LT,	LDMC,	
SLA,	and	LN/P	(Jiang	et	al.,	2016;	Liu	et	al.,	2014,	2015,	2019;	Pang	
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et	al.,	2019;	Xi	et	al.,	2011).	The	characteristics	of	root,	stem,	branch,	
and	twig	traits	are	rarely	investigated	(Liu	et	al.,	2019;	Pi	et	al.,	2017;	
Yang	et	 al.,	 2020;	Zhong	et	 al.,	 2018),	 and	 those	of	 bark	 traits	 are	
never reported. The present study comprehensively investigates 
the	 characteristics	 of	 18	morphological	 traits	 of	 leaf,	 root,	 branch,	
twig,	and	bark	and	the	C:N:P	ecological	stoichiometry	of	 leaf,	root,	
and	branch	of	dominant	species	in	four	typical	forests	growing	in	a	
trough-	valley	karst	watershed	in	Southwestern	China.	Such	a	study	
can	 fill	 the	 blanks	 in	 the	 PFT	 studies	 in	 karst	 regions	 in	 Southern	
China.

The	 interspecific	variations	 in	PFTs	are	the	main	research	con-
tents	of	PFT	studies	because	interspecific	variations	play	a	dominant	
role	in	the	variations	in	PFTs.	In	the	present	study,	the	coefficients	
of interspecific variation in the morphological traits range from 
9.52%	 to	 96.89%	 (average	 coefficient	 of	 interspecific	 variation	 of	
the 18 morphological traits =	26.88%),	and	those	of	C:N:P	ecological	
stoichiometry	range	from	4.63%	to	74.81%	(average	coefficient	of	
interspecific variation of the 18 ecological stoichiometry =	34.27%)	
(Tables	 2	 and	 3).	 Average	 interspecific	 trait	 variations	 align	 with	
values	found	in	previous	studies	(Jiang	et	al.,	2016;	Liu	et	al.,	2014,	
2015;	Xi	et	al.,	2011).	Leaf	traits	present	large	and	branch	and	twig	

traits present small interspecific variations in previous studies and 
the	present	study.	Interspecific	variations	in	root	traits	often	exhibit	
high	uncertainties	due	to	complex	and	diverse	belowground	habitats	
(Comas	&	Eissenstat,	2004;	Westoby	&	Wright,	2006).	In	the	present	
study,	 the	morphological	 traits	 of	 roots	 display	 small	 interspecific	
variations	compared	to	those	of	leaf,	whereas	the	root	C:N:P	ecolog-
ical stoichiometry displays large interspecific variations compared to 
leaf	 and	branch	C:N:P	ecological	 stoichiometry.	Minimal	 attention	
has	been	paid	 to	bark	 traits.	We	have	 investigated	the	BaT,	BaTD,	
and	BaDMC	of	species	in	karst	vegetation	and	found	that	bark	traits	
present	large	interspecific	variations	compared	to	roots,	branch,	and	
twig traits.

Overall,	 most	 PFT	 studies	worldwide	 focus	 on	 several	 domi-
nant	or	model	species	and	ignore	the	complex	species	composition	
and	the	community	structure	 in	natural	plant	communities.	Thus,	
whether	the	conclusions	derived	from	such	studies	are	applicable	
to	complex	natural	plant	communities	remains	to	be	verified	(Díaz	
et	al.,	2016;	Wright	et	al.,	2004).	The	connection	of	individual-	level	
PFTs	 with	 community	 structures,	 processes,	 and	 functions	 be-
comes	a	hot	and	difficult	topic	in	this	research	field	(Kunstler	et	al.,	
2016;	Reichstein	et	al.,	2014).	In	recent	years,	some	plant	ecologists	

F I G U R E  3 PCA	showing	the	distribution	of	the	morphological	traits	(a)	and	ecological	stoichiometry	(b)	among	different	types	of	
karst	forest	in	Northern	Guizhou	Province,	Southwestern	China.	Axis1	accounted	for	78.57%	(a)	or	72.10%	(b)	of	the	variables,	and	Axis2	
accounted	for	14.48%	(a)	or	26.66%	(b)	of	the	variables.	LT,	leaf	thickness;	LTD,	leaf	tissue	density;	LDMC,	leaf	dry-	matter	content;	SLA,	
specific	leaf	area;	CRTD,	coarse	root	tissue	density;	CRDMC,	coarse	root	dry-	matter	content;	MRTD,	medium	root	tissue	density;	MRDMC,	
medium	root	dry-	matter	content;	FRTD,	fine	root	tissue	density;	FRDMC,	fine	root	dry-	matter	content;	SRL,	fine	root	specific	length;	BrTD,	
branch	tissue	density;	BrDMC,	branch	dry-	matter	content;	TTD,	twig	tissue	density;	TDMC,	twig	dry-	matter	content;	BaT,	bark	thickness;	
BaTD,	bark	tissue	density;	BaDMC,	bark	dry-	matter	content;	LC,	leaf	total	carbon	content;	LN,	leaf	total	nitrogen	content;	LP,	leaf	total	
phosphorus	content;	LC/N,	leaf	carbon–	nitrogen	ratio;	LC/P,	leaf	carbon–	phosphorus	ratio;	LN/P,	leaf	nitrogen–	phosphorus	ratio;	RC,	root	
total	carbon	content;	RN,	root	total	nitrogen	content;	RP,	root	total	phosphorus	content;	RC/N,	root	carbon–	nitrogen	ratio;	RC/P,	root	
carbon–	phosphorus	ratio;	RN/P,	root	nitrogen–	phosphorus	ratio;	BrC,	branch	total	carbon	content;	BrN,	branch	total	nitrogen	content;	BrP,	
branch	total	phosphorus	content;	BrC/N,	branch	carbon–	nitrogen	ratio;	BrC/P,	branch	carbon–	phosphorus	ratio;	BrN/P,	branch	nitrogen–	
phosphorus ratio
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successfully	extrapolated	PFT	characteristics	from	the	organ	and	
the	species	levels	to	community	and	ecosystem	levels	on	the	basis	
of	relative	biomass	or	individual	number	(especially	the	former)	of	
species	in	a	plant	community	(Ali	et	al.,	2017;	Zhang	et	al.,	2018).	
Karst	forests	are	known	for	their	rich	species	composition	and	high	
interspecific	variations	 in	PFTs	 (compared	to	non-	karst	 forests	 in	
the	same	climate	zone).	Thus,	the	direct	use	of	the	arithmetic	mean	
traits to represent the community traits is inappropriate. In the 
present	 study,	we	 have	 calculated	 the	 species	 biomass-	weighted	
mean	community	traits	and	found	that	CWM	traits	are	preferential	
to	represent	the	traits	at	the	community	level,	which	are	indicated	
by	high	biases	between	CWM	and	arithmetic	mean	traits	(Figure	4,	
Table	S3).

PFTs	are	jointly	determined	by	genetic	factors	and	environmen-
tal	conditions	(Weiher	&	Keddy,	1995).	In	the	present	study,	all	se-
lected plants and forests are located in the same karst watershed 
and	share	similar	habitats	and	resource	conditions.	The	P. massoni-
ana forest (the artificial forest) presents the lowest community val-
ues	of	DMC	and	TD	of	 roots,	 branch,	 twig,	 and	bark.	 The	 special	
trait	assembly	indicates	that	P. massoniana is a fast- growing species. 
However,	both	needle-	leaved	and	broad-	leaved	species	and	forests	
in	the	karst	geomorphology	present	low	SLA	and	high	DMC	and	TD	
of	roots,	branch	and	twig	at	the	species	and	the	community	 levels	
compared with those in normal geomorphologies in the same cli-
mate	 zone	 (Chen	 et	 al.,	 2016;	Guo	 et	 al.,	 2019;	 Tang	 et	 al.,	 2016;	
Wang	et	al.,	2015;	Zhong	et	al.,	2018).	The	trait	assembly	of	low	SLA	

F I G U R E  4 Biases	of	community-	weighted	(CWMs)	and	arithmetic	means	of	plant	functional	traits	in	three	karst	forests	in	Northern	
Guizhou	Province,	Southwestern	China.	Values	above	or	below	0	mean	CWMs	are	higher	or	lower	than	arithmetic	means.	Green	bars:	
leaf	traits,	red	bars:	root	traits,	yellow	bars:	branch	traits,	orange	bars:	twig	traits,	blue	bars:	bark	traits.	(a)	Platycarya strobilacea	forest,	(b)	
Quercus fabri	forest,	(c)	Pinus massoniana	forest.	1:	leaf	thickness,	2:	leaf	tissue	density,	3:	leaf	dry-	matter	content,	4:	specific	leaf	area,	5:	
coarse	root	tissue	density,	6:	coarse	root	dry-	matter	content,	7:	medium	root	tissue	density,	8:	medium	root	dry-	matter	content,	9:	fine	root	
tissue	density,	10:	fine	root	dry-	matter	content,	11:	fine	root	specific	length,	12:	branch	tissue	density,	13:	branch	dry-	matter	content,	14:	
twig	tissue	density,	15:	twig	dry-	matter	content,	16:	bark	thickness,	17:	bark	tissue	density,	18:	bark	dry-	matter	content,	19:	leaf	total	carbon	
content,	20:	leaf	total	nitrogen	content,	21:	leaf	total	phosphorus	content,	22:	leaf	carbon–	nitrogen	ratio,	23:	leaf	carbon–	phosphorus	ratio,	
24:	leaf	nitrogen–	phosphorus	ratio,	25:	root	total	carbon	content,	26:	root	total	nitrogen	content,	27:	root	total	phosphorus	content,	28:	root	
carbon–	nitrogen	ratio,	29:	root	carbon–	phosphorus	ratio,	30:	root	nitrogen–	phosphorus	ratio,	31:	branch	total	carbon	content,	32:	branch	
total	nitrogen	content,	33:	branch	total	phosphorus	content;	34:	branch	carbon–	nitrogen	ratio;	35:	branch	carbon–	phosphorus	ratio;	36:	
branch	nitrogen–	phosphorus	ratio
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and	high	DMC	and	TD	of	roots,	branch,	and	twig	at	the	community	
level	in	karst	forests	are	beneficial	to	reduce	transpiration	and	water	
loss and increase the nutrient storage for adaptation to harsh karst 
habitats	with	 high	 temperature,	water	 shortage,	 and	 shallow	 soils	
(Pang	et	al.,	2019;	Yang	et	al.,	2020;	Zhong	et	al.,	2018).

The	 four	 karst	 forests	 have	 slightly	 lower	 community	 LN	 con-
tents	(12.54–	17.72	mg	g−1)	and	significantly	lower	LP	contents	(0.82–	
0.85	mg	g−1)	than	plants	in	China	(LN:	18.6	mg	g−1;	LP:	1.21	mg	g−1) 
and	in	the	world	(20.09	and	1.77	mg	g−1),	 indicating	that	karst	for-
ests	and	plants	present	low	LN	and	LP	contents	(especially	the	latter)	
(Han	et	al.,	2005;	Reich	&	Oleksyn,	2004).	According	to	Koerselman	
and	Meuleman	(1996)	and	Tessier	and	Raynal	(2003),	LN/P	<	14	in-
dicates	N	limitation,	LN/P	>	16	indicates	P	limitation,	and	14	<	LN/P	
<16	indicates	a	colimitation	of	N	and	P.	The	LN/P	value	(14.85)	of	P. 
massoniana	forest	suggests	N	and	P	colimitation,	and	the	LN/P	val-
ues	(20.26–	21.64)	of	the	three	other	broad-	leaved	forests	(20.26–	
21.64)	point	to	P	limitation.

The	forest	restoration	of	degraded	vegetation,	such	as	grasslands,	
tussocks,	and	shrublands	created	by	intensive	human	disturbances,	
has	become	a	formidable	task	in	karst	regions	in	Southwestern	China,	
and	 the	 increases	 in	 the	 biodiversity	 and	 the	C	 storage	 are	 often	
used	to	evaluate	the	restoration	success	(Liu	et	al.,	2011;	Ni	et	al.,	
2015).	PFTs	and	the	trait-	based	community	ecology	theory	provide	
another pathway to predict the success of restoration efforts and 
the	prospects	of	local	vegetation	restoration	(Hedberg	et	al.,	2013;	
Lavorel	&	Garnier,	2002;	Pywell	et	al.,	2003;	Roberts	et	al.,	2010;	
Sandel	et	al.,	2011).	In	the	present	study,	the	P. massoniana forest is 
a	 fast-	growing	forest,	which	can	rapidly	 increase	the	 local	vegeta-
tion coverage and the C storage. The P. strobilacea forest presents 
relatively	high	SLA	and	low	DMC	and	TD	of	roots,	branch,	and	twig	
(compared with Q. fabri forest and Q. variabilis forest). It allocates in-
creased resources to growth and is in the early succession stage. The 
trait	assembly	of	the	Q. fabri and the Q. variabilis forests indicates the 
allocation	of	increased	resources	to	survive	and	the	best	adaptation	
to	harsh	karst	habitats	in	this	watershed.	Understanding	the	adap-
tation strategy of karst forests would help to restore forests in karst 
regions	in	Southwestern	China.

5  |  CONCLUSIONS

Overall,	the	CWMs	rather	than	the	arithmetic	means	of	PFTs	were	
preferential to represent the trait characteristics at the community 
level.	From	the	view	of	plant	functional	traits	at	the	community	level,	
karst forests adopt a conservative survival strategy. Considering 
plant	trait	assembly	and	resource	utilization	would	promote	ecologi-
cal	restoration	in	karst	regions	in	Southwestern	China.
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