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Abstract

The Karst Plateau is characterized by elevated heavy metals (HM), the farmland soils in

the Karst Plateau area is especially vulnerable to HM pollution. To cope with soil HM

pollution and conduct precaution in Karst Plateau, the key bottleneck is to understand

the pollution levels, sources, and priority-control of HM. Hence, geochemical baselines

of HM in farmland soils were established to accurately evaluate the pollution character-

istics. Pollution sources were identified with multivariate statistics, geostatistical

methods, and receptor models. Priority-control of HM were distinguished via health

assessments with a Monte Carlo simulation. A remarkable accumulation of Pb, Sb, Zn,

As, and Cd was observed. Hotspots of As, Cd, Pb, Sb, and Zn clustered in the south-

western region of Hezhang. Pb–Zn related activities, cement product activities, coal

mining, and coal combustion were dominant sources. Both noncarcinogenic risk and

carcinogenic risk followed the order: children>adult females>adult males. As, Cd, and

Pb were found to be priority contaminants in farmland soils in Hezhang.

K E YWORD S

exposure risks, geochemical baseline values, heavy metals, pollution characteristics, source
apportionment

1 | INTRODUCTION

Heavy metals (HM) are highly toxic due to their ubiquitous persis-

tence, non-biodegradability, and bioaccumulation in our surroundings

(Yadav et al., 2019). As soil can serve as both a sink and a source for

HM, thus, it plays an essential role in the cycle of HMs (Lian

et al., 2019). HM contamination in farmland soils is especially impor-

tant because HM not only reduce the soil quality but also endanger
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human health through various pathways (Rinklebe et al., 2020).

Hence, the increasing accumulation of HM in farmland soil poses a

global challenge that has been attracting public concerns (Hu

et al., 2020).

Given the high time and economic cost of remediation of HM-

polluted soils, it is vital to conduct precautions to avoid further soil

HM enrichment in farmland soils (Hu et al., 2016). Understanding the

pollution levels, spatial patterns, and sources could instruct the pre-

vention and reduction in new HM input (Hu et al., 2018; Jafarabadi

et al., 2021). Pollution levels are usually obtained by comparing the

actual concentration of pollutants with corresponding background

values (BV) (Guan et al., 2019). However, spatial heterogeneity and

extensive anthropogenic impacts make it difficult to accurately obtain

these BV (Tian et al., 2017). Geochemical baseline values (GBV) of

HM have been employed as a significant standard for soil quality

assessment (Fernandez-Caliani et al., 2020). The BVs obtained from

the GBV could discern the soil HM that were not influenced by

anthropogenic activities (Guo, Wang, et al., 2021). Hence, GBV should

be established to accurately characterize pollution levels.

Usually, the HM in soils primarily originate from natural and

anthropogenic activities. In uncontaminated areas, HM derive from

natural sources (Hu et al., 2020). Most HMs accumulation in farmland

soils can be attributed to anthropogenic activities, including the appli-

cation of agrochemicals (Zhao, Yan, et al., 2020), e-waste disposal

(Luo et al., 2011), the atmospheric deposition from nonferrous HM

mining and smelting (Jiang et al., 2021), fossil fuel combustion, vehicle

emissions (Sun et al., 2019), and waste incineration (Li et al., 2015).

Indeed, numerous efforts have been made to qualitatively identify the

sources of HM in soils (Hou et al., 2017; Niu et al., 2013). Multivariate

statistical analysis, including principal component analysis (PCA) and

correlation analysis (CA), is widely employed to identify pollution

sources (Long et al., 2021). Quantitative receptor models, positive

matrix factorization (PMF), UNMIX, and absolute principal component

analysis-multiple linear regression (APCS-MLR) can identify and quan-

tify pollutant sources in the atmosphere, sediments, waters, and urban

soils (Mehr et al., 2017; Mohammad et al., 2016; Sakizadeh &

Zhang, 2021; Shen et al., 2021). Recently, receptor models have been

successfully applied in quantifying pollutant sources in farmland soils

(Zhang, Yan, et al., 2021). As different methods have their distinct

characteristics, multivariate statistical analysis, geostatistical analysis,

and receptor models were integrated to identify the sources of soil

HM, providing more convincing results.

Human health risk evaluation is an important tool to distinguish

the priority-control of HM. Traditional health exposure risk is usually

obtained by some models with fixed parameters (Brtnický

et al., 2019), biasing results of health risk evaluations due to individual

variations (Hu et al., 2017; USEPA, 2001). Monte Carlo simulations

(MCS) could reduce uncertainties by offering a health risk probability

to HM (Hu et al., 2017). Hence, to distinguish priority-control HM, the

probabilistic risk of HM has displayed an increasing trend.

The Karst Plateau region is one of the most ecologically fragile geo-

morphologic areas in the World (Zhan et al., 2021). The Southwest

China karst region, the largest continuous karst terrain in the World, is

characterized by elevated HM geological background values (Qin

et al., 2021). Due to the shallowness of soils, low organic matter, and

high pH, farmland soil in this karst region is sensitive to HM pollution

(Liu et al., 2018; Liu, Wu, et al., 2020). Undoubtedly, this is even more

so for farmland soils in the Karst Plateau, due to the much weaker

capability of self-recovery. In the Karst Plateau, previous studies were

mainly revealing the impacts of typical pollution sources, such as Pb–Zn

mining and smelting sites (Duan et al., 2021; Xie et al., 2018). And the

pollution status was only obtained by comparing with provincial BV

(Chen et al., 2020; Zhang, Zhang, & Huang, 2021). Therefore, farmland

soils in the Karst Plateau deserve special attention with respect to HM

pollution. Unfortunately, no related work has been conducted to reveal

geochemical baselines, pollution source, and associated risk in the Karst

Plateau. The lack of such knowledge hinders the implementation of risk

management practices for the farmland soils in the Karst Plateau.

To address the knowledge gap, we undertook a comprehensive

study in Hezhang County in the Karst Plateau. The objectives of this

study were to: (1) quantify the pollution characteristics of HM by

establishing local GBV of HM in farmland soils; (2) apportion pollution

sources by multivariate analysis, geostatistical analysis, and quantita-

tive receptor models; and (3) distinguish the high priority-control of

HM by evaluating human health exposure risks with MCS.

2 | MATERIALS AND METHODS

2.1 | Study area

Hezhang County, characterized by karst landform, is located in north-

western Guizhou Province, Southwest China. The 3250 km2 lies in

the Yunnan-Guizhou Plateau, at approximately >2000 m above sea

level. The climate is subtropical and humid with a mean temperature

of 13.4�C and mean annual precipitation of 854 mm. Hezhang is

known for its rich Pb and Zn deposits and coal resources (Yang

et al., 2006). Numerous quarries are also widely distributed through-

out the region (HZSY, 2017). Centuries of artisanal Pb–Zn smelting

and mining activities prevailed until 2004 in southwestern Hezhang

(Feng et al., 2004). Even in 2020, large amounts of coal (1110,000

tons) and iron ores (677,000 tons) were mined. Additionally, cement

(536,000 tons), cast iron (303,000 tons), and Zn (2222 tons) were also

produced (HZBS, 2020).

2.2 | Sampling procedures and analysis

Surface soil samples (0–20 cm, N = 365) were collected from farm-

lands across Hezhang County in September 2020 (Figure 1). Each

sample was composed of three subsamples. After collection, all the

samples were stored in polyethylene plastic bags, marked, and then

transferred into the laboratory. In the laboratory, all the samples were

freeze-dried for 48 hr (FDU-2110, EYELA, Japan), ground with a mor-

tar and pestle, passed through a 200-mesh sieve, and then preserved

in polyethylene bags for chemical analysis.

For HM analysis, approximately 0.05 g of the soil sample was

weighed, placed in a teflon tube, and digested with a mixture of
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HNO3 and HF at 160�C for 48 h. Once the tubes cooled to room tem-

perature, the samples were evaporated to a nearly-dry state. Then,

ultrapure water and HNO3 were added and kept at 160�C for 16 hr.

Finally, soil As, Cd, Cr, Cu, Mn, Ni, Pb, Sb, and Zn were obtained by

inductively coupled plasma mass spectrometry (ICP-MS, NexION™

300X, Perkin Elmer, USA).

The accuracy of the concentrations was guaranteed by the inclu-

sion of internal standards. Chinese National Soil Reference Materials

(GBW07405), duplicates, and reagent blanks were carried out. Around

93%–108% of the reference material was recovered, which was com-

patible with the certified values, within a relative standard deviation

of less than 5%.

2.3 | Establishment of GBV

Calculating the GBV helps to identify the natural and anthropogenic

sources of HM in soils. These values are also indicative of the level of

HM pollution (Guan et al., 2019). The mathematical statistics (Cheng, Li,

Li, et al., 2014), iterative culling (Wang et al., 2019), and the relative

cumulative frequency distribution (CFD) (Wei & Wen, 2012) methods

were employed to establish the GBV (see: Supporting information).

Finally, the GBV were expressed as the mean values of these methods.

2.4 | Pollution status and ecological risk evaluation

To analyze the pollution characteristics, the single pollution index (Pi),

the geo-accumulation index (Igeo), and the Nemerow pollution index

(PN) were adopted (Cheng, Li, Zhao, et al., 2014; Karim et al., 2015;

Shaheen et al., 2020). Potential ecological risk of HM (Eir ) to ecosys-

tems was also assessed (Kamani et al., 2018). The corresponding

details are shown in Supporting information.

2.5 | Spatial distribution

Color surface maps (Figure 3) of spatial distribution in the concentra-

tions of HM were visualized with the inverse distance weighted (IDW)

method in ARCGIS 10.4 (Esri, Redlands, CA). The IDW is on the

F IGURE 1 Sampling sites in the study area and the outlines of our study approach [Colour figure can be viewed at wileyonlinelibrary.com]
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assumption that the predictions are a linear combination of avail-

able data:

Z xð Þ¼
Xn

i¼1
wizi=

Xn

i¼1
wi, ð1Þ

wi ¼ d�u
i , ð2Þ

Where: Z xð Þ represents predicted value, Zi is at a known point, n is the

total size of known points used in interpolation, di denotes the dis-

tance from point i to the prediction point, and wi is the weight

assigned to point i. The detailed steps to obtain the spatial distribution

map are shown in Figure S1.

2.6 | Moran's I

Moran's I, including global and local Moran's index, was applied as the

indicator of spatial autocorrelation (Zhang et al., 2019). The global

Moran's I could characterize the whole range from perfect negative

spatial autocorrelation (�1) to perfect positive spatial autocorrelation

(+1), respectively. When Moran's I approached 0, it indicates a lack of

spatial autocorrelation. The local Moran's I describes the degree of

local aggregation and differentiation between samples in space (Yuan

et al., 2018).

GlobalMoran0s I¼
Pn

i¼1

Pn
j¼1 xi�xð Þ xj�x

� �

S2
Pn

i¼1

Pn
j¼1wij

, ð3Þ

LocalMoran0s I¼ xi�xð Þ
S2

Xn

j¼1
wij xj�x

� �
, ð4Þ

Where: n represents the sampling size; xi and xj represent the mea-

sured values of sampling sites i and j, respectively; x refers to the

mean value of x, S2 denotes the variance of samples; and wij repre-

sents the distances between sites i and j. The spatial autocorrelation,

obtained as the global Moran's I and local Moran's I, was gathered

using ARCGIS 10.4 and GEO DA (http://geodacenter.github.io/). The

detailed steps to obtain the spatial autocorrelation maps (both the

global and local Moran's I) are shown in Figure S1.

2.7 | Source apportionment

PCA and CA were used to initially identify the dominant sources, and

then receptor models were applied to quantitatively identify the

sources.

2.7.1 | APCS-MLR

Kaiser–Meyer–Olkin (KMO) and Bartlett's sphericity tests were

adopted to assess if the dataset was appropriate for PCA. Normalized

factor scores and eigenvectors were used to conduct APCS-MLR to

quantify sources (Guo et al., 2004). All potential sources were

assumed to be linearly correlated with the final input pollution at the

recipient site.

Zi,k ¼ Ci,k�μið Þ
σi

ð5Þ

Where: Ci,k indicates the concentration of the individual element i at

location k, and μi and σi denote the mean concentration and the stan-

dard deviation of element i in all samples, respectively. Next, the fol-

lowing equations were used:

Z0ð Þk ¼
0�μið Þ
σi

¼�μi
σi
, ð6Þ

A0ð Þf ¼
Xi

i¼1

Sfi Z0ð Þi, ð7Þ

Where: A0ð Þf refers to the score of the principal component when the

concentration is zero, and Z0 and S denote the standard values when

the concentrations are set to zero and the factor score coefficient,

respectively. The scores of the absolute principal component (APCS)

were calculated according to the following equation:

APCSf ¼ AZð Þif � A0ð Þf , ð8Þ

Where: AZ represents the standardized factor scores obtained by con-

ducting a PCA on standardized scores. The estimation of source con-

tribution to individual elements involved a multiple linear regression:

xij ¼
Xn
p¼1

APCSp�bpj
� �

, ð9Þ

Where: bpj denotes the coefficient of multiple regression of the pth

pollution source; and APCSp refers to the APCS score. According to

the APCS-MLR, the contribution rate of every source could be

obtained as the mean of APCSp�bpj. To circumvent this concern, all

the negative values were transformed into positive values (Liu, Dong,

et al., 2020).

2.7.2 | PMF model

The PMF model is a mathematical approach to quantify the contribution

of sources to samples. PMF 5.0 could resolve the concentration matrix

into two matrices: factor contributions and factor profiles. The factors

were analyzed on the basis of the following equation (Guan et al., 2019).

xij ¼
Xp

k¼1
gikfkjþeij, ð10Þ

Where: xij indicates the concentration of HMs, i represents the sample

number, j denotes the chemical species, p refers to the source num-

ber, e denotes the error of each sample, u refers to the uncertainty

calculated with the following equations:

1692 HAN ET AL.
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For xij ≤MDL, uij ¼5
6
�MDL, ð11Þ

For xij >MDL, uij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ�xij
� �2þ 0:5�MDLð Þ2

q
, ð12Þ

Where: MDL refers to the method detection limit of each element,

and σ refers to the relative standard deviation.

2.7.3 | UNMIX

In UNMIX model, the singular value decomposition technique was

employed to reduce the dimensions and determine the source num-

bers. The source contributions could be modeled by the following

equation (Li et al., 2021):

xij ¼
Xp

l¼1

Xp

k¼1
UikDkl

� �
Vljþϵij, ð13Þ

Where: xij refers to the concentration of HM; U, D, and V represent

the n�p, p�p, and p�m matrices, respectively; ϵij indicates the error

term comprising variability in xij, which is not considered by the first

p principal component (Li et al., 2014).

2.8 | Health exposure risk

Oral ingestion, inhalation, and dermal contact are the major pathways

of exposure to HM. These have been considered and calculated based

on the risk assessment models recommended by the USEPA (Wang

et al., 2020). The exposure risks of NCR and CR were obtained by

MCS using the CRYSTAL BALL software. The specific RfD and SF

values for different HM are displayed in Table S1.

ADDi
Ing ¼

Ci� IRS�EF�ED
BW�AT

�10�6, ð14Þ

ADDi
derm ¼Ci�SA�SL�ABF�EF�ED

BW�AT
�10�6, ð15Þ

ADDi
inh ¼

Ci� IRa�EF�ED
BW�AT�PEF

, ð16Þ

HI¼
X

HQ¼
XADDij

RfDij
, ð17Þ

TCR¼
X

CR¼
X

ADDij�SFij, ð18Þ

Where: ADDi
Ing, ADDi

derm, and ADDi
inh refer to the average daily intake

dose of i via oral ingestion, dermal contact, and inhalation, respec-

tively, HQ represents the average hazard quotient, while Ci refers to

the concentration (mg kg�1) of HM i. Other parameters are described

in Table S2. The addition of one category of resident HQ procured a

hazard index (HI), displaying the exposure risk (Wu et al., 2020). An HI

or HQ >1 was indicative of a potential adverse health risk (Mohseni

Bandpi et al., 2018). The summation of all the potential risks of indi-

vidual CR yielded the TCR value (Huang et al., 2021). If the CR or TCR

>1E-4, it indicated a CR; if the CR or TCR <1E-4, there is no signifi-

cant CR; and if the CR or TCR <1E-6, there was a negligible risk

(USEPA, 2009).

2.9 | Data processing and statistical analysis

All data were processed using Microsoft EXCEL 2016. SPSS 23 and

Microsoft EXCEL 2016 were used to obtain the APCS-MLR calcula-

tions. ORIGIN 2021 was used to prepare the figures. The spatial inter-

polations (IDW) were performed in ARCGIS 10.4. The spatial

autocorrelation (the global Moran's I and local Moran's I) was gathered

using both ARCGIS 10.4 and GEO DA.

3 | RESULTS

3.1 | HMs in farmland soils

The K-S test results displayed that Cr and Cu followed a lognormal

distribution, while the remaining HMs followed a skewed distribution

(Table 1). The geometric mean values of Cr and Cu, and the median

values of As, Cd, Mn, Ni, Pb, and Zn were 119 and 79.5 mg/kg, 21.0,

1.99, 1112, 62.4, 44.6, and 223 mg kg-1. Except Sb, all the other HM

were greater than their corresponding BV (Table 2).

3.2 | Establishments of GBV

The local GBV were established to accurately assess pollution evalua-

tion (Table 2). Generally, the GBV of Cd, Cr, Cu, Mn, Ni, and Zn

(Figure S2 and Table 2) were 2.47-, 1.12-, 2.16-, 1.36-, 1.54-, and

1.90-times greater than those of the Guizhou Province BV

(CNEMC, 1990). The GBV were higher than those in the global conti-

nental crust (Wedepohl, 1995). Moreover, the GBV were higher than

those obtained in Huainan, Ningbo, the Hexi Corridor, and Jieyang

City in China (Jiang et al., 2020; Lu et al., 2021; Niu et al., 2019; Wang

et al., 2020); and various parts of Europe (Mico et al., 2007). This con-

firmed the high BV of HM in this Karst Plateau region.

3.3 | Pollution levels

Pollution levels (Pi, Igeo, and PN) of HMs were calculated on GBV. Pol-

lution levels of different HMs followed the order of:

Pb > Sb > Zn > As>Cd > Cu > Cr > Mn > Ni (Figure 2). Overall, the

high Pi values (>1) of all HM suggested widespread pollution. The Pi

values of Pb, Sb, Zn, As, and Cd were 19.6, 6.46, 6.14, 2.70, and 2.29,

respectively. Notably, approximately 33.2% of Pb, 27.4% of Sb, 18.1%

of Zn, 16.7% of Cd, 12.6% of As, and 10.4% of Cu were considered to

be heavy contamination (Table S3). Results of PN ranged widely from

HAN ET AL. 1693
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0.621-'safe' to 1071-'heavily contaminated' (Figure S3). The mean

potential ecological risk index (RI) was 475, with a wide range from

34.2 to 286,864. Moreover, the Eir values of Cd (68.8), Pb (98.0), and

Sb (259) indicated the moderate potential ecological risk with Cd; con-

siderable potential ecological risk with Pb; and high potential ecologi-

cal risk with Sb (Figure S4 and Table S6).

3.4 | Spatial distribution

Generally, most HMs displayed a distinguished spatial difference in

the study area (Figure 3). Notably, the hotspots of As, Cd, Pb, Sb, and

Zn were mainly in the southwestern and middle parts of Hezhang

County, showing a decreasing trend from the southwestern to the

northern region. The global Moran's I values showed significant posi-

tive spatial autocorrelations for As, Cd, Cu, Mn, Ni, Pb, Sb, and Zn (-

Figure S5), with Moran's I values of 0.414, 0.510, 0.274, 0.144, 0.238,

0.708, 0.586, and 0.590, respectively. Among them, Sb had the

highest Moran's I value, and Ni had the lowest Moran's I value. More-

over, the z scores of As, Cd, Cu, Mn, Ni, Pb, Sb, and Zn were >2.58,

with all p < 0.01. This indicated a positive correlation in their spatial

autocorrelations. However, Moran's I value of Cr was 0.0897 (with

z = 0.264 and p = 0.791), indicating random distribution of Cr (-

Figure S5). The local Moran's I values of As, Cd, Cr, Cu, Mn, Ni, Pb, Sb,

and Zn were 0.023, 0.397, 0.215, 0.127, 0.166, 0.203, 0.202, 0.110,

and 0.326, respectively.

3.5 | Source apportionments

Overall, except for Cr and Ni, significant positive correlations were

observed between all the other HMs (Figure S6). Strongly positive

relationships were observed between the following pairs: As–Pb, As–

Sb, Cd–Pb, Cd–Sb, Cd–Zn, Cr–Ni, Pb–Sb, Pb–Zn, and Sb–Zn

(r = 0.601–0.941, p < 0.01). Moderate positive correlations

(r = 0.302–0.499, p < 0.01) were found for As–Cu, As–Zn, Cu–Mn,

TABLE 1 Concentrations of HM in soils from farmland in Hezhang County

Categories

As (mg

kg�1)

Cd (mg

kg�1)

Cr (mg

kg�1)

Cu (mg

kg�1)

Mn (mg

kg�1)

Ni (mg

kg�1)

Pb (mg

kg�1)

Sb (mg

kg�1)

Zn (mg

kg�1) pH

Arithmetic mean 48.1 3.74 136 102 1210 64.2 623 7.95 1160 6.77

Geometric mean 20.7 2.13 119 79.5 997 58.1 75.9 2.37 294 6.66

Median 21.0 1.99 115 82.0 1112 62.4 44.6 1.91 223 7.05

Standard

deviation

262 7.47 79.4 81.5 777 27.7 3331 33.5 5385 1.17

Variation

coefficient (%)

545% 200% 58.4% 79.8% 64.2% 43.2% 534% 421% 464% 17.3%

Skewness 18.1 6.79 2.12 2.97 3.00 0.877 10.1 12.3 8.52 �0.543

Kurtosis 340 53.5 6.19 18.6 21.6 1.93 122 184 78.2 �1.041

Range 4953 75.2 531 828 8414 193 47,420 544 61,594 4.060

Minimum 0.297 0.289 29.9 11.5 65.1 7.23 10.2 0.265 14.6 4.21

Maximum 4953 75.5 561 839 8479 200 47,430 544 61,609 8.27

Distribution Skew Skew Lognormal Lognormal Skew Skew Skew Skew Skew Skew

TABLE 2 Geochemical baselines derived from mathematical statistics, iterative culling, and CFD

Element

Mathematical
statistics

(mg kg�1)

Iterative
culling
(mg

kg�1)

Cumulative
frequency

(mg kg�1)

Mean value of
geochemical
baselines

(mg kg�1)

Guizhou
geochemical
baselines in Guizhou
(mg kg�1)

(CNEMC, 1990)

The mean China
geochemical
baselines (mg kg�1)

(Wang et al., 2016)

The CGB high
background
baselines (mg kg�1)

(Wang et al., 2016)

As 21.0 16.3 16.0 17.8 20 9 14

Cd 1.91 1.93 1.06 1.63 0.659 0.137 0.197

Cr 120 105 100 108 95.9 53 68

Cu 79.5 61.4 66.3 69.1 32 20 27

Mn 1113 1114 1015 1081 794 569 725

Ni 62.4 61.6 57.2 60.4 39.1 24 31

Pb 42.1 26.2 27.1 31.8 35.2 22 28

Sb 1.79 0.997 0.889 1.23 2.24 0.73 1.08

Zn 220 181 165 189 99.5 66.0 84.0
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Cu–Ni, Cu–Pb, Cu–Sb, Cu–Zn, Mn–Ni, and Mn–Sb. Significant corre-

lations in these pairs indicated that these elements may share com-

mon sources (Guo, Wang, et al., 2021).

PCA yielded four principal components, whose eigenvalues

were >1, accounting for 86.6% of the total data variance. Of

them, PC1 explained 43.7% of the total data variance, mainly

loaded with As, Cd, Pb, Sb, and Zn. PC2 explained 23.0% of the

total data variance, loaded with high Ni (Table S7). The loadings

of Cu and Mn were compatible in PC1 (0.555 and 0.658) and

PC2 (0.658 and 0.401), respectively. PC3 explained 10.7% of the

total variance, with the high loadings of Cr and Ni. Moreover, Ni

had high loadings in both PC2 (0.721) and PC3 (0.541). Further-

more, PC4 explained 9.20% of the total variance and was only

loaded with As. Results of CA and PCA were inconclusive, and

receptor models were further employed to quantify the different

sources of HM.

Factor 1 was primarily determined by Pb and Zn (Figure 5). Factor

2 was heavily loaded with Cu and Mn. Factor 3 is dominated by Cd

accumulation, followed by Zn. F4 was dominated by Cr and

Ni. Additionally, F5 was heavily loaded with As and Sb in results of

PMF and UNMIX.

F IGURE 3 Spatial distributions of
(a) As, (b) Cd, (c) Cr, (d) Cu, (e) Mn, (f) Ni,
(g) Pb, (h) Sb, and (i) Zn [Colour figure can
be viewed at wileyonlinelibrary.com]

F IGURE 2 The values of single pollution index (Pi) (a) and geo-accumulation index (Igeo) (b) of different elements in soil samples. UC,
uncontaminated; LC, low contaminated; MC, moderately contaminated; HC, high contaminated; UP, unpolluted; UP/MP, unpolluted/moderately
polluted; MP, moderately polluted; MP/HP, moderately/heavily polluted; HP, heavily polluted; HP/EP, heavily polluted/extremely polluted; EP,
extremely polluted [Colour figure can be viewed at wileyonlinelibrary.com]
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3.6 | Health exposure risks

In different groups (children, adult females, and adult males), the NCR

and CR of residents' exposure to soil HMs via the three exposure

pathways were calculated using MCS (Ginsberg & Belleggia, 2017; Xu

et al., 2020). In contrast to adults, children were exposed to a higher

NCR and CR, as the mean values of the HI and TCR displayed the

order: children>adult females>adult males (Figure 6). And all the mean

HQs were lower than 1. The mean HQs of all population categories in

descending order are as follows: As > Pb > Cr > Sb > Mn > Cd >

Ni > Cu > Zn. Generally, the high CR values of As, Cd, Cr, and Pb were

above the acceptable threshold value of 1E-6 (Figure 7), implying a

potential CR (Huang et al., 2021). Importantly, the mean CR of As in

children (1.59E-4) was higher than the unacceptable threshold value

(1E-4).

4 | DISCUSSION

4.1 | HM accumulation

Among these HM, the median value of Cd was above the risk screen-

ing value of 0.3 mg kg�1 but below the risk intervention value of 3 mg

kg�1 (Table 1) (MEPRC, 2018). Considering the maximum values of

As, Cd, and Pb were 41.3-, 25.2-, and 67.8-times higher than their

corresponding risk intervention values, respectively (MEPRC, 2018).

And the maximum values of Cr, Ni, and Zn were greater than the risk

screening values of 200, 100, and 250 mg kg�1, respectively. Pollution

by these HM cannot be ignored. The high variation coefficients (>1)

of As, Cd, Pb, Sb, and Zn (Table 1) implied a relatively high spatial vari-

ability and impacts from local anthropogenic activities (Wu

et al., 2021). The Cd, Cr, Cu, Mn, Ni, and Zn values were higher than

those in the karst region—Yunnan Province, Southwest China (Wang

et al., 2021); and non-karst regions-Jieyang City, South China (Jiang

et al., 2020); Aghili Plain and Tehran, Iran (Ahmadi et al., 2019; Hani &

Pazira, 2011); and Alicante and Galicia, Spain (Franco-Uria

et al., 2009; Mico et al., 2007); Jeddah City, Saudi Arabia (Balkhair &

Ashraf, 2016). However, the As and Cd concentrations were lower

than those in Ethiopia (Gebeyehu & Bayissa, 2020). The elevated

coefficients of skewness for As, Pb, Sb, and Zn indicated that these

four elements may be influenced by anthropogenic inputs (Table 1) (Li

et al., 2020). The high kurtosis of As, Cd, Pb, Sb, and Zn suggested

that bulks of the monitoring data clustered around their mean values

(Jin et al., 2019).

For Igeo, the mean values of Pb (0.670), Sb (0.359), and Zn

(0.0525) were positive, demonstrating that the soils of this study area

were unpolluted to moderately polluted by these three metals

(Figure 2b and Table S2). Notably, 37.5% of the samples were in the

'heavily contaminated' category (Table S5). These results suggested

that the Pb, Sb, and Zn were more heavily contaminated than the

other HMs. The mean values of Eir for HMs followed the order of

Sb>Cd>Pb>As>Cu>Ni >Zn>Cr >Mn. Of these, Sb in the farmland

soils had extremely high potential ecological risk; Cd and Pb had

considerable potential ecological risk (Table S6). Approximately 11.8%

of the total study sites had considerable potential ecological risk,

4.66% high potential ecological risk, and 6.30% extremely high poten-

tial ecological risk. Thus, Sb, Pb, and As were the main HM causing

ecological risk in farmland soils, and several points may pose

extremely high ecological risks.

4.2 | Spatial distribution of HM

As most of the hotspots were densely distributed in the middle-

southwest part of the study area (Figure 3), in these parts, intensive

industrial activities, including Pb–Zn mining and smelting, coal mining,

and cement products activities (Briki et al., 2015), were distributed

within the hotspots. The distribution of these peak values coincided

with the distribution of intensive industrial activities (Figure 1), indi-

cating industrial activities may be the key emission sources (Zhou

et al., 2020). Furthermore, the prevailing northeasterly wind might

prevent the migration of As, Cd, Pb, Sb, and Zn from southwestern to

northern regions (HZSY, 2017). However, Cr, Mn, Ni, and Cu demon-

strated different distribution characteristics with values peaking in the

northwest, northeast, and the belt from the middle region to the

southeastern edge (Figure 3), implying other pollution sources may act

as key sources.

Results of the global Moran's I showed that most of them were

spatial autocorrelated, which could instruct the pollution management

in some typical pollution sites. The low-high sites were primarily

located in the surroundings of the high-high sites, which was corrobo-

rated by previous studies (Jia et al., 2019; Tepanosyan et al., 2019).

For As, Cd, Cu, Mn, Pb, Sb, and Zn, most of the high-high clustering

were densely distributed in the southwestern part of Hezhang. This

indicated that these HM may be dominated by similar sources (Wu

et al., 2019). Actually, most Pb–Zn mining and smelting activities, as

well as coal mining and iron smelting activities, were intensely distrib-

uted in the southwestern region (Zhang et al., 2017). Hence, high

priority-management area could be proposed according to the distri-

bution of high-high sites (Zhang et al., 2019). Moreover, the low-low

sites for As, Cd, Pb, Sb, and Zn were mainly observed in the north part

of Hezhang. Similar to the results of spatial interpolation (Figure 3),

As, Cd, Pb, Sb, and Zn diminished with the distance away from the

southwest edge. This may imply a significant influence from these

industrial activities (Zhao, Zhang, et al., 2020). Additionally, for most

sites, the results of the local Moran's I were not significant (Figure 4).

4.3 | Source apportionment

As mentioned above, four factors were extracted by APC-MLR

(Figure 5), and five factors were resolved by PMF and UNMIX. Over-

all, all the factors of PMF were positively correlated (r = 0.867–0.974,

p < 0.01) with those of UNMIX (Table S8). This suggested the occur-

rence of the same profiles of pollution sources. Although no signifi-

cant correlations for Factor 1 and Factor 2 of APCS-MLR with their
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corresponding factors of PMF or UNMIX, their similar heavy loadings

could be attributed to the same source. Despite the low contributions

of APCS-MLR and the lack of significant correlation of Factor 3 of

APCS-MLR with those of PMF and UNMIX, the heavy loading of Fac-

tor 3 of all these receptors was heavily loaded with Cd; it may also be

interpreted as a pollution source. Factor 4 of the APCS-MLR had a

positive correlation with those of PMF (r = 0.876, p < 0.01) and

UNMIX (r = 0.848, p < 0.01), and high loadings of Cr were observed

for all receptor models. Factor 5 was resolved only in PMF and

UNMIX with high loadings of As and Sb indicating a similar source.

For APCS-MLR and PMF, Factor 1 was as major contributor

(Figure 5), and for UNMIX, Factor 2 was the greatest contributor.

Considering the contribution rates and ratios of these different fac-

tors, Factor 5 of PMF and UNMIX may be derived from Factor 1 of

APCS-MLR.

Factor 1 was mainly loaded with Pb, Sb, and Zn. As mentioned

above, Hezhang County is famous for its Pb–Zn mining and smelting

activities (Bi et al., 2006). Interestingly, the hotspots of Pb, Zn, As, and

Sb coincided with the spatial distribution of Pb–Zn mining, smelting,

and cement activities in the southwest regions of Hezhang (Figure 1).

As atmospheric precipitation is a dominant source of Pb and Zn, the

Pb- and Zn-enriched particles emitted from smelters could impact soil

HM concentrations (Xu et al., 2021). The unsuitable disposal of the

smelting waste has led to their accumulation in the surrounding envi-

ronments (Briki et al., 2015). Moreover, in the southwest edge of

Hezhang, the cement-related industrial activities with the annual pro-

duction of 0.536 million tons of cement could substantially contribute

to Pb and Zn accumulation in nearby farmlands (Chai et al., 2021;

HZBS, 2020). Hence, Factor 1 could be dominated by Pb–Zn mining

and other smelting and cement activities. Factor 2 was determined by

Cu and Mn. As an inherent component of additives in livestock diets

(Guan et al., 2018), Cu could be transferred to animals and then farm-

land via the common agricultural by-products of manure and cattle

slurry (Pan et al., 2016), which are common and necessary agricultural

practices in the study area. Moreover, the application of fertilizers and

pesticides could also contribute to Cu accumulation in farmland soils

(Liang et al., 2017; Wu et al., 2020). Mn, an essential element in crops,

is widely included in fertilizers (Deng et al., 2020). Together with the

widespread distribution of Cu (Figure 3), hence, we confirmed that

Factor 2 could be an agricultural source. Factor 3 was primarily loaded

with Cd. Previous studies have proposed that Cd could be released

from coal combustion and iron smelting (Guo, Zhang, & Wang, 2021).

F IGURE 5 Factors contribution by (a) APCS-MLR, (b) PMF, (c) UNMIX; and the overall contributions resolved by (d) APCS-MLR, (e) PMF, and
(f) UNMIX [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 Local Moran's I of As, Cd, Cr, Cu, Mn, Ni, Pb, Sb,
and Zn [Colour figure can be viewed at wileyonlinelibrary.com]
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Given the facts that high amounts of coal mining and iron casting, Fac-

tor 3 could be classified as a source occurring from iron smelting and

coal burning (HZBS, 2020; HZSY, 2017). Factor 4 was dominated by

Cr and Ni. Robust evidence showed that Cr and Ni mainly originated

from lithogenic components: they were usually considered as indica-

tors of natural sources (Guo, Zhang, & Wang, 2021; Pan et al., 2016).

Considering the high Cr and Ni loadings of Factor 4, thus, Factor 4 rep-

resents natural source, including soil parent materials and pedogenesis

(Fei et al., 2020). Since Cr and Ni were considered as indicators of nat-

ural sources (Guo, Wang, et al., 2021), and the weak relations with the

other HM, thus, other HM may originate from anthropogenic sources

rather than natural sources. Factor 5 was characterized by As and

Sb. As mentioned above, intensive coal mining activities producing

approximately 1.11 million tons of coal in Hezhang annually confirmed

a high presence of As in coal (Yudovich & Ketris, 2005; Zhao

et al., 2008). Since Sb is one of the most mined metal in Hezhang, the

associated deposition of Sb in surrounding farmlands is expected (Ao

et al., 2019). Furthermore, hotspots of As and Sb were found in the

southwestern parts of Hezhang, where most Sb mining and coal min-

ing also occurred (Figures 1 and 3). Thus, Factor 5 could be linked to

coal and Sb mining.

All the predicted results of the receptor models were in accor-

dance with the observed values (Table S9). Despite the differences

between models in resolving the individual elements, a consensus was

reached. UNMIX was more accurate in explaining Cd, Pb, Sb, and Zn,

with an r2 >0.97 and an error percentage ≤2.05%. APCS-MLR was

more accurate in resolving Cr, Cu, Mn, and Ni, with an r2 >0.831 and

error percentages ≤5.02%. PMF models were the most accurate in
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F IGURE 6 Probability distributions for hazard quotient (HQ) of (a) As, (b) Cd, (c) Cr, (d) Cu, (e) Mn, (f) Ni, (g) Pb, (h) Sb, (i) Zn, (j) hazard index
(HI). The pink lines represent HQ or HI for children, blue lines for HQ or HI for female (adult), green lines for male (adult) [Colour figure can be
viewed at wileyonlinelibrary.com]
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explaining the sources of As with r2 = 1 and an error percentage of

3.12%. Owing to the differences in algorithms in the models, differ-

ences in source apportionment results were also expected (Guan

et al., 2019). Therefore, to obtain more convincing results, different

models should be applied simultaneously.

4.4 | Health risk assessment

Although the mean HQ in all categories was <1, high As HQs >1 could

be observed in children-6.43%, adult females-1.83%, and adult males-

0.023%, respectively (Figure 6). This also indicated that the NCR from

As was >1. Similarly, although the mean Pb HQs for children, adult

females, and males were <1, the Pb HQs >1 for children, adult

females, and adult males were approximately 4.08%, 1.91%, and

0.16%, respectively. This also indicated that the NCR from Pb was >1

(Figure 6). Thus, As and Pb were the dominant contributors to the

NCR from HM. As with the individual elements, a similar trend was

observed with the mean HI (<1) of children (8.08E-1), adult females

(4.58E-1), and adult males (1.00E-1) were <1 (Table S10). However,

the 90th percentile of HI for children (21.1%), 95th percentile of adult

females (6.61%), and 99.9th percentile of HI for adult males (0.229%)

were >1. This indicated that the NCR from these HM was >1.

The contribution of HMs to the CR followed the order of

As > Cd > Pb > Cr > Ni. The 75th TCR for children and adult females

and the 99th TCR value for adult males were > 1E-4 (Table S11). Specifi-

cally, the As CR values for children (47.8%), adult females (27.1%), and

adult males (2.10%) were > 1E-4. The Cd CRs for these groups were

16.1%, 6.24%, and 0.212%, respectively. The Pb CRs for these groups

were 0.741%, 0.277%, and 0.009%, respectively. Collectively, As, Cd,

and Pb were found to be high-priority HMs. Furthermore, the mean TCR

of children and adult females was up to 2.33- and 1.32-times higher than

the acceptable threshold value of 1E-4 (Figure 7f). Moreover, 100% of

TCR values for children and adult females and 99.97% of TCR for adult

males were higher than the threshold value of 1E-6. Particularly, 74.9%,

46.6%, and 3.27% of TCR values for children, adult females, and adult

males exceeded the acceptable carcinogenic threshold value of 1E-4.

Collectively, these data were indicative of the serious CR from HM in

farmland soils in Hezhang.

Based on the results of the receptor models (Table S9), the health

risks by different sources, including NCR and TCR, were also investi-

gated. Although different exposure levels in different groups, same

contribution rates of different factors could be expected due to the

same contribution rates to HM in soils (Huang et al., 2021). The total

NCR (Figure S7) was dominated by Factor 5 (resolved as coal mining

and Sb mining), followed by Factor 1 (Pb–Zn mining and smelting).

Moreover, for CR, Factor 5 (57.6%) and Factor 3 (25.7%) had compara-

bly higher contribution rates. Since these factors were heavily loaded

with As, Cd, and Pb, these elements were deemed as priority-control

HM. In this study, only total concentrations of HM were determined;

the form and bioavailability of HM should be taken into account as the

toxicity of HM greatly depend on them (Varol et al., 2021).

5 | CONCLUSIONS

Overall, our findings showed that the local GBV of Cd, Cr, Cu, Mn, Ni,

Pb, and Zn were greater than the Guizhou Provincecial BV,
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F IGURE 7 Probability distributions for carcinogenic risk (CR) of (a) As, (b) Cd, (c) Cr, (d) Ni, (e) Pb, and (f) total carcinogenic risk (TCR) [Colour
figure can be viewed at wileyonlinelibrary.com]
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highlighting the necessity to establish regional GBV when conducting

regional work in the Karst Plateau regions. Except for Cr, all the other

HM clustered in their distribution. The most contaminated sites aggre-

gated on the southwestern edge of Hezhang County. Results of

receptor models showed that metal ore mining and smelting, coal min-

ing, cement products activities, and related industrial activities were

the main pollution sources in the study area. As, Cd, and Pb were

deemed as priority-control HM in farmland soils in the study area, due

to the high human exposure risks. The identification of sources and

locations can be directly applied by local policymakers for public

health protection, land use planning, and risk mitigation.
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