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A B S T R A C T   

The Youjiang Basin in Southwest China is the world’s second largest Carlin-type gold (Au)-producing region. 
However, the source of reduced sulfur that accounts for Au transport in ore-forming fluids remains controversial. 
Finely characterizing the sulfur isotopic compositions (δ34S values) in micron-scale zonation of Au-bearing pyrite 
is the key to clearly identify sulfur source. Here, we used high-resolution nanoscale secondary ion mass spec
trometry (Nano-SIMS) to characterize the temporal variation in δ34S values and its relationship with metal 
contents across Au-bearing pyrite from the Linwang and Badu deposits in the Youjiang Basin, with the aim of 
monitoring the source and evolution of reduced sulfur in auriferous fluids. The Au-bearing pyrite rims in the 
Linwang deposit contain three growth stages that record episodic injections of Au- and As-rich fluids. Within 
these rims, the δ34S values vary inversely with Au concentrations. The inner rims with the high Au contents have 
δ34S values of − 1.7‰ to +3.3‰ that are comparable to those of magmatic sulfur. The outer rims with decreasing 
Au contents have δ34S values of +1.3‰ to +15.7‰ that gradually approach those of pre-ore pyrite in the host 
rock. Such a variation indicates that the reduced sulfur in the initial Au-bearing ore-forming fluids was primarily 
originated from deep magmatic-hydrothermal systems while the host rock-derived 34S-enriched sulfur increas
ingly dominated through fluid-rock interactions during mineralization. In contrast, Au-bearing pyrite from the 
Badu deposit has positive δ34S values ranging from +9.0‰ to +25.8‰, which overlap those of diagenetic pyrite 
in the Devonian sedimentary rocks. Combining the intimate spatial association between Au mineralization and 
the Devonian strata, we propose that the initial ore-forming fluids have leached substantial sulfur from the 
Devonian strata. Significant contaminations of sedimentary sulfur erased the primary sulfur isotopic signals of 
the initial auriferous fluids. Our interpretations of these two deposits may also apply to other Carlin-type Au 
deposits in the Youjiang Basin, where δ34S values of Au-bearing pyrite show host rock-dependent variations. This 
study demonstrates that high-resolution Nano-SIMS sulfur isotope and elemental analysis of Au-bearing pyrite is 
a potent tool for tracing the source and evolution of reduced sulfur in ore-forming fluids for sedimentary-host Au 
deposits worldwide.   

1. Introduction 

Carlin-type gold deposits (CTGDs) are one of the most important 
types of hydrothermal Au deposits, with prime examples found in 
Nevada, USA, and the Youjiang Basin, Southwest China. These two re
gions are endowed with approximately 8000 and 1000 tons of Au, 
respectively, accounting for 6 % of annual global Au production (Cline 

et al., 2005, 2013; Hu et al., 2017, 2020a; Muntean and Cline, 2018). 
The characteristics of CTGDs have been well-established after decades of 
extensive attentions from economic geologists and mining companies, as 
reviewed by Hofstra and Cline. (2000), Hu et al. (2002, 2017), Cline 
et al. (2005), Muntean and Cline. (2018), Cline. (2018) and Su et al. 
(2018). However, the ultimate sources of ore-forming components 
(fluids, reduced sulfur, and metals) remain highly debated partly due to 
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the fine-grained nature of ore minerals and the complex evolution of 
auriferous fluids from their source to the final site of mineralization. 
Suggested candidates include sedimentary strata leached by deep- 
circulating meteoric water or basinal fluids (Hofstra et al., 1999; 
Emsbo et al., 1999; Hu et al., 2002; Emsbo and Hofstra, 2003; Tosdal 
et al., 2003; Gu et al., 2012), metamorphic dehydration of black shale 
hosts or deep crustal rocks (Cline and Hofstra, 2000; Cline et al., 2005; 
Large et al., 2009, 2011; Su et al., 2009, Su et al., 2018), and deep 
magmatic-hydrothermal systems (Kesler et al., 2005; Barker et al., 2009; 
Muntean et al., 2011; Large et al., 2016; Xie et al., 2018; Jin et al., 2020). 

Gold is predominantly transported as hydrosulfide complexes in ore- 
forming fluids of Carlin-type Au mineralization systems [Au(HS)2

− and 
AuHS; Simon et al., 1999; Williams-Jones et al., 2009; Pokrovski et al., 
2014], and then incorporated into the lattice of arsenian pyrite as 
‘invisible’ forms (Simon et al., 1999; Palenik et al., 2004; Reich et al., 
2005; Su et al., 2012). Thus, monitoring the change in sulfur isotope 
compositions (δ34S) and its relationship with metal contents across 
arsenian pyrite could advance our understanding of the source and 
evolution of reduced sulfur in auriferous fluids (Kesler et al., 2005; 
Barker et al., 2009; LaFlamme et al., 2018). However, Au-bearing pyrite 
in CTGDs commonly contains a core-rim texture with Au-bearing rim 
having oscillatory zoning of micron-scale (Hu et al., 2002, 2017; Barker 
et al., 2009; Su et al., 2012, 2018; Xie et al., 2018; Yan et al., 2018; Li 
et al., 2020). Conventional bulk isotope analyses often result in 
geologically equivocal interpretations. In-situ analysis of laser ablation- 
multicollectorinductively coupled plasma-mass spectrometry (LA-MC- 
ICP-MS) also is compromised by its large spot size (tens of microns at 
best) that encompasses multiple zones with different isotope and 

elemental compositions. In contrast, nanoscale secondary ion mass 
spectrometry (Nano-SIMS) has the advantages of sub-100 nm spatial 
resolution and low detection limits and can contemporaneously obtain 
precise δ34S values and qualitative mapping of trace elements with low 
concentrations. Therefore, it can effectively reveal the variations in 
sulfur isotope composition and metal content across Au-bearing pyrite 
rims of CTGDs (Barker et al., 2009; Yan et al., 2018; Li et al., 2020; 
Gopon et al., 2020). 

In this study, we conducted in-situ high-resolution Nano-SIMS ana
lyses to characterize the variation in δ34S values and its relationship with 
Au contents across arsenian pyrite from the Linwang and Badu CTGDs in 
the Youjiang Basin, aiming to trace the source and evolution of reduced 
sulfur in ore-forming fluids. We then recompiled all reported in-situ δ34S 
data of Au-bearing pyrite from 11 CTGDs throughout the Youjiang Basin 
to reconcile the disparities in previous studies and fingerprint the source 
of reduced sulfur in auriferous fluids at a basinal scale. 

2. Regional geology 

The South China Block comprises the Yangtze and Cathaysia Blocks, 
which were welded together at ca. 830 Ma (Fig. 1a, Zhao et al., 2011). It 
was rifted from the Gondwana Continent during the early Devonian due 
to opening of the Paleo-Tethys (Metcalfe, 2006). Following subduction 
and progressive closure of the Paleo-Tethys, the collisions between the 
South China and Indochina Blocks and between the South China Block 
and North China Craton during the Triassic formed the Song Ma suture 
zone to the south and the Qinling-Dabie Orogenic Belt to the north, 
respectively (Wang et al., 2013). 

Fig. 1. (a) A simplified tectonic map of the South China Block and adjacent regions showing the location of the Youjiang Basin. (b) A geologic map of the Youjiang 
Basin showing the distribution of representative Carlin-type Au deposits (modified from Gao et al., 2021). 
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The Youjiang Basin is located at the southwestern margin of the 
Yangtze Block and extends from Southwest China to North Vietnam 
(Fig. 1b). It is a diamond-shaped sedimentary basin bounded by a series 
of NE- and NW-striking basement-penetrating faults, including the Mile- 
Shizong, Ziyun-Yadu, Pingxiang-Nanning and Redriver-Ailaoshan faults 
in the northwest, northeast, southeast, and southwest, respectively (Hu 
and Zhou 2012; Hu et al. 2017). Several important faults occur within 
the basin like the NW-trending Youjiang and NE-trending Poping faults 
(Fig. 1b). The Youjiang Basin experienced three evolution stages: an 
early Devonian to early Permian rifting basin, late Permian back-arc 
basin, and Middle-Late Triassic foreland basin during the opening, 
subduction, and closure of the Paleo-Tethys and the subsequent collision 
between the South China and the Indochina Blocks (Du et al., 2009, 
2013; Yan et al., 2006; Cai and Zhang, 2009; Yang et al., 2012). During 
the Late Jurassic to Early Cretaceous, subduction of the Paleo-Pacific 
plate beneath South China resulted in top-to-the-NW thrusting and 
fault-propagation folding, which superposed on the Triassic NW- 
trending structures within the basin (Qiu et al., 2016). 

The basin is filled with over 7-km-thick marine sedimentary suc
cessions of the Cambrian to Middle Triassic periods (Song et al. 2009; Hu 
et al. 2017). The Cambrian and Ordovician strata are locally exposed in 
some anticline cores. Geographically, a sequence of shallow-water car
bonate platforms was deposited in the northwestern part of the basin 
during the Devonian to Triassic. In contrast, a sequence of deep-water 
slope/basin calcareous sandstone, siltstone, and shale was deposited in 
the southeastern part of the basin (Fig. 1b, Du et al. 2013). Sedimentary 
strata in the basin only expenienced low-grade burial metamorphism 
(Suo et al. 1998). 

Some igneous rocks, mainly basalts, dolerites, and minor felsic dikes 
and andesites, are locally exposed within the basin (Fig. 1b). Geochro
nological data suggest that they dominantly formed at ca. ~ 260, 
230–205, 160–155, and 100–84 Ma (Gao et al., 2021, and reference 
therein). Some ca. 100–80 Ma S-type granites and related W-Sn poly
metallic deposits occur at the southern and eastern margins of the basin 
(Cheng et al., 2009, 2010; Feng et al., 2010). Additionally, inherited 
zircons collected from felsic dikes with ages of 100–94 Ma in the center 
and south of the basin yielded U-Pb ages of 145–130 Ma, suggesting 
deep contemporaneous hidden intrusions (Zhu et al., 2016; Gao, 2018). 

The Youjiang Basin hosts more than 200 CTGDs with updated Au 
reserves of nearly 1000 tons (Hu et al., 2020a), making it the world’s 
second largest Carlin-type Au province after Nevada (Hu et al., 2017; Su 
et al., 2018). Gold mineralization is clustered along regional NE- and 
NW-striking faults and mainly occurs within the late Permian bioclastic 
limestone and Middle Triassic siltstone and mudstone, both of which 
contain abundant Fe-bearing carbonate minerals (Hu et al., 2017). Some 
deposits are also variably hosted by the Cambrian, Devonian, and 
Carbonaceous strata. Additionally, a few deposits in the southern part of 
the basin occur within altered dolerite (Gao et al., 2021). Gold miner
alization in all deposits was stratigraphically and structurally controlled. 
In addition to the well-known Shuiyindong and Jinfeng deposits, Lin
wang and Badu are two representative large Au deposits in the basin. 

3. Deposit Geology 

3.1. The Linwang deposit 

The Linwang deposit, having proven Au reserves of more than 30 t 
(0.97 Moz) with an average grade of 5 g/t (0.19 oz/t), is located at the 
northeastern margin of the Leye platform carbonates. Strata exposed in 
the Linwang district comprise three sequences (Chen et al., 2010). Iso
lated platform carbonates, exposed in the western part of the district, are 
dominated by carbonates of the Permian Maokou and Heshan forma
tions, and thin-bedded limestone with interlayered mudstone of the 
Lower Triassic Luolou Formation. Moving east, shelf-facies sedimentary 
rocks comprise calcareous mudstone intercalated with silty mudstone of 
the Middle Triassic Banna Formation. Further east, basin-facies 

sedimentary rocks are primarily composed of terrestrial clastic turbidite 
of the Middle Triassic Baifeng Formation. No igneous rocks have been 
identified in ore districts by geological mapping or drilling. The nearest 
igneous rocks are the NW-trending Jiayou and NE-trending Naling felsic 
dikes, approximately 80 km from the Linwang deposit. 

Gold mineralization is mainly hosted within subunit 1 of the fourth 
unit of the Baifeng Formation (unit 4–1 of the Baifeng Formation, Fig. 2). 
Unit 4–1 includes five layers (4-1a to 4-1e). Unit 4-1a is composed of 
mudstone, silty mudstone, and siltstone, with pyrite nodules. Unit 4-1b 
is calcareous siltstone with interlayered mudstone. Unit 4-1c is 
composed of mudstone and pelitic siltstone. Unit 4-1d consists of 
calcareous quartz sandstone with intercalated siltstone and mudstone. 
Unit 4-1e comprise mudstone and silty mudstone. Gold mineralization 
occurs as veins and lenses hosted within calcareous sandstone, siltstone, 
and silty mudstone of the units 4-1a to 4-1c, and is structurally 
controlled by secondary faults between the south-north trending F7 and 
F1 faults (Fig. 2). The deposit is divided into three ore blocks from north 
to south: Baan, Kuangshan and Shanmulin. The Kuangshan block con
tributes 72 % of the Au reverses, and includes eight orebodies. 

Detailed petrographic examination of sample transects that covered 
barren and mineralized rocks with different Au grades were conducted 
to reveal the alteration features associated with Au mineralization. The 
barren host rocks are dolomitic calcareous siltstones that contain 
abundant Fe-bearing dolomite, quartz, minor dolomite and calcite, and 
trace muscovite and sulfides (Fig. 4a-b). Fe-bearing dolomite has 
irregular and zigzag margins, and encloses mineral inclusions of quartz, 
muscovite, and sulfides with similar characteristics to those in the sur
rounding clastic matrix. 

In the mineralized samples, Fe-bearing dolomite is obviously 
decreased. Hydrothermal quartz gradually penetrated and replaced Fe- 
bearing dolomite (Fig. 4d-f). This newly formed quartz contains resid
ual tiny inclusions of Fe-bearing dolomite, indicating decarbonation (Su 
et al., 2009). In addition, Fe-bearing dolomite was altered to Fe-barren 
dolomite enclosed by hydrothermal quartz. These processes locally 
preserved the morphology of Fe-bearing dolomite (Fig. 4e). In high- 
grade samples, Fe-bearing dolomite was almost completely replaced 
by hydrothermal quartz, resulting in intensive silicification (Fig. 4f). 
Accompanying decarbonation and silicification, Fe released from Fe- 
bearing dolomite was sulfidized to form hydrothermal pyrite. Pyrite 
grains show a consistent spatial association with hydrothermal quartz 
and dolomite (Fig. 4d-e), where they are distributed along the bound
aries of, or disseminated within, hydrothermal quartz, suggesting that 
they were nearly contemporaneous. 

Stibnite, realgar, orpiment, calcite, and minor quartz, constitute the 
late-stage minerals, representing the cooling of hydrothermal systems 
(Cline et al., 2005; Xie et al., 2018). Stibnite occurs as euhedral crystals 
in open spaces together with drusy quartz or calcite. Realgar and orpi
ment commonly occur as fillings along the fractures of ore-stage quartz 
veinlets, or as veinlets crosscutting previously mineralized samples. 

3.2. The Badu deposit 

The Badu deposit is the largest dolerite-hosted Au deposit in the 
Youjiang Basin, with estimated Au reserves of 35 t (Jinfeng Corporation, 
2018). The detailed geology of Badu was described by Gao et al. (2021), 
and the key characteristics are summarized here. The deposit is located 
on the western flank of the Badu anticline, which has the core of the 
Devonian rocks and rims of the Permian to Middle Triassic sequences 
(Fig. 3). The anticline is crosscut by numerous NE- and NW-trending 
faults that formed simultaneously with folding and deformation. The 
strata exposed in the ore district includes the Yujiang Formation 
mudstone and siltstone (D1y), Liujiang Formation chert interbedded 
with tuff and lenses of banded limestone (D3l), Carboniferous mudstone 
and chert, Sidazhai Formation limestone (P1-2sd), Linghao Formation 
mudstone, argillaceous sandstone and tuff (P2-3lh), and sandstone, silt
stone, and mudstone of the Shipao and Baifeng formations (T1s and 
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T2bf). Numerous dolerite dikes were predominantly intruded the 
Devonian to Permian sedimentary strata along NE- and NW-trending 
faults. Early 1:50,000-scale geological mapping divided the dolerites 
into three stages (BGMRGX, 1992). 

Gold mineralization in Badu includes seven major orebodies with 
vein- or tabular- shapes (Fig. 3), which are spatially controlled by NE- 
striking secondary faults. Orebodies I and II are hosted by mudstone 
and siltstone of the Lower Devonian Yujiang Formation. Orebodies No. 
III to VII mainly occur within hydrothermally altered dolerites that are 
fractured by fault zones, or occur along faulted contacts between 
dolerite and sedimentary strata. Each orebody is composed of a series of 
veins, and each mineralized vein extends from 10 to 500 m along strike, 

varies in thickness from 2 to 50 m, and extends vertically below the 
surface by up to ~ 200 m. Orebodies VI and VII are the most repre
sentative dolerite-hosted orebodies in the ore district, with Au grades 
varying from 1 to 20 g/t (Gao et al. 2021). 

The fresh dolerite is greyish-green in color (Fig. 4g), and dominantly 
composed of magmatic plagioclase and clinopyroxene, which show 
typical poikilophitic textures (Fig. 4j). Iron-titanium oxides and apatite 
are major accessory minerals. The altered and mineralized dolerite is 
distinguished by its bleached appearance and occurrence of abundant 
disseminated pyrite and arsenopyrite (Fig. 4h-i). The amounts and 
relative proportions of pyrite and arsenopyrite are spatially variable. 
Pyrite is the predominant ore mineral in the richest orebody VI (Fig. 4h), 

Fig. 2. Schematic geologic map (a) and two representative geologic cross sections (b) of the Linwang deposit (modified from Chen et al., 2010).  

Fig. 3. Schematic geologic map (a) and representative geologic cross section of the dolerite-hosted No. Ⅵ orebody (b) of the Badu deposit (modified from Gao 
et al., 2021). 
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but arsenopyrite and pyrite are equivalent in the orebody VII with low 
gold grades (Fig. 4i). In addition, mineralized dolerite is characterized 
by milky quartz veins that enclose elongated and irregular fragments of 
mineralized dolerite. However, quartz veins do not contain any signifi
cant sulfides and are thus not mineralized. 

Petrographic observations show that the primary magmatic minerals 
have been completely altered to ankerite, sericite, pyrite, arsenopyrite, 
rutile, minor base metal sulfides, apatite, and trace monazite during 
mineralization (Fig. 4k). On the basis of macro- and micro-textural re
lationships, three principal stages of alteration and mineralization can 
be identified (Gao et al., 2021). The stage 1 is characterized by the 
ubiquitous formation of ankerite, sericite, and rutile as a result of al
terations of magmatic pyroxene, plagioclase, and iron–titanium oxides. 

Ankerite and sericite preserve pseudomorphs of the primary poikilo
phitic textures (Fig. 4k). Hydrothermal rutile formed by the breakdown 
and pseudomorphic replacement of magmatic ilmenite (Gao et al., 
2021). The stage 2 is characterized by sulfidation, which formed pyrite 
and arsenopyrite disseminated in the matrix of ankerite and sericite. 
Pyrite crystals generally contain inclusions of minerals formed in the 
stage 1. The stage 2 also formed quartz veinlets that locally enclose ore- 
stage pyrite and arsenopyrite, suggesting that these veinlets were syn
chronous with, or slightly later than, sulfidation. Some later Cu-Zn-Sb 
sulfides, mainly including chalcopyrite, sphalerite, tetrahedrite, and 
stibnite, occur as strings or fillings along microfractures in pyrite 
(Fig. 4l). The stage 3 formed quartz-carbonate veins crosscutting 
mineralized dolerite and ore-stage quartz veinlets. Trace amounts of 

Fig. 4. Photographs and photomicrographs of variably altered and mineralized samples from the Linwang (a-f) and Badu (g-l) deposits showing the alteration 
features associated with gold mineralization. (a-b) Unaltered calcareous siltstone containing abundant ferroan dolomite with mineral inclusions of clastic matrix. (c) 
High-grade brecciated siltstone with intense silicification and abundant disseminated pyrite. (d-f) Variably altered and mineralized samples showing that ferroan 
dolomite were gradually dissolved and replaced by hydrothermal quartz, which was accompanied by the formation of gold-bearing pyrite. (g, j) Least altered dolerite 
with porphyritic texture. (h, k) Mineralized dolerite with intermediate gold grade containing abundant pyrite. (i, l) Mineralized dolerite with low gold grade 
containing nearly equivalent pyrite and arsenopyrite. (a, c, g-i) Hand specimens. (b, d-f) BSE image. (j) Crossed-polarized light. (k-l) Reflected light. Abbreviations: 
Ank = ankerite, Apy = arsenopyrite, Cal = calcite, Ccp = chalcopyrite, Cpx = clinopyroxene, Dol = dolomite, Fe-Dol = Fe-bearing dolomite, Pl = plagioclase, Py =
pyrite, Qz = quartz, Ser = sericite, Sph = sphalerite. 
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stibnite and realgar crystals filled the open spaces. Locally, coarse- 
grained barite occurs as veinlets crosscutting all the previous stages 
(Dong, 2017). 

Geochronological data suggest that the dolerite hosts were emplaced 
at ca. ~ 212 Ma, but Au mineralization occurred at ca. ~ 144 Ma, 
synchronous with other sedimentary-hosted CTGDs in the Youjiang 
basin (Gao et al., 2021). 

3.3. Sampling and analytical methods 

The Linwang and Badu deposits are representative of two types of 
CTGDs in the Youjiang basin: sedimentary-hosted and dolerite-hosted, 
respectively. A series of host rocks and mineralized samples with 
various Au grades and degrees of alteration were taken from outcrops, 
open pits and drill holes. Representative host rocks and mineralized 
samples were prepared as standard thin sections. Optical microscopy 
and scanning electron microscope with backscattered electron imaging 
(SEM-BSE) were used to determine the hydrothermal alteration, mineral 
paragenesis, and various types of pyrite. The internal texture and zoning 
of pyrite were characterized using high-contrast BSE imaging. The 
interested areas containing the most typical pyrite grains were carefully 
drilled out as discs with 5 ~ 25 mm in diameter. All discs were then re- 
examined and photomicrographed using reflected light and SEM to 
precisely navigate and locate the pyrite grains of interest. 

In-situ sulfur isotope and elemental mapping analyses of selected 
pyrite grains were conducted using a CAMECA Nano-SIMS 50L at the 

Institute of Geology and Geophysics, Chinese Academy of Sciences, 
Beijing, following previous methods (Zhang et al., 2014; Yan et al., 
2018). Briefly, a primary Cs+ ion beam of 1–2 pA and 100 nm in 
diameter was used for both types of analyses. 32S was counted using 
Faraday cup to avoid the quasi-simultaneous arrival effect, and 34S and 
other elements were counted using electronic multipliers. Certified in
ternational standards (CAR-123 pyrite) and internal reference samples 
(PY-1117 and CS01 pyrites) were used during the analysis. Instrumental 
mass fractionation was corrected using the sample-standard bracketing 
method. The total count time for each analysis was 150 s, consisting of 
300 cycles of 0.5 s. The spots were approximately 2 × 2 μm in size. The 
analytical precision (1σ) was about ± 0.5 per mil. The secondary elec
trons of 34S, 75As32S, 197Au32S, 63Cu32S, 121Sb32S, and 208Pb32S were 
used for elemental mapping. The peaks were calibrated using working 
references of arsenopyrite (75As), Au foil (197Au), chalcopyrite 
(63Cu32S), SbS2 (121Sb) and galena (208Pb32S). A mass resolution of ca. 
9000 (at 10 % peak height) was used to eliminate the isobaric in
terferences. Mapping images had a size of 25 × 25 μm or 50 × 50 μm 
with a corresponding resolution of 256 × 256 or 512 × 512 pixels, 
respectively. Generally, the color scales of the collected images only 
provide the relative signal intensities of different elements, and do not 
represent their absolute contents, which means that different images are 
not comparable in the scales of signal intensities. 

Fig. 5. BSE images of various pyrite types 
from the Linwang deposit. (a) Pre-ore fram
boidal pyrite (Pre-Py0L) in barren samples. 
(b) Pre-ore anhedral to euhedral pyrite with 
abundant mineral inclusions and pores (Pre- 
Py1L) in barren samples, which locally 
enclose Pre-Py0L. (c-d) Pyrite with core-rim 
textures in mineralized samples. The core is 
resemble to Pre-Py1L in barren samples, but 
the rim (Ore-Py1L) formed during gold 
mineralization and displays three growth 
stages. Ore pyrite also formed individual 
fine-grained aggregate (Ore-Py2L) without 
pre-ore core. (e-g) Cycled variations of As 
contents in the stage 2 and stage 3 pyrite 
rims. (e) and (f) are enlarged images of yel
low frames from (c) and (d), respectively. 
Abbreviations: Ore-Py = ore pyrite, Pre-Py =
preore pyrite. (For interpretation of the ref
erences to color in this figure legend, the 
reader is referred to the web version of this 
article.)   
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4. Results 

4.1. Pyrite types and paragenesis 

Five major types of pyrite were recognized in both the Linwang and 
Badu deposits, including pre-ore pyrites (Pre-Py0L and Pre-Py1L for 
Linwang, and Pre-PyB for Badu) and ore pyrites (Ore-Py1L and Ore-Py2L 
for Linwang, and Ore-Py1B to Ore-Py4B for Badu), respectively. These 
pyrites show different occurrence, morphology, and internal texture. 

4.2. Linwang deposit 

Two types of pyrite were recognized in the barren host rocks of the 
Linwang deposit: Pre-Py0L and Pre-Py1L. Pre-Py0L is framboidal pyrite 
composed of cubic crystallites less than 2 μm in diameter (Fig. 5a), 
which is not the focuss of the following analyses. Pre-Py1L either occurs 
as anhedral to euhedral independent grains in the barren samples 
(Fig. 5b), or forms anhedral cores overgrown by ore pyrite rims in the 
mineralized samples (Fig. 5c-d). It contains abundant mineral inclusions 
and pores, and is locally observed to enclose Pre-Py0L (Fig. 5b). Occa
sionally, Pre-Py1L grains have bright rims that contain elevated As over 
1.0 wt%. 

Ore-stage pyrites in mineralized samples occur either as subhedral to 
euhedral rims (Ore-Py1L) overgrowing pre-ore pyrite cores (Fig. 5c-d), 
or as small individual fine-grained crystals or aggregates (Ore-Py2L) 
without pre-ore cores (Fig. 5c). High-contrast BSE imaging shows that 

Ore-Py1L has complex compositional zoning with variable brightness, 
forming rhythmic alternations of As-higher and As-lower bands. On the 
basis of brightness and As content, Ore-Py1L comprises three growth 
stages (Fig. 5c-d): a relatively dark stage 1 with lower As, a bright stage 2 
with the highest As, and stage 3 with intermediate brightness and As 
content. However, the stage 1 is not always present in all pyrite grains 
(Fig. 5d). Subtle sub-bands observed at a submicron to nanometer scale 
are also visible within each stage (e.g., the stage 1 in Fig. 5e and g). 

Specifically, the stage 3 commonly recorded a new incursion of As- 
rich fluids, which together with the stage 2 constitute two repeated 
cycles of As variation that gradually decreased outwards (Fig. 5e-f). 
Compared with the stage 2, these renewed As-rich sub-bands are darker. 
However, Au-bearing rims of some grains only recorded one cycle of As 
variation (Fig. 5g). Fine-grained individual Ore-Py2L grains contain As- 
higher cores and As-lower rims, resembling the stages 2 and 3 of Ore- 
Py1L. 

4.3. Badu deposit 

In the Badu deposit, a few fine-grained Pre-PyB grains were observed 
in the fresh dolerite, where they mainly occur along the boundaries of, 
or as dotted grains within, magmatic iron–titanium oxides (Fig. 6a). 

Ore-stage pyrites in the mineralized samples show various textures. 
Ore-Py1B has anhedral and irregular grain boundaries, and encloses 
randomly oriented inclusions of early-stage alteration minerals, e.g., 
ankerite, sericite, and rutile (Fig. 6b-c), suggesting that Ore-Py1B is of 

Fig. 6. BSE images of various pyrite types 
from the Badu deposit. (a) Pre-ore fine- 
grained pyrite associated with magmatic 
iron–titanium oxides (Pre-PyB) in barren 
dolerite. (b-d) Ore pyrite consisting of 
inclusion-rich core (Ore-Py1B) and clean rim 
(Ore-Py2B). The mineral inclusions enclosed 
within Ore-Py1B are ankerite, sericite, and 
rutile. (e) Recrystallized ore pyrite (Ore- 
Py3B) showing patchy zonings of As. (f) Hy
drothermally altered ore pyrite (Ore-Py4B) 
by later fluids, which is characterized by 
complex microstructure with abundant 
porosity. Abbreviations: Ccp = chalcopyrite, 
Cpx = clinopyroxene, Ilm = ilmenite, Pl =
plagioclase, Ore-Py = ore pyrite, Pre-Py =
preore, Ttn = titanite.   
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hydrothermal origin. Locally, Ore-Py1B occurs around, and then grad
ually replaces, the intergrowths of rutile, ankerite, and sericite, indi
cating that it formed slightly later than these altered minerals (Gao et al., 
2021). Ore-Py1B contains higher As concentrations, as shown by the 
lighter response of BSE images. Ore-Py2B occurs either as clean rims 
with rare or no mineral inclusions overgrowing Ore-Py1B (Fig. 6b-c), or 
as euhedral to subhedral grains disseminated in the matrix of ankerite 
and sericite (Fig. 6d). Under high-contrast BSE imaging, Ore-Py2B ex
hibits rhythmic alternations of thin As-higher and As-lower bands. 

Ore-Py3B commonly forms aggregates and is characterized by patchy 
zoning of As (Fig. 6e), indicating that it had undergone recrystallization 
to some degree. However, the primary inclusion-rich Ore-Py1B and 
oscillatory zoning of Ore-Py2B are locally preserved. Ore-Py4B is sec
ondary altered pyrite that occurs as irregular patchy and porous do
mains crosscutting the growth zoning of primary pyrite and is 
characterized by complex internal microstructure with abundant 
porosity (Fig. 6f). Such textures indicate that Ore-Py4B is a replacement 
product of the Ore-Py1B to Ore-Py3B. 

4.4. Nano-SIMS mapping 

Representative nano-SIMS mapping results for Au-bearing pyrite 
grains from the Linwang and Badu deposits are shown in Figures 7 and 8, 
respectively. For Linwang, pyrite grains with core-rim textures exhibit 
sharp and distinctive grain-scale distributions of As, Au, and other 
metals. Pre-Py1L contains extremely low As, Au, and Cu contents, con
firming that it is correctly classified as the pre-ore stage. In contrast, Ore- 

Py1L is characterized by markedly elevated As, Au, and Cu contents. In 
particular, the three growth stages of Ore-Py1L show different metal 
associations and concentrational intensities. The stage 1 shows elevated 
As and Cu concentrations, but not Au (Fig. 7b-d). The stage 2 contains 
the highest As and Au contents. The stage 3 has intermediate As, Au, and 
Cu concentrations that gradually decreased outwards (Fig. 7b-d and f-h). 
For the grains with two cycles of As variation, the new injection of As- 
rich fluids was accompanied by an increase in Au contents (Fig. 7j-l). 
Additionally, some cauliflower-like strings of the stages 2 and 3 with 
elevated As and Au contents have penetrated and crosscut Pre-Py1L. 

For Badu, Pre-PyB contains little Au and As. The inclusion-rich Ore- 
Py1B has higher As and Au contents than those of clean Ore-Py2B 
(Fig. 8b-d), further suggesting that it formed during the main Au 
mineralization. However, the rhythmic zoning of Ore-Py2B shows pos
itive correlations between As and Au contents, with the bright zoning 
having elevated As and Au contents that are comparable to Ore-Py1B 
(Fig. 8f-h). In contrast, the secondary recrystallized Ore-Py3B and 
altered Ore-Py4B display heterogeneous and complex distributions of As 
and Au contents, with the brighter domains yielding the higher contents 
(Fig. 8k-l). 

4.5. Sulfur isotopic compositions (δ34S) of pyrite at Linwang and Badu 

The δ34S values of 144 Linwang and 105 Badu pyrite analyses are 
provided in Appendix Tables A1 and A2, respectively, and are summa
rized in Figs. 9 and 10. For Linwang, the δ34S values of As- and Au- 
depleted Pre-Py1L range from +8.4‰ to +13.8‰ with an average of 

Fig. 7. Nano-SIMS elements mapping of representative Au-bearing pyrite grains from the Linwang deposit. (a, e, i) BSE images of analyzed pyrite. The dashed boxes 
are areas of elements mapping. (b, f, j) Relative intensity counts of Au and As contents, which are contemporaneously obtained during sulfur isotope analyses. The 
points are labeled in BSE images. (c-d, g-h, k-l) Mappings of Au and As contents. The numbers in c, g and k are δ34S values corresponding to the points in BSE images. 
The purple arrows emphasize the cycled variations of As and Au contents in the stage 2 and 3. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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+10.8‰. Ore-Py1L yielded various δ34S values of − 1.7‰ to +15.7‰, 
which vary inversely with Au and As concentrations (Figs. 9-10). Among 
them, the stage 1 with elevated As and Cu and low Au contents has δ34S 
values of +1.5‰ to +9.5‰, with an average of +5.1‰. The stage 2 with 
the highest As and Au contents yielded a narrow range of δ34S values 
from − 1.7‰ to +3.3‰, with an average of +1.2‰. The range of δ34S 
values obtained in the stage 3 is +1.3‰ to +15.7‰, with an average of 
+7.1‰. In addition, δ34S values in the stage 3 gradually increased 

outwards and approached those of Pre-Py1L (Fig. 9). 
For Badu, Pre-PyB yielded δ34S values of − 4.3‰ to − 1.2‰. In 

contrast, Au-bearing grains are all characterized by highly positive δ34S 
values ranging from +9.0‰ to +25.8‰, with an average of +18.1‰ 
(Fig. 10). Approximately 85 percent of these δ34S values are between 
+15‰ and +22‰, with a median of +18.2‰. The inclusion-rich Ore- 
Py1B has lower δ34S values of +9.0‰ to +14.2‰, with an average of 
+11.6‰. Ore-Py2B yielded δ34S values of +12.9‰ to +20.3‰, with an 

Fig. 8. Nano-SIMS elements mapping of representative Au-bearing pyrite from the Badu deposit. (a, e, i) BSE images of analyzed pyrite. The dashed boxes are areas 
of elements mapping. (b, f, j) Relative intensity counts of Au and As contents, which are contemporaneously obtained during sulfur isotope analyses. The points are 
labeled in BSE images. (c-d, g-h, k-l) Mappings of Au and As contents. The numbers in c, g and k are δ34S values corresponding to the points in BSE images. The 
distribution of Au show positive correlations with that of As. 

Fig. 9. Correlations of Au intensity counts with δ34S values (a) and As intensity counts with δ34S values (b) of Au-bearing pyrite from the Linwang deposit. The δ34S 
values vary inversely with Au and As concentrations. 
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average of +16.7‰, which are similar to those of Ore-Py3B (δ34S =
+14.2‰ to +19.4‰, average = +17.1‰). Ore-Py4B displays relatively 
higher δ34S values of +16.7‰ to +25.8‰, with an average of +20.0‰. 
Additionally, large grain-scale variations in the δ34S values for individ
ual pyrite grain are also noticeable. For example, one pyrite grain yiel
ded a δ34S value of +9.3‰ in Ore-Py1B and then shows a progressive 
increase to +20.3‰ in Ore-Py2B. 

5. Discussion 

5.1. Pyrite paragenesis 

At Linwang, the sharp contacts, disparate chemical compositions, 
and dramatic changes in δ34S values between the pyrite cores and rims, 
suggest that they formed during two discrete events, resembling those of 
Carlin-type gold deposits in Nevada (Gopon et al., 2020). The dark cores 
overgrown by Au-bearing rims are similar to Pre-Py1L observed in the 
barren samples and contain very low As and undetectable Au contents, 
suggesting that they formed at the pre-ore stage. Petrographic data show 
that Pre-Py1L is anhedral to euhedral and locally encloses sedimentary 
framboidal pyrite. Additionally, it contains abundant mineral inclusions 
of the surrounding clastic matrix and exhibits equilibrium textures with 
primary Fe-bearing dolomite. Thus, it is likely that Pre-Py1L formed 
during diagenesis or early hydrothermal event. In contrast, pyrite rims 
and individual fine-grained pyrite grains (Ore-Py1L and Ore-Py2L) show 
intimate spatial and genetic relationships with decarbonation and 
silicification, both of which are important alterations related to Carlin- 
type Au mineralization (Cline et al., 2005; Su et al., 2009). Thus, we 
suggest that they are genetically related to Au mineralization and 
formed via sulfidation. This is further supported by their substantially 

elevated As, Au, and Cu contents. 
At Badu, Ore-Py1B to Ore-Py4B are not observed in fresh dolerite that 

only has minor Pre-PyB associated with magmatic iron–titanium oxides. 
Nano-SIMS mapping reveals that Ore-Py1B to Ore-Py4B belong to 
‘arsenic’ pyrite and contain ‘invisible’ Au, suggesting that they formed 
during Au mineralization. Petrographic data show that hydrothermal 
alterations related to pyrite formation and Au mineralization occurred 
as following. During the incipient stage of alteration, the primary 
magmatic minerals were altered to ankerite, sericite, and rutile. 
Thereafter, pyrite preferentially replaced the newly formed ankerite. 
The early formed alteration minerals were enclosed in pyrite, forming 
the inclusion-rich Ore-Py1B. As the replacement of ankerite proceeded, 
ore-forming fluids became progressively saturated with Fe, and pyrite 
was able to directly crystallize in open spaces, forming the clean Ore- 
Py2B. Thus, Ore-Py1B and Ore-Py2B formed penecontemporaneously 
from successive evolutionary episodes of fluid flow. After primary pyrite 
crystals formed, they underwent dynamic recrystallization and hydro
thermal modification via a coupled dissolution and reprecipitation 
(CDR) mechanism driven by a new infiltrating fluid during late defor
mation (Gao et al., 2022, submitted for publication.), forming Ore-Py3B 
and Ore-Py4B, respectively. 

5.2. Source and evolution of reduced sulfur in auriferous fluids 

Au-bearing pyrites from the Linwang and Badu deposits show 
distinct micro-textures, metal associations and concentrations, and sul
fur isotope compositions (δ34S values). In particular, the variation in 
δ34S values and its relationship with metals across Au-bearing pyrite 
rims at Linwang recorded the evolution of reduced sulfur in the aurif
erous fluids during mineralization processes, allowing the sulfur source 

Fig. 10. Box diagrams of relative intensity counts of Au and As (a, c) and corresponding δ34S values (b, d) of various pyrite types in the Linwang and Badu deposits, 
respectively. 
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of the initial auriferous fluids to be constrained. 
In the Youjiang Basin, CTGDs formed from acidic to nearly neutral, 

low fO2 and H2S-dominated fluids, at temperatures of 180 to 245 ℃ (Su 
et al., 2009). Pyrite was the predominant sulfide. Very few sulfate 
minerals were formed during the final stage of hydrothermal systems. 
The sulfur isotope fractionation between pyrite precipitation and 
aqueous H2S of fluids under these conditions is approximately 1‰ – 2‰ 
[Δ(δ34Spyrite − δ34Sfluids)] = +1‰ to +2‰) (Ohmoto, 1972; Seal, 2006). 
Therefore, the measured δ34S values of pyrite are approximately equal to 
those of the ore-forming fluids at the time pyrite precipitated from fluids 
(Ohmoto and Goldhaber,1997). However, the sulfur isotope composi
tion of hydrothermal fluids can be influenced by changes in physico
chemical parameters (e.g., temperature, pH, and fO2) and sulfur sources 
during mineralization (Seal, 2006). Decreasing the temperature of ore- 
forming fluids from 250 to 180 ℃ causes δ34S variation of less than 
1‰ (Ohmoto and Rye, 1979). The dissolution of Fe-bearing dolomite, 
stable formation of Fe-poor dolomite, and sericite-illite alteration during 
Au mineralization, suggest that the ore-forming fluids of Linwang and 
Badu were weakly acidic to nearly neutral with limited pH change (Xie 
et al., 2018), which should not result in significant δ34S variation. 
Additionally, significant oxidation (fO2 fluctuation) of ore-forming fluids 
during mineralization, which could markedly modify the δ34S values of 
fluids and precipitate pyrite with negative δ34S values (Palin and Xu, 
2000; Evans et al. 2006; Hodkiewicz et al., 2009; Peterson and Mavro
genes. 2014; LaFlamme et al., 2018; Wu et al., 2019), did not occur in 
Linwang or Badu. Petrographic data also suggest that sulfidation of host 
rocks, rather than fluid oxidation and boiling, is the trigger for Au 
deposition. This means that the temporal change in sulfur sources and 
fluid-rock interactions are the two most likely key factors affecting the 
δ34S values of auriferous fluids. 

5.3. Linwang deposit 

The stage 1 of Au-bearing rims at the Linwang contains undetectable 
Au contents, suggesting that the early fluids were depleted in Au. The 
highest As and Au contents in the stage 2 are indicative of the injection 
of As- and Au-rich ore-forming fluids since this stage, representing the 
beginning of Au mineralization. The Au-rich fluids yielded the lowest 
δ34S values of − 1.7‰ to +3.3‰. Thereafter, the As and Au contents in 
the stage 3 gradually decreased owing to the consumption and dilution 
of metals in the ore-forming fluids. Correspondingly, the fluids in this 
stage recorded a wide range of δ34S values that gradually increased to
wards the outer rims and approached those of the pre-ore pyrite (δ34S =
+8.4‰ to +13.8‰) in the host rocks. From the inner to outer rims, the 
lack of sharp boundaries, continuity and overlap of δ34S values, and 
affinities of trace elements indicate that the rims formed from evolving 
fluids. Some pyrite grains recorded a new injection of As- and Au-rich 
fluids, which initiated another cycle of As and Au variations. Howev
er, the magnitude of the new Au-rich fluids was much weaker than the 
former one, as shown by the unrecovered δ34S values and lower metal 
contents. 

Therefore, the coupled changes in δ34S values and Au contents across 
the Au-bearing pyrite rims probably reflect two-endmembers mixing of 
reduced sulfur between the initial Au-rich ore-forming fluids with low 
δ34S values and the Au-poor host rock with high δ34S values (Fig. 9, 
Kesler et al., 2005; LaFlamme et al., 2018). The growth zoning recorded 
the variation in relative contributions of the two endmembers during Au 
mineralization. In the stage 2, reduced sulfur in the hydrothermal sys
tems was dominated by that of the injected auriferous fluids. Where
after, contributions of the host rock-derived 34S-enriched sulfur 
gradually increased due to fluid-rock interaction and sedimentary sulfur 
assimilation during the stage 3. The injection of new Au- and As-rich 
fluids slightly renewed the δ34S values of the fluids at that time, 
further suggesting that the auriferous fluids had δ34S values that were 
distinct from those of sedimentary host. However, the secondary fluid 
incursion in the stage 3 was weak, and sedimentary sulfur remained 

dominant. 
The above discussion means that the δ34S values (− 1.7‰ to +3.3‰) 

of the stage 2 pyrite rims are most likely to represent the sulfur isotopic 
composition of the initial auriferous fluids, which are significantly 
distinct from those of sedimentary host strata. There are two plausible 
explanations for such narrow range and low δ34S values: (1) reduced 
sulfur in the initial Au- and As-rich ore-forming fluids was originated 
from deep magmatic-hydrothermal endmembers that have δ34S values 
of 0‰ to +5‰ (Seal, 2006); (2) sulfur was derived from deep, older, and 
currently unidentified sedimentary units (basement rocks) with average 
δ34S values mirroring those of stage 2 pyrite. The deep stratigraphy of 
the Youjiang basin is dominated by meso- to NeoProterozoic volcanic- 
sedimentary and magmatic rocks (Hu et al., 2020b), whose sulfur iso
topic compositions are currently unknown. Considering these un
knowns, it is difficult to conclusively argue for a purely magmatic- 
hydrothermal origin for the reduced sulfur. However, recent geochro
nological studies revealed that there may exist igneous activities that 
were coeval with Au mineralization within and around the Youjiang 
basin (Li et al., 2013; Zhu et al., 2016; Gao, 2018; Su et al., 2021), which 
favored a possible genetic link between unrecognized deep magmatic- 
hydrothermal systems and Carlin-type Au mineralization in the You
jiang Basin. 

5.4. Badu deposit 

Au-bearing pyrites from the Badu deposit are characterized by highly 
positive δ34S values varying from +9.0% to +25.8%, with average of 
+18.1‰, which are by far the highest reported for Au-bearing pyrite of 
CTGDs in the Youjiang basin. Such δ34S values are markedly distinct 
from those of magmatic sulfur reservoirs and the pre-existing fine- 
grained pyrite associated with primary magmatic minerals in fresh 
rocks. 

Field observations have shown that the mineralized dolerite is 
spatially associated with the Devonian sedimentary rocks (Gao et al., 
2021). Coincidently, the positive δ34S values of H2S in the ore-forming 
fluids from Badu are comparable to those of diagenetic pyrite in the 
Devonian strata in the Youjiang basin (δ34S= +11.7% to +37.6%, 
mainly concentrating in range of +11.7% to +28%, Hou et al., 2016; 
Yan et al., 2020). These diagenetic pyrites are suggested to be formed 
through thermochemical sulfate reduction (TSR) processes during deep 
burial diagenesis (Qiu et al., 2018; Yan et al., 2020). Previous researches 
revealed that quantitative consumption and reduction of sulfate in a 
relatively closed system with a limited sulfate supply, such as euxinic 
water columns in restricted basins, could result in reduced sulfur with 
highly positive δ34S values close to those of the sulfate source (Machel 
et al., 1995; Meshoulam et al., 2016; Qiu et al., 2018; Yan et al., 2020). 
In this condition, the resultant diagenetic pyrite in the Devonian strata 
could yield highly positive δ34S values, with some values exceeding 
those of contemporaneous Devonian seawater sulfate (δ34S= +16‰ to 
+23‰; Kampschulte and Strauss, 2004; Fike et al., 2015). This mecha
nism has been also used to explain the high δ34S values of SEDEX Pb-Zn 
deposits hosted within Devonian strata in the Youjiang basin (up to 
+31‰, Chen and Gao, 1988; Zeng and Liu, 1999; Chen et al., 2013; Qiu 
et al., 2018). Therefore, it is reasonably argued that H2S in the ore- 
forming fluids of Badu was dominated by sedimentary sulfur derived 
from the Devonian strata. 

CO2-rich fluid inclusions, oxygen isotope data from hydrothermal 
quartz, and low Au concentrations in dolerite and sedimentary strata are 
suggestive of a deep origin for the ore-forming fluids of Badu (Dong, 
2017; Li, 2020; Gao et al., 2021). Collectively, we propose that the initial 
auriferous fluids of Badu were originated from deep crust, migrated 
through the Devonian strata, and leached the sulfur with highly positive 
δ34S values from the Devonian strata. Contamination of the sedimentary 
sulfur erased the primary sulfur isotopic signals of the initial auriferous 
fluids. Then, the evolved ore-forming fluids were transported into 
fractured dolerite, where they interacted with Fe-bearing minerals and 
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precipitated Au-bearing pyrite with high δ34S values. 

5.5. Comparation with other CTGDs in the Youjiang Basin 

We compiled and reviewed approximately 1100 in-situ sulfur isotope 
data reported on Au-bearing pyrite from 11 CTGDs within the Youjiang 
Basin, aiming to reconcile their differences at a regional scale. Taking 
the Shuiyindong, Jinfeng, and Jinya deposits as representative exam
ples, our own petrographic observation shows that Au-bearing pyrite 
grains from these deposits are composed of pre-ore-stage low-As dark 
porous cores (Pre-Py) and ore-stage high-As oscillatory-zoned rims (Ore- 
Py) (Fig. 11). These observations are comparable to previous studies, e. 
g., Xie et al. (2018) and Li et al. (2020) for Shuiyindong, Yan et al. 
(2018) for Jinfeng, and Wu. (2018) and Li et al. (2021) for Jinya. Pre-ore 
pyrite cores of Jinya are characterized by sieved textures and irregular 
and flexuose boundaries with Au-bearing pyrite rims, indicative of 
dissolution that is infilled and overgrown by Au-bearing pyrite 
(Fig. 11e). 

As illustrated in Fig. 12, the δ34S values of Au-bearing pyrite rims in 
CTGDs in the Youjiang Basin display distinct spatial variations, which 
overlap with, and are dependent on, those of pre-ore pyrite in the 
sedimentary hosts. In detail, δ34S values of Au-bearing pyrite rims from 

those hosted by the Permian bioclastic limestone in the northwest of the 
basin (e.g., Shuiyindong, Taipingdong and Nibao) are concentrated in a 
narrow range of − 3‰ to +5‰, with an average of +2.2‰. Gold-bearing 
rims from Gaolong-Badu and Jinya-Nakuang in the southeast of the 
basin display positive and negative δ34S values, respectively (average of 
+11.5‰ for Gaolong, +18.1‰ for Badu, − 5.5‰ for Jinya, and − 8.2‰ 
for Nakuang). The δ34S values of Au-bearing rims from Jinfeng and 
Linwang, located at the transitional zone, exhibit bimodal distributions 
of 0‰ to +5‰ and +7‰ to +15‰, respectively. 

Such sedimentary host-dependent variations of δ34S values of Au- 
bearing pyrite suggest that sedimentary sulfur has substantially 
contributed to the ore-forming systems during Au mineralization. Very 
low metamorphism of the sedimentary host (Suo et al., 1998), extremely 
low Au content in pre-ore pyrite (Xie et al.,2018), and the lack of 
transition of pyrite to pyrrhotite are inconsistent with a metamorphic 
devolatilization model (Pitcairn et al., 2006; Large et al., 2011; Thomas 
et al., 2011). In contrast, an external As- and Au-rich fluid are required 
for Au mineralization. Therefore, sulfur contributions from sedimentary 
host rocks were mainly achieved by direct dissolution and leaching of 
pre-ore sulfur-bearing phases. Irregular boundaries and corroded tex
tures are indicative of the dissolution of pre-ore pyrite during mineral
ization. Phase equilibrium relationships also suggest that the formation 

Fig. 11. BSE images (a, c, e) and δ34S values (b, d, f) of representative pyrite grains from the Shuiyindong, Jinfeng and Jinya deposits in the Youjiang Basin, 
respectively. All pyrite grains are composed of pre-ore cores (Pre-Py) and Au-bearing rims (Ore-Py). δ34S values of the Shuiyindong include those obtained by 
SHRIMP (Hou et al., 2016), Nano-SIMS (Li et al., 2020), and LA-MC-ICP-MS analyses (Jin, 2017; Xie et al., 2018). The δ34S data of Jinfeng and Jiya were from Yan 
et al. (2018) and Li et al. (2021), respectively. 
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of late realgar and orpiment requires an increase in the fS2 of ore- 
forming fluids with decreasing temperatures, indicating that consider
able sedimentary sulfur must have been added to the initial auriferous 
fluids (Hofstra and Cline, 2000; Kesler et al., 2005). 

The variation in δ34S values and its relationship with Au contents 
across Au-bearing pyrite rims from the Linwang deposit suggest that the 
highly variable δ34S values of Au-bearing pyrites from different deposits 
in the basin result from the interactions between the initial auriferous 
fluids of deep magmatic-hydrothermal origin and the sedimentary hosts 
with different δ34S signatures. It should be noted that the vast majority 
of previously compiled sulfur isotope data were mainly obtained via LA- 
MC-ICP-MS analyses using large beam sizes, which yielded mixed values 
for Au-bearing pyrite rims with multiple growth zones. For examples, 
high-resolution Nano-SIMS analyses show that the inner and outer parts 
of the Au-bearing pyrite rims from the Jinfeng have δ34S values of 
+1.1‰ to +7.9‰ and +4.9‰ to +18.1‰, respectively (Fig. 10d, Yan 
et al., 2018). However, the LA-MC-ICP-MS data yielded mixed values of 
+8.9‰ to +11.2‰ (Xie et al., 2018). In Jinya, SIMS and Nano-SIMS data 
show that δ34S values of the inner rims with high As and Au contents are 
clearly shifted towards an endmember with near-zero δ34S values 
compared with those of pre-ore cores (Fig. 10f), which is inconsistent 
with fault-value models that will reduce the δ34S values of Au-bearing 
pyrite (Peterson and Mavrogenes, 2014). The outer rims have δ34S 
values gradually approaching those of pre-ore pyrite (Li, 2019; Li et al., 
2021), indicating contribution of sulfur from the sedimentary host. 

Collectively, we propose that reduced sulfur in the initial ore- 
forming fluids of CTGDs in the Youjiang Basin was primarily origi
nated from deep magmatic-hydrothermal systems, and that substantial 
contaminations of sedimentary host-derived sulfur during mineraliza
tion resulted in the spatially variable δ34S signatures recorded in Au- 
bearing pyrites. Strikingly, δ34S data imply that magmatic signals of 
the initial auriferous fluids gradually decreased from the northwest to 
the southeast of the basin. 

6. Conclusions 

The variation in sulfur isotope composition and its relationship with 
metal concentrations across Au-bearing pyrite can be used to constrain 
the source and evolution of reduced sulfur in the ore-forming fluids of 
Carlin-type gold deposits (CTGDs). High-resolution Nano-SIMS sulfur 
isotope analysis and elemental mapping of Au-bearing pyrite with 
complex zoning suggest that the reduced sulfur in the initial Au- and As- 
rich ore-forming fluids of CTGDs in the Youjiang Basin was originated 
from deep magmatic-hydrothermal systems. Strong fluid-rock in
teractions and host rock-derived sulfur contributions could have erased 
primary sulfur isotope information and resulted in highly variable and 
sedimentary host-dependent sulfur isotope compositions of Au-bearing 
pyrites, which may account for the controversial interpretations of the 
ultimate source of reduced sulfur that transports Au in ore-forming 
fluids. 
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Fig. 12. Frequency distribution histograms of in-situ δ34S values of gold- 
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