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A B S T R A C T   

Cr(III)-Fe(III) hydroxides (CrxFe1–x(OH)3 precipitates) and NOM-Cr(III) colloids are common products of Cr(VI) 
reduction during remediation and natural processes. However, re-oxidation of Cr(III) to Cr(VI) can undermine 
remediation efforts. Nevertheless, until now, less is known about the oxidation of Cr(III) from naturally occurring 
Cr(III) (i.e., CrxFe1–x(OH)3 precipitates and NOM-Cr(III) colloids) by H2O2. Here, we examined the oxidation of 
Cr(III) from Cr0.5Fe0.5(OH)3 and NOM-Cr(III) colloids by H2O2 under oxic conditions. Batch experiments 
demonstrated that Cr(VI) generation via Cr(III) oxidation from both Cr0.5Fe0.5(OH)3 and NOM-Cr(III) colloids 
increased with increasing H2O2 concentration. Increasing pH and addition of Fe2+ promoted Cr(III) oxidation, 
but the promoting effect of pH was more significant on Cr0.5Fe0.5(OH)3, whereas the promoting effect of Fe2+ was 
significant on NOM-Cr(III) colloids. By evaluating the effects of Fe species on Cr(VI) generation from 
Cr0.5Fe0.5(OH)3 and NOM-Cr(III) colloids, we proposed that an intermediate reactive Fe species formed during 
the reaction with H2O2 activated Cr(III) oxidation. X-ray photoelectron spectroscopy (XPS) and X-ray absorption 
fine structure (XAFS) analyses collectively supported that the surface structural Fe in CrxFe1–x(OH)3 precipitates 
might contribute to the formation of reactive Fe species that promoted Cr(III) oxidation. In contrast, the 
decomposition of complexed NOM from NOM-Cr(III) colloids enabled the formation of Cr(III)-H2O2 complex that 
is favorable for subsequent Cr(III) oxidation. Results gained from this study provide a complete understanding of 
the long-term stability of naturally occurring Cr(III) under environmentally relevant conditions.   

1. Introduction 

Chromium (Cr) is a priority contaminant in soils and groundwater as 
a result of industrial activities and natural processes. Toxic Cr(VI) 
(HCrO4

− and CrO4
2− ) is highly soluble and poses a serious threat to 

humans and ecosystems (Palmer and Wittbrodt, 1991; Wielinga et al., 
2001). In contrast, the reduced form of trivalent Cr (Cr(III)) is relatively 
immobile and less toxic (Barnhart, 2008), which had a limited solubility 
(6 × 10− 31, 298 K) under slightly acidic to slightly alkaline pH condi
tions (Palmer and Wittbrodt, 1991; Rai et al., 2002; Rai et al., 1987). 
Therefore, reduction of Cr(VI) to Cr(III) is the most common remedia
tion strategy to mitigate Cr(VI) contamination. In subsurface environ
ments, the reduced Cr(III) is closely associated with Fe forming Cr(III)- 
Fe(III) hydroxides (CrxFe1− x(OH)3) owing to the wide application of 

iron-based materials such as Fe(II)-containing minerals and zerovalent 
iron in engineering remediation sites (Bishop et al., 2014; Chang et al., 
2014; Hu et al., 2004; Loyaux-Lawniczak et al., 2000; Williams and 
Scherer, 2001) and ubiquity of iron minerals in nature (Singh et al., 
2002; Trolard et al., 1995). Compared to pure Cr(OH)3, CrxFe1− x(OH)3 
precipitates have a much lower Cr(III) solubility (Pan et al., 2017; Sass 
and Rai, 1987). For example, the solubility of Cr(III) from CrxFe1− x(OH)3 
is several orders of magnitude lower than that from Cr(OH)3 at the same 
pH (Pan et al., 2017). In addition to Fe, natural organic matter (NOM) 
can also reduce Cr(VI) to Cr(III), resulting in the formation of NOM-Cr 
(III) complexes (Fan et al., 2019; Gustafsson et al., 2014; Li et al., 
2020; Zhang et al., 2022a). In contrast to CrxFe1− x(OH)3 precipitates, 
NOM-Cr(III) complexes typically exist in the form of colloids with par
ticle size ranging from ca. 3 nm to 450 nm, allowing the high mobility of 
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Cr(III) (Landrot et al., 2012; Li et al., 2022). Such propensities underline 
that the co-existence of Fe or NOM with Cr(III) could alter the 
geochemical reactivity of Cr(III) from CrxFe1− x(OH)3 precipitates and 
NOM-Cr(III) colloids, modulating the long-term stabilization of reduced 
Cr(III) in contaminated sites. 

Redox conditions shift from reducing to oxidizing conditions due to 
natural processes (e.g., flooding, surface water intrusion, and seasonal 
water table fluctuations) and anthropogenic events (e.g., dredging and 
groundwater recharge) can cause the reoxidation of Cr(III) to Cr(VI) 
(Boman et al., 2008; Diem et al., 2013; Peiffer et al., 2021; Ramesh 
Kumar and Riyazuddin, 2012). In natural environments, oxidation of Cr 
(III) to Cr(VI) by oxygen is slow with rate on the order of days to years 
under neutral pH conditions (Schroeder and Lee, 1975), but the oxida
tion by Mn-containing minerals is fast on orders of minutes to hours 
(Bartlett and James, 1979; Fandeur et al., 2009; Ivarsson et al., 2011; 
Landrot et al., 2012; Liu et al., 2020; Liu et al., 2021; Oze et al., 2007; 
Pan et al., 2017). Thus, oxidation of Cr(III) by Mn oxides have long been 
regarded as the principal pathway for Cr(III) oxidation. On the other 
hand, in engineered sites such as the drinking water distribution sys
tems, due to the wide and long-term application of Cr in plumbing 
materials, Cr(III) can accumulate to high levels (Cui et al., 2016; Frey 
et al., 2005; Liu et al., 2016) and react with residual disinfectant chlo
rine to result in the risk of Cr(VI) generation at the tap (Chebeir and Liu, 
2018; Lai and McNeill, 2006; Lindsay et al., 2012; McNeill et al., 2012). 

Besides Mn minerals and chlorine, hydrogen peroxide (H2O2) is also 
a potent oxidant that can oxidize Cr(III) (hydr)oxides. H2O2 can be 
widely produced in biological, weathering, and photochemical pro
cesses in terrestrial environments (Foustoukos et al., 2011; Oze et al., 
2016). For example, the detected H2O2 concentration ranges from 1 to 
100 μM in rainwater (Qin et al., 2017a; Qin et al., 2017b) and from 3.5 to 
7.0 μM in groundwater (Cooper and Zika, 1983; Moffett and Zika, 1987). 
A much higher H2O2 concentration, up to 10 M, can occur in contami
nated sites for subsurface remediation (Yang et al., 2019), because H2O2 
is frequently used for in situ chemical oxidation (ISCO) of contaminated 
soil and groundwater due to its high oxidizing capability towards 
organic contaminants (Pardieck et al., 1992; Yang et al., 2019). Oxida
tion of Cr(III) to Cr(VI) by H2O2 has been frequently observed (Eq. 1) 
(Oze et al., 2007; Oze et al., 2016; Rao et al., 2002; Rock et al., 2001), 
which is pH-dependent (Bokare and Choi, 2011; Rao et al., 2002) and 
proceeds via forming Cr(III)-peroxide complexes first (Knoblowitz and 
Morrow, 1976). At acidic pH, Cr(III) ion exists as hexaaquo ion [Cr 
(H2O)6]3+ (pKa = 4, 298 K), which is unreactive towards H2O2 and any 
other organic or inorganic species (Bokare and Choi, 2011). When pH 
increases to neutral and alkaline values, the hexaaquo-Cr(III) ions are 
hydrolyzed to hydroxo-ion ([Cr(H2O)5OH]2+) (Eq. 2) (Bokare and Choi, 
2011). Compared to Cr(H2O)6

3+, (H2O)5CrOH2+ ion is more reactive in 
anion complexation reaction (Bokare and Choi, 2011), including with 
HO2

− , which is a soluble species of H2O2 (pKa = 11.65, 298 K) (Panarin 
et al., 2007). 

Cr(OH)3 +H2O2 + 2OH− →CrO2−
4 + 3H2O+ 0.5H2 (1)  

[
Cr(H2O)6

]3+→
[
Cr(H2O)5(OH)

]2+
+H+ (2) 

Although extensive researches have been performed on Cr(III) 
oxidation by H2O2, previous research mainly focused on Cr(OH)3 or 
Cr3+ ions (Knoblowitz and Morrow, 1976; Rao et al., 2002), and much 
less is devoted to Cr(III) oxidation by H2O2 from naturally occurring 
CrxFe1–x(OH)3 precipitates and NOM-Cr(III) colloids (Pettine et al., 
2008), which represent a major part of Cr cycling. While previous 
studies have reported that organic complexed Cr(III) and mineral forms 
of Cr protected Cr(III) from oxidation by Mn oxides (Tzou et al., 2002) 
and H2O2 (Luo and Chatterjee, 2010; Rock et al., 2001), the underlying 
kinetics and mechanism of Cr(III) oxidation from CrxFe1–x(OH)3 pre
cipitates and NOM-Cr(III) colloids by H2O2 is still largely unclear, which 
limited our ability to thoroughly estimate the fate and transport of Cr. As 

aforementioned, CrxFe1–x(OH)3 precipitates and NOM-Cr(III) colloids 
exhibit distinct property regarding reactivity and structure from Cr 
(OH)3. Therefore, an in-depth understanding of Cr(III) oxidation from 
naturally occurring Cr(III) species is crucially important to assess the 
efficiency of remediation strategy for Cr contamination. 

The objective of this study was to fundamentally investigate the ki
netics and mechanisms of Cr(III) oxidation from CrxFe1–x(OH)3 pre
cipitates and NOM-Cr(III) colloids by H2O2 under oxic conditions. To 
this end, batch experiments were conducted to investigate the impact of 
H2O2 concentration, pH, and addition of Fe2+ on the rates of Cr(VI) 
generation. Additionally, reactive oxygen species tests as well as X-ray 
photoelectron spectroscopy (XPS) and X-ray absorption fine structure 
(XAFS) spectroscopy were performed to provide more information on 
the underlying mechanism of Cr(III) oxidation. Findings gained from 
this study advance the understanding of the long-term stability of 
reduced Cr(III) upon the reaction with H2O2 under environmentally 
relevant conditions. 

2. Experimental section 

2.1. Preparation of CrxFe1–x(OH)3 precipitates and NOM-Cr(III) colloids 

CrxFe1–x(OH)3 precipitates in this study are represented by 
Cr0.5Fe0.5(OH)3, which was synthesized by mixing 0.1 M Cr(NO3)3⋅9H2O 
and 0.1 M Fe(NO3)3⋅9H2O stock solution at equal molar ratio adjusted to 
pH 7 with 1 M NaOH in dark for 24 h. Then, the suspension was washed 
repeatedly by ultrapure water (resistivity >18.2 MΩ cm, Milli-Q, Mil
lipore) to remove free ions (conductivity <200 μS/cm), dispersed by 
ultrasonic for 15 min, and then stored in dark at 4 ◦C. The resulting 
Cr0.5Fe0.5(OH)3 precipitate was characterized using X-ray diffraction 
(XRD, Bruker D8 Advance). The XRD pattern appeared similar to that of 
2-line ferrihydrite (Fig. S1, Supplementary Materials), which was in line 
with previous reports (Pan et al., 2017; Qian et al., 2020). 

NOM-Cr(III) colloids were prepared by adding Cr(III) from 0.1 M Cr 
(III) stock solution to a Aldrich humic acid suspension (AHA, chosen as 
representative NOM; details of preparation can be found in Section S1 of 
Supplementary Material) to reach a final Cr(III) concentration of 38.5 
μM and a AHA concentration of 40 mg C/L. The hydrodynamic di
ameters of NOM-Cr(III) colloids, measured by dynamic light scattering 
(DLS) (Zetasizer Nano, Malvern), were in the range of 150–200 nm (n =
10). 

2.2. Batch experiments 

All batch experiments were conducted in duplicate in 50 mL poly
propylene bottles at 24 ± 2 ◦C under oxic conditions, and the bottle 
reactors were shielded with aluminum foil to exclude any photochem
ical reactions. A constant stirring speed of 450 rpm was maintained by a 
Teflon-coated magnetic stir bar. For oxidation of Cr(III) from 
Cr0.5Fe0.5(OH)3 at pH 7, an aliquot of synthesized Cr0.5Fe0.5(OH)3 was 
added into a buffer solution of 10 mM 4-(2-hydroxyethyl)-1-piper
azineethanesulfonic acid (HEPES, pKa = 7.6) to reach a Cr(III) concen
tration of 38.5 μM. For oxidation of Cr(III) from NOM-Cr(III) colloids, 
the resulting NOM-Cr(III) suspension with an initial Cr(III) concentra
tion of 38.5 μM and a AHA concentration of 40 mg C/L was used 
throughout the experiments. The selection of 40 mg C/L AHA was to 
emulate the humic substances concentration typically found in subsur
face environments (Herbert and Bertsch, 1995; Liao et al., 2017; Liao 
et al., 2019a; Page et al., 2012; Peiffer et al., 1999; Wang et al., 2016). 
Na2SO4 with concentration of 50 mM was employed as background 
electrolyte for all Cr(III) oxidation experiments. This concentration was 
selected to mimic the dominant concentration of Na+ and SO4

2− in Cr- 
contaminated sites (Guo et al., 2020). The Cr(III) oxidation reaction 
was initiated by spiking reactors of Cr0.5Fe0.5(OH)3 precipitate and 
NOM-Cr(III) colloids with H2O2 (10–1000 μM) under oxic conditions. 
During the whole experiment period, the reaction vials were exposed to 
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air to allow a complete equilibrium of dissolved oxygen with atmo
sphere (PO2 = 0.21 bar). Control experiment with Cr(OH)3 oxidation by 
H2O2 was conducted to compare the oxidation rate from Cr0.5Fe0.5(OH)3 
precipitate and NOM-Cr(III) colloids. 

The effect of pH (5, 7, and 9) on Cr(III) oxidation of Cr0.5Fe0.5(OH)3 
precipitate and NOM-Cr(III) colloids was explored at a fixed H2O2 
concentration of 1000 μM. At pH 5 and pH 9, the pH values of the 
suspensions were buffered with 10 mM N, N′-diethylpiperazine (DEPP, 
pKa = 4.6) and 10 mM N-cyclohexyl-2-aminoethanesulfonic acid (CHES, 
pKa = 9.3), respectively. All the pH buffers and their concentrations 
were selected due to their negligible influence on metals complexation 
(Li et al., 2020; Pan et al., 2017). Furthermore, the effect of Fe2+ on Cr 
(III) oxidation was investigated at Fe2+ concentration ranging from 30 
μM to 100 μM at a fixed H2O2 concentration of 500 μM. To clarify the 
contribution of •OH radicals to Cr(III) oxidation, •OH production was 
analyzed using a benzoic acid probe technique following previous re
ports (Liao et al., 2019a; Xie et al., 2021). Briefly, 20 mM benzoic acid 
was added into the reaction suspension of 500 μM H2O2 and 100 μM 
Fe2+, where Cr(III) was absent, to react with •OH to form a stable 
product of p-hydroxybenzoic acid (p-HBA). To quench the •OH radicals, 
1 M ethanol was added into Cr0.5Fe0.5(OH)3 suspension with 500 μM 
H2O2 and 100 μM Fe2+. The detailed analysis of p-HBA is provided in 
Section S2 of Supplementary Materials. 

2.3. Aqueous and solid phase analyses 

Aqueous samples filtered through a 220 nm syringe filter (PES, 
Millipore) were periodically collected in order to monitor the oxidation 
kinetics. Aqueous Cr(VI) was determined photometrically at 540 nm, 
and total Cr(VI) was determined after desorption treatment in 2 mM 
phosphate solution for 2 h (Liao et al., 2019b). Total Cr was determined 
using an Agilent 7700 series inductively coupled plasma spectrometry 
(ICP-MS) after acidification with 6% HNO3. The residual H2O2 was 
analyzed using modified titanium sulfonate method (Eisenberg, 1943). 

To minimize the interference by AHA, all samples were centrifuged 
(14,000 g) for 10 min to remove AHA and the supernatants were assayed 
immediately. The particle size distribution of the aqueous samples was 
monitored by DLS. 

Solid samples were characterized by surface-sensitive XPS and XAFS 
to determine the oxidation state and molecular structure of Cr and Fe. 
Solids were collected at the end of the batch experiments by centrifu
gation and then freeze-dried. For cryogenic XPS measurement, all 
samples were first precooled in liquid nitrogen (− 196 ◦C). The frozen 
sample was then transferred to the XPS analysis chamber. During the 
whole period, the sample temperature in the analysis chamber was 
monitored and maintained at − 160 ± 3 ◦C. XPS spectra were collected 
using a PHI Quantera SXM scanning X-ray microprobe with an Al mono 
source at a 100 μm X-ray spot size. The binding energies were calibrated 
at 284.8 eV and the spectra were processed using MultiPak v9.8 soft
ware. Cr and Fe K-edge XANES spectra were collected in fluorescence 
mode on the beamline 20-BM of the Advanced Photon Source (APS) at 
the Argonne National Laboratory. More details of XAFS measurements 
can be found in Section S3 of Supplementary Materials. 

3. Results and discussion 

3.1. Oxidation of Cr0.5Fe0.5(OH)3 by H2O2 

Batch experiments show that H2O2 oxidized Cr(III) from 
Cr0.5Fe0.5(OH)3 to Cr(VI), and Cr(VI) generation increased with 
increasing H2O2 concentration (Fig. 1a). At low H2O2 concentration of 
10 μM, Cr(VI) generation was negligible (< 0.5 μM), which can be 
attributed to the faster decomposition of H2O2 than Cr(III) oxidation. 
After 32 h of reaction, Cr(VI) generation reached to 1.9 μM at 100 μM 
H2O2 and further increased to 8.4 μM when H2O2 concentration 
increased to 1000 μM. This is consistent with previous reports (Peng 
et al., 2019; Rao et al., 2002) showing that the oxidation rate of Cr(III) 
hydroxide and Cr(III) ions increased proportionately with the increase of 

Fig. 1. (a) Cr(VI) generation from 
Cr0.5Fe0.5(OH)3 precipitate by varied 
amount of H2O2 at pH 7 under oxic condi
tions. (b) Evolution of residual H2O2 con
centration during the oxidation of 
Cr0.5Fe0.5(OH)3 precipitate at pH 7 under 
oxic conditions. (c) Oxidation rates of Cr(III) 
from Cr0.5Fe0.5(OH)3 precipitate as a func
tion of initial H2O2 concentration at pH 7 
under oxic conditions. (d) Effect of pH on Cr 
(VI) generation from reaction of 
Cr0.5Fe0.5(OH)3 precipitate with initial 1000 
μM H2O2 under oxic conditions. The lines in 
panels (a), (b), and (d) are fitted via pseudo- 
first-order equation of Ct = Ceq • (1 − e− kt) 
(Section S4 and Table S1), where Ct and Ceq 
are the concentration at time t and equilib
rium, respectively. And k is the rate con
stant. In some cases, the uncertainty 
estimates are smaller than the size of sym
bols. Error bars represent the standard de
viation of at least duplicate measurements.   
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H2O2 concentration at pH 7. Control experiment shows that Cr(VI) 
generation from Cr(OH)3 was only 2.1 μM after 32 h of reaction with 
1000 μM H2O2, much lower than 8.4 μM from Cr0.5Fe0.5(OH)3 under the 
same conditions. The lower generation of Cr(VI) from Cr(OH)3 than 
from Cr0.5Fe0.5(OH)3 was unexpected, because previous research has 
demonstrated that the solubility of CrxFe1–x(OH)3 plays a vital role in Cr 
(III) oxidation by Mn minerals (Pan et al., 2017). As aforementioned, Cr 
(OH)3 has a higher solubility than Cr0.5Fe0.5(OH)3, therefore, Cr(OH)3 
was supposed to release more Cr(III) ions into solution, favoring the 
formation of Cr-H2O2 complexes and the subsequent Cr(III) oxidation 
(Knoblowitz and Morrow, 1976). Therefore, the lower generation of Cr 
(VI) from Cr(OH)3 suggests that solubility of Cr from Cr0.5Fe0.5(OH)3 is 
not the determining factor controlling Cr(III) oxidation by H2O2. We 
would have proposed that the iron in Cr0.5Fe0.5(OH)3 precipitate acted a 
catalyzing role that accelerated the decomposition of H2O2 to form 
reactive oxygen species (ROS) (i.e., O2

•− , •OH, or other oxidizing in
termediates), thus promoting Cr(III) oxidation. However, the con
sumption rate of H2O2 in the presence of Cr(OH)3 is almost the same 
with that in the presence of Cr0.5Fe0.5(OH)3 (Fig. 1b), indicating that the 
ROS derived from H2O2 decomposition is not the primary oxidant 
responsible for Cr(III) oxidation. Therefore, Fe species seems to be the 
most plausible explanation for the relatively higher Cr(VI) generation 
from Cr0.5Fe0.5(OH)3. 

The Cr(VI) generation rates are evaluated via pseudo-first-order 
equation (detailed calculation is provided in Section S4 and Table S1) 
and plotted as a function of the initial H2O2 concentration (Fig. 1c). The 
observed rate constant (kobs) of Cr(VI) generation from Cr0.5Fe0.5(OH)3 
precipitate increased slightly with increasing H2O2 concentration, 
ranging from 0.083 ± 0.026 h− 1 at 10 μM H2O2 to 0.121 ± 0.016 h− 1 at 
1000 μM H2O2 (Fig. 1c). Furthermore, at a fixed H2O2 concentration of 
1000 μM, kobs of Cr(VI) generation from Cr(OH)3 (0.087 ± 0.026 h− 1) is 
not significantly lower than that from Cr0.5Fe0.5(OH)3. Nevertheless, a 
higher mean kobs of the latter suggests that Fe may play a promoting role 
in Cr(III) oxidation by H2O2. More experiments were performed to 

decipher the role of Fe species in Cr(III) oxidation by H2O2, as discussed 
later. 

Cr(III) oxidation by H2O2 is highly dependent on solution pH 
(Fig. 1d). After 32 h the generated Cr(VI) from reaction of 
Cr0.5Fe0.5(OH)3 with 1000 μM H2O2 were 1.8 ± 0.1 μM at pH 5, 8.4 ±
0.4 μM at pH 7, and 18.9 ± 0.3 μM at pH 9. pH affects the reaction of Cr 
(III) with H2O2 in multiple ways. First, pH affects the reactivity of H2O2 
towards Cr(III). For example, H2O2 acts either as an oxidant of Cr(III) 
(E0(H2O2/H2O) = 1.763 V) at pH > 8.0 (Bokare and Choi, 2011) or as a 
reductant of Cr(VI) (E0(O2/H2O) = 0.695 V) under acidic conditions 
(Bokare and Choi, 2010; Bokare and Choi, 2011), because the reduction 
capability of H2O2 increases with decreasing pH (Bokare and Choi, 
2011). Thus, increasing pH would enhance the oxidizing capability of 
H2O2 towards Cr(III) and weaken the reduction capability. Second, pH 
affects the hydrolysis of solubilized Cr(III) (Bokare and Choi, 2011). 
Increasing pH increases the hydrolysis of Cr(III) ion, as well as the 
oligomerization of Cr(III), thus retarding the oxidation of Cr(III) (Bokare 
and Choi, 2011; Rao et al., 2002). Additionally, due to the presence of 
iron, highly reactive Fe species may form under neutral and slightly 
alkaline pH conditions (Hug and Leupin, 2003). In our study, Cr(VI) 
generation from Cr(III) oxidation of Cr0.5Fe0.5(OH)3 precipitate by H2O2 
occurred at high pH, suggesting that Cr(III) oxidation by reactive 
oxidizing species outcompetes the effect of pH-induced oligomerization 
of chromium(III). 

3.2. Oxidation of NOM-Cr(III) colloids 

H2O2 also oxidized Cr(III) from NOM-Cr(III) colloids, but the 
oxidation extent was lower compared to Cr0.5Fe0.5(OH)3 precipitate 
(Fig. 2a). As expected, the rate constant (kobs) of Cr(VI) generation 
increased with increasing H2O2 concentration (Fig. 2b). The observed 
kobs was 0.078 ± 0.022 h− 1 at 10 μM H2O2, then increased slightly to 
0.116 ± 0.016 h− 1 when H2O2 concentration increased to 1000 μM. 
Compared to Cr0.5Fe0.5(OH)3 precipitate, the effects of initial H2O2 

Fig. 2. (a) Generation of Cr(VI) from NOM- 
Cr(III) colloids upon reaction with H2O2 at 
pH 7 under oxic conditions. (b) Oxidation 
rates of Cr(III) from NOM-Cr(III) colloids as 
a function of initial H2O2 concentration at 
pH 7 under oxic conditions. (c) Effect of pH 
on Cr(VI) generation from reaction of NOM- 
Cr(III) colloids with initial 1000 μM H2O2 
under oxic conditions. (d) Evolution of 
aqueous Cr(III) (through 220 nm filter) in 
the NOM-Cr(III) suspension upon addition of 
H2O2 at pH 7 under oxic conditions. The 
lines in panels (a) and (c) are fitted via 
pseudo-first order equation of Ct = Ceq • (1 
− e− kt) (Section S4 and Table S1), where Ct 
and Ceq are the concentration at time t and 
equilibrium, respectively. And k is the rate 
constant. Error bars represent the standard 
deviation of at least duplicate 
measurements.   
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concentration on Cr(III) oxidation from NOM-Cr(III) colloids were 
smaller. According to Rock et al. (2001) and Knoblowitz and Morrow 
(1976), Cr(III) oxidation by H2O2 proceeds via forming Cr(III)-peroxide 
complexes first, followed by oxidation of Cr(III)-peroxide complexes to 
produce Cr(VI). Therefore, we would have proposed that during the 
oxidation of Cr(III) from NOM-Cr(III) colloids, the complexed NOM was 
oxidized by H2O2 to small organic molecules first (reaction rate constant 
of 1.9–2.7 × 104 s− 1 (mg of C/L)− 1) (Goldstone et al., 2002; Wenk et al., 
2011), exposing Cr(III) to H2O2, thus enabling the formation of Cr(III)- 
peroxide complexes for subsequent Cr(III) oxidation (reaction rate 
constant of 1.3–18.6 × 10− 4 s− 1, calculated from Table S1). Therefore, 
the NOM-complexed Cr(III), to some extent, retarded oxidation of Cr(III) 
by H2O2. 

Increasing pH slightly enhanced Cr(III) oxidation from NOM-Cr(III) 
colloids (Fig. 2c). At pH 5 and pH 7, the concentration of generated Cr 
(VI) was 2.6–2.9 μM after 32 h of reaction with 1000 μM H2O2. Further 
increasing the pH to 9 elevated Cr(VI) generation (i.e., 3.7 μM). The 
enhancement of Cr(VI) generation at alkaline pH might be related to the 
colloidal stabilization of NOM. The alkaline pH can inhibit the aggre
gation of NOM (Duval et al., 2005; Hosse and Wilkinson, 2001; Lan 
et al., 2022), thus enhancing their contact with water and probably 
promoting the complexation of Cr(III) with H2O2 and its subsequent 
oxidation. Compared to the relatively higher effect of pH on Cr(III) 
oxidation from Cr0.5Fe0.5(OH)3, where reactive Fe species might form 
under neutral to alkaline pH, the lack of Fe in the NOM-Cr(III) colloids 
might explain the insignificant effect of pH on Cr(III) oxidation by H2O2. 

Upon addition of H2O2, the aqueous Cr(III) concentration (through 
220 nm filter) was observed to decrease immediately from initial 38.5 
μM to approximately 25 μM, and further decreased continuously with 
reaction proceeding (Fig. 2d). The generated Cr(VI) is not adequate to 
account for the observed decrease in aqueous Cr(III) concentration, 
demonstrating that the addition of H2O2 decreased the colloidal stability 
of NOM-Cr(III) complexes, thus causing particle aggregation and pre
cipitation. DLS results supported this proposition, showing that the 

hydrodynamic diameters of NOM-Cr(III) colloids increased from 150 to 
200 nm to >3000 nm after addition of H2O2 (data not shown). During 
the oxidation process, the decomposition of NOM by ROS would pro
mote the exposure of Cr(III), allowing the aggregation of positively 
charged Cr(III) with negatively charged moieties of NOM (Chen et al., 
2022; Shin et al., 2008). Regardless of the initial H2O2 concentration, 
the decreasing trends of dissolved Cr(III) are quite similar, indicating 
that H2O2 can effectively destabilize NOM-Cr(III) colloids, potentially 
suppressing the transport and mobility of Cr(III) colloids. 

3.3. Effect of Fe(II) on Cr(III) oxidation 

Iron species affects Cr(III) oxidation from Cr0.5Fe0.5(OH)3 precipitate 
and NOM-Cr(III) colloids by H2O2 (Fig. 3). Addition of Fe2+ dramatically 
promoted Cr(III) oxidation from NOM-Cr(III) colloids by H2O2 (Fig. 3a). 
Without Fe2+ addition, Cr(VI) generation from NOM-Cr(III) colloids is 
only 1.3 μM after 32 h of reaction with 500 μM H2O2, while Cr(VI) 
generation increased to 5.6 μM with addition of 100 μM Fe2+. In 
contrast, Fe2+ exerted an insignificant influence on Cr(VI) generation 
from Cr0.5Fe0.5(OH)3 precipitate (Fig. 3b). The concentrations of 
generated Cr(VI) were 3.9–5.6 μM after 32 h of reaction with 500 μM 
H2O2 under various Fe2+ concentrations. However, for Cr(OH)3, addi
tion of 100 μM Fe2+ dramatically increased Cr(VI) generation to ~5.8 
μM (Fig. 3b), compared to ~2.1 μM from Cr(OH)3 even at higher H2O2 
concentration (1000 μM) without Fe (Fig. 1a). These observations 
further supported that Fe played a promoting role in Cr(III) oxidation by 
H2O2 at pH 7. 

The different effects of Fe2+ on Cr(III) oxidation from Cr0.5Fe0.5(OH)3 
precipitate and NOM-Cr(III) colloids can be attributed to the different Fe 
species in their corresponding systems. In Cr0.5Fe0.5(OH)3 suspension, 
the introduced Fe2+ was rapidly oxidized to Fe(III) by O2 forming Fe(III) 
(hydr)oxides, therefore, the Fe species that is supposed to play a cata
lytic role in Cr(III) oxidation can only be dissolved from the newly 
formed Fe(III) (hydr)oxides and Cr0.5Fe0.5(OH)3 precipitate. 

Fig. 3. Influence of Fe2+ on the oxidation of 
Cr(III) (a) from NOM-Cr(III) colloids and (b) 
from Cr0.5Fe0.5(OH)3 precipitate after reac
tion with 500 μM H2O2 at pH 7 under oxic 
conditions. (c) Effect of pH on Cr(VI) gen
eration from Cr0.5Fe0.5(OH)3 precipitates 
after reaction of 500 μM H2O2 with 100 μM 
Fe2+ under oxic conditions. (d) Effect of pH 
on accumulative •OH production from re
action of 500 μM H2O2 with 100 μM Fe2+

concentrations under oxic conditions, where 
Cr0.5Fe0.5(OH)3 precipitate and NOM-Cr(III) 
colloids were absent. The lines are fitted 
via pseudo-first order equation of Ct = Ceq •

(1 − e− kt) (Section S4 and Table S1), where 
Ct and Ceq are the concentration at time t and 
equilibrium, respectively. And k is the rate 
constant. Error bars represent the standard 
deviation of at least duplicate 
measurements.   
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Interestingly, the Cr(VI) generation is the lowest when the added Fe2+

concentration was highest (100 μM). It might be attributed to the fact 
that the addition of high Fe2+ concentration consumed potential ROS 
fast, which may decrease the oxidation efficiency of Cr(III) by H2O2. 
Furthermore, the addition of high Fe2+ concentration generated more 
iron (hydr)oxides, which might adsorb at the surface of Cr0.5Fe0.5(OH)3 
precipitate, therefore inhibiting the oxidation of Cr(III) by H2O2 to some 
extent. In contrast, in the NOM-Cr(III) system, the introduced Fe2+

would form NOM-Fe complexes, likely in the form of NOM-Fe colloids 
(Liao et al., 2017), allowing a relatively higher concentration of aqueous 
Fe(II) and/or Fe(III). Therefore, the catalytic effect of Fe on Cr(III) 
oxidation increased with increasing Fe2+ concentration. Altogether, the 
presence of iron promoted Cr(III) oxidation from Cr0.5Fe0.5(OH)3 pre
cipitate and NOM-Cr(III) colloids by H2O2 under neutral pH conditions. 

Although the solubility of Cr0.5Fe0.5(OH)3 precipitate is negligibly 
affected by the pH values (e.g., 5–9) (Fig. S2) (Palmer and Wittbrodt, 
1991; Rai et al., 2002; Rai et al., 1987), pH significantly affects Cr(VI) 
generation from Cr0.5Fe0.5(OH)3 precipitate after reaction with 500 μM 
H2O2 in the presence of 100 μM Fe2+ (Fig. 3c). Cr(VI) generation was 
0.8 μM at pH 5, increased to 3.9 μM at pH 7, and to 12.3 μM at pH 9 
towards the end of reaction. To decipher the underlying mechanism 
accounting for Cr(III) oxidation, •OH production was determined. The 
accumulative •OH production decreased dramatically with increasing 
pH (Fig. 3d). This confirms that Cr(VI) generation is not related to •OH 

production under the studied conditions. Additionally, at a fixed H2O2 
concentration of 500 μM, the accumulative •OH production increased 
with increasing Fe2+ concentration at pH 7 (Fig. S3a), while Cr(VI) 
generation was almost unchanged from Cr0.5Fe0.5(OH)3 with increasing 
Fe2+ concentration (Fig. 3b). Furthermore, the Cr(VI) generation from 
Cr0.5Fe0.5(OH)3 is 3.7 μM in the presence of 1 M ethanol (Fig. S3b), 
slightly lower than that (5.4 μM) without addition of ethanol, further 
indicating that •OH is not the primary oxidant for Cr(III) oxidation. Due 
to the scavenge effect of NOM on oxidizing species, the effect of pH on Cr 
(III) oxidation from NOM-Cr(III) colloids was not as significant as from 
Cr0.5Fe0.5(OH)3 (data not shown). 

Despite that numerous researches (Wang et al., 2022; Xue et al., 
2016; Xue et al., 2017; Ye et al., 2018) have reported the critical role of 
•OH in Cr(III) oxidation during Fe-mediated Fenton reactions, H2O2 in 
these studies was not added directly but was generated through Fe(II) 
oxidation, and decomposed to •OH rapidly. Therefore, the effect of 
direct oxidation of Cr(III) by H2O2 was significantly overlapped or even 
masked by •OH generation. In contrast, in this study, the amount of 
preexisting H2O2 highly exceeds the concentration of Cr(III), therefore 
direct oxidation of Cr(III) by H2O2 occurs (Bokare and Choi, 2011), in 
particular under neutral and alkaline conditions where oxidative effect 
of H2O2 increases while generation of •OH is significantly inhibited 
(Bokare and Choi, 2011). Furthermore, in the presence of iron, highly 
reactive Fe species are supposed to form (Hug and Leupin, 2003; Miller 

Fig. 4. Cryogenic XPS Cr 2p spectra of (a) pristine Cr0.5Fe0.5(OH)3 precipitate and (c) pristine NOM-Cr(III) colloids prior to reaction with H2O2, (b) Cr0.5Fe0.5(OH)3 
precipitates and (d) NOM-Cr(III) colloids collected after 32 h of reaction with 1000 μM H2O2 at pH 7 under oxic conditions, respectively. The probing depths were 
recorded at topmost surface, 10 nm, and 50 nm depth along the sample surface. The Cr 2p3/2 spectra of pristine (e) Cr0.5Fe0.5(OH)3 precipitate, (f) reacted 
Cr0.5Fe0.5(OH)3 precipitate, (g) pristine NOM-Cr(III) colloids and (h) reacted NOM-Cr(III) colloids were fitted using a least squares procedure with the Gaussian- 
Lorentzian function (80% G-20% L) after subtracting a Shirley background (MultiPak v9.8). Peak fitting was performed only for the Cr 2p3/2 peak, due to the 
complexity of the Cr region. 
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et al., 2016; Pham et al., 2020), which is more effective in Cr(III) 
oxidation than H2O2/•OH does, thus promoting Cr(III) oxidation. 
Consequently, the contribution of •OH to Cr(III) oxidation in this study 
was negligible compared to other oxidants, which might likely be highly 
reactive Fe species when iron is present. 

Based on the above results, we speculated that the formation of 
highly reactive Fe species, rather than •OH, may be the main oxidant 
responsible for Cr(III) oxidation. This proposition is supported by pre
vious researches conducted under comparable conditions. For example, 
Bi et al. (2016) proposed the formation of transient reactive Fe(III) 
species that drive the rapid oxidation of U(IV) to U(VI) by dissolved 
oxygen in the presence of FeS. Miller et al. (2016) confirmed an inter
mediate which is likely to be high-valent Fe species but not •OH during 
the oxidation of Fe(II) with H2O2 at circumneutral pH. Taken as a whole, 
we propose that the high concentration of H2O2 maintained the cycling 
of Fe between Fe(III) and Fe(II), allowing a continuous formation of 
highly reactive Fe species that may contribute to Cr(III) oxidation under 
neutral to slightly alkaline pH conditions. 

3.4. Proposed mechanisms of Cr(VI) production 

To further decipher the underlying mechanisms accounting for Cr 
(III) oxidation from Cr0.5Fe0.5(OH)3 precipitate and NOM-Cr(III) colloids 
by H2O2, cryogenic XPS spectra in conjunction with depth profiling 
technique was used to identify the changes in redox state of Cr. The 
depth profiling technique revealed that the intensity of Cr(III) increases 
with increasing probing depth from the near-surface to 50 nm depth 
along the sample surface, indicating Cr(III) was enriched in the interior 
of both Cr0.5Fe0.5(OH)3 precipitate and NOM-Cr(III) colloids (Fig. 4a–d). 
The elemental composition of C, O, Cr, and Fe along the probing depths 
was further analyzed (Table S2). For pristine Cr0.5Fe0.5(OH)3, the Cr/Fe 
ratios remained largely unchanged (0.98–1.12) along the probing 
depths from near-surface to 50 nm depth (Table S2), which would imply 
that Cr and Fe are equally enriched in the Cr0.5Fe0.5(OH)3 precipitate. 
After reaction with H2O2, the Cr/Fe ratios slightly decreased from 1.30 
to 1.01 as the probing depths increased from near-surface to 10–50 nm 
depths. The decrease in Cr/Fe ratios along the probing depths would 
suggest that more Fe dissolved into aqueous phase and involved reaction 
with H2O2, perhaps forming reactive Fe species contributing to Cr(III) 
oxidation. The occurrence of reactive Fe species was confirmed by Bi 
et al. (2016), who identified a transient surface Fe(III) species by eval
uating the evolution of high-spin surface Fe2+ species during Fe(II) 
oxidation. For NOM-Cr(III) colloids, low Cr/C ratio was observed at the 

particle near-surface (Table S2), indicating the relative enrichment of 
NOM at the surface of NOM-Cr(III) colloids. 

Further fitting of the high-resolution Cr 2p3/2 spectra revealed that 
the XPS spectra of pristine Cr0.5Fe0.5(OH)3 and NOM-Cr(III) colloids 
exhibit only characteristic peaks of Cr(III) at 575.9–578.5 eV (Hu et al., 
2019) (Fig. 4e,g). After reaction with 1000 μM H2O2, a fraction of Cr(VI) 
at 579.8 eV (Boursiquot et al., 2002; Chai et al., 2009; Dambies et al., 
2001; Hu et al., 2005) (8.2–14.8%) was present at near-surface (10 nm 
depth) (Fig. 4f,h). In contrast, at both the near-surface and interior (50 
nm depth) of Cr0.5Fe0.5(OH)3 precipitate and NOM-Cr(III) colloids, 
accumulation of Cr(VI) was lower (Fig. 4f,h), which is attributed to the 
dissolution of Cr(VI) from the near-surface and un-oxidation of interior 
Cr(III). The Cr(III) oxidation over spatial distribution suggests that the 
dissolution of surface Fe in Cr0.5Fe0.5(OH)3 precipitate and the oxidation 
of surface NOM in the NOM-Cr(III) colloids, thus exposing Cr(III) to 
H2O2 and subsequently promoting Cr(III) oxidation. 

XAFS analysis was further used to quantify the speciation and local 
coordination environments of Cr and Fe within Cr0.5Fe0.5(OH)3 precip
itate and NOM-Cr(III) colloids. Cr K-edge XANES spectra showed that no 
Cr(VI) was observed in the pristine Cr0.5Fe0.5(OH)3 and NOM-Cr(III) 
samples, as evidenced by the absence of an intense pre-edge peak at 
~5993 eV (Fig. 5a) (Brown et al., 2018). Even after reaction of H2O2, no 
perceptible Cr(VI) peaks can be observed (Fig. 5a). The absence of Cr(VI) 
peaks in XAFS may be attributed to the low amount of Cr(VI) associated 
with the solid samples due to the low affinity of CrO4

2− to minerals. The 
first-shell modeling from the Cr K-edge EXAFS spectra indicated an 
average Cr–O distance of 1.96 Å with a coordination number of Cr 
ranging from 5.3 to 5.7 for pristine Cr0.5Fe0.5(OH)3 precipitate and 
NOM-Cr(III) colloids, as well as H2O2-treated Cr0.5Fe0.5(OH)3 precipi
tate (Fig. 5b and Table S3). The measured Cr–O distance was identical 
to that from previous reports (Gustafsson et al., 2014; Torapava et al., 
2009), indicating that Cr(III) had six coordinating oxygen atoms in an 
octahedral geometry under the studied conditions. The coordination 
number for H2O2-treated NOM-Cr(III) decreased to 3.8 ± 1.3, which 
might be attributed to oligomerization of Cr(III) caused by H2O2 
oxidation. The second shell of Cr0.5Fe0.5(OH)3 was likely to be Cr–Cr 
with an average distance of 3.02 Å (Downs and Hall-Wallace, 2003), and 
the coordination number was 0.9–1.8. In contrast, no second shell from 
NOM-Cr(III) samples was observed, indicating that the Cr, O, and C 
atoms were not organized in a definite lattice pattern, thus confirming a 
poorly or non-crystalline structure in NOM-Cr(III) colloids. This NOM- 
mediated structure is favorable for the stability of NOM-Cr(III) col
loids (Landrot et al., 2012; Li et al., 2022). However, upon reaction with 

Fig. 5. (a) Cr K-edge normalized XANES spectra and (b) Cr 
Fourier Transforms (magnitudes) of the k3-weighted EXAFS 
spectra. The red solid line, blue dot-dash line, and black solid 
line represent raw, fit or modeled, and standard reference 
compound spectra, respectively. Parameters of the EXAFS 
modeling are reported in Table S3. The reaction samples were 
collected after 32 h of reaction with H2O2 under oxic condi
tions at room temperature and pH 7. For reference, the pat
terns of Cr(OH)3 and Cr(VI) are included in the XANES and 
EXAFS plots. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of 
this article.)   
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H2O2, oxidation of complexed NOM allows the exposure of Cr(III) to 
H2O2, contributing to the formation of Cr(III)-peroxide complexes and 
subsequent oxidation to Cr(VI). Similarly, Fe K-edge EXAFS spectra 
indicated that only Fe(III) was present (section S5 and Fig. S4). 
Compared to ferrihydrite, the second shell from pristine Cr0.5Fe0.5(OH)3 
and H2O2-treated Cr0.5Fe0.5(OH)3 has a smaller coordination number of 
3.7 than that of 4.6 from ferrihydrite (Table S4), which may be favorable 
for the explosion of Fe to H2O2, thus contributing to the formation of 
reactive Fe species that promoted Cr(III) oxidation (Bi et al., 2016; 
Miller et al., 2016). 

Based on the results from above series of batch experiments together 
with the XPS and XAFS spectra analysis, we revealed that H2O2 oxidizes 
Cr(III) from Cr0.5Fe0.5(OH)3 precipitate and NOM-Cr(III) colloids under 
neutral and alkaline pH, during which iron acted a promoting role in Cr 
(III) oxidation. For Cr0.5Fe0.5(OH)3 precipitate, the pathway of direct Cr 
(III) oxidation by H2O2 was slow, but the inherent Fe involved the redox 
reactions with H2O2 probably forming reactive Fe species (Hug and 
Leupin, 2003; Miller et al., 2016), thus accelerating Cr(III) oxidation 
(Fig. 6a). For NOM-Cr(III) colloids, Cr(III) oxidation by H2O2 proceeded 
via the decomposition of complexed NOM first (Goldstone et al., 2002; 
Katsumata et al., 2008; Wang et al., 2001), followed by the formation of 
Cr(III)-peroxide driving Cr(III) oxidation (Fig. 6b). Although we are 
unable to precisely identify the nature of reactive Fe species in our 
experimental settings, a large body of researches have pointed to the 
formation of reactive high-valent iron species during oxidation of Fe(II) 
with H2O2 and O2 at neutral pH (Bataineh et al., 2012; Bi et al., 2016; 
Hug and Leupin, 2003; Keenan and Sedlak, 2008; Lee et al., 2013). Since 
H2O2 can reduce Fe(III) to Fe(II) (Gallard and De Laat, 2001), which can 
be subsequently oxidized back to Fe(III) by O2 or Fe(III) hydroxides, we 
would have proposed that a continuous recycling between Fe(III) and Fe 
(II) could be maintained under the studied conditions. Considering the 
potential importance of Cr(III) oxidation from CrxFe1–x(OH)3 pre
cipitates and NOM-Cr(III) colloids in engineered and natural systems, 
further study is required to unequivocally identify the nature and 
pathway of oxidant species responsible for Cr(III) oxidation by H2O2. 

3.5. Environmental implications 

Oxidation of Cr(III) to Cr(VI) poses a severe risk to ecosystem and 
human health. In contrast to the existing studies evaluating Cr(III) 
oxidation from Cr(OH)3 by Mn oxides and chlorine, we provided new 
knowledge on the oxidation of Cr(III) from naturally occurring Cr(III) 
species (i.e., CrxFe1–x(OH)3 precipitates and NOM-Cr(III) colloids) by 
H2O2 under environmentally relevant conditions. For Cr(III) oxidation 
from Cr0.5Fe0.5(OH)3 precipitate by 100 μM H2O2 at neutral pH, the rate 
of Cr(VI) production was observed to be kobs = 0.101 ± 0.021 h− 1 

(Table S1). Based on the calculated rate, it will take <2 days to produce a 
Cr(VI) concentration higher above the U.S. drinking water standard of 
100 μg/L (1.92 μM) (Pan et al., 2019). Geochemical factors, such as pH 
and presence of structural Fe(III) or aqueous Fe(II), play a vital role in Cr 
(III) oxidation. For example, alkaline pH and the presence of iron pro
moted Cr(III) oxidation likely due to the formation of intermediate high 
active Fe species. In contrast, NOM can to some extent inhibit Cr(III) 
oxidation due to steric hindrance and its scavenge of oxidizing species. 

We acknowledge that the H2O2 concentrations used in this study are 
higher than those present in natural systems. However, high concen
tration of H2O2 is typically observed in subsurface remediation sites 
(Pardieck et al., 1992; Yang et al., 2019). Additionally, climate change 
can also elevate the level of H2O2 in the terrestrial and aquatic envi
ronments (Rozendal et al., 2009; Stevenson et al., 2005; Thompson, 
1990; Zhang et al., 2022b). Furthermore, the in situ generated H2O2 
might be highly concentrated at the surfaces of CrxFe1–x(OH)3 pre
cipitates and NOM-Cr(III) colloids. Therefore, our study is important for 
predicting the potential risk of Cr(III) reoxidation. We certainly realize 
that the geochemical conditions of natural environments are much more 
complicated than the systems presented in this study, further investi
gation is needed to evaluate the rate of Cr(VI) production from 
CrxFe1–x(OH)3 precipitates and NOM-Cr(III) colloids upon reaction with 
H2O2 under more representative of natural conditions. 

4. Conclusions 

This study to our knowledge is the first report elucidating the kinetics 
and mechanism of Cr(III) oxidation from naturally occurring 
CrxFe1–x(OH)3 precipitates and NOM-Cr(III) colloids by H2O2 under oxic 
conditions. The Cr(VI) generation increases with H2O2 concentration, 
and is promoted in alkaline solution and in the presence of iron. Despite 
the similar kobs (0.08–0.12 h− 1) of Cr(III) oxidation from CrxFe1–x(OH)3 
precipitates and NOM-Cr(III) colloids under the studied conditions, they 
are appreciably larger than that from Cr(OH)3. Furthermore, the pres
ence of iron catalytically enhances the Cr oxidation from CrxFe1–x(OH)3 
precipitates and NOM-Cr(III) colloids. The analysis of •OH production 
confirms that ROS originated from decomposition of H2O2 is not the 
principal oxidant for Cr(III) oxidation. For CrxFe1–x(OH)3 precipitates, 
the surface structural Fe might transform to reactive Fe species during 
continuous cycling of Fe(II) and Fe(III) driven by H2O2 at neutral to 
alkaline pH, which enhanced the Cr(III) oxidation. For NOM-Cr(III) 
colloids, the decomposition of complexed NOM by H2O2 enabled the 
formation of Cr(III)-H2O2 complex and the subsequent Cr(III) oxidation. 
The results of this study point to an underestimated pathway for Cr(VI) 
production by H2O2 from Fe(III)-Cr(III) (hydr)oxides and NOM-Cr(III) 
colloids in natural aquatic systems, illustrating an alternative pathway 
of Cr(III) re-oxidation to Cr(VI). 
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