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A B S T R A C T   

China has abundant indium resources and is the main supplier of refined indium in the world. In this contri-
bution, we systematically summarize the geology and spatial–temporal distribution of indium deposits in China, 
with emphasis on the genesis and enrichment mechanism of these deposits. The indium resources in China are 
mainly from Sn-polymetallic deposits related to Mesozoic granites within the southern Great Xing’an Range, 
southwestern Yangtze Block, western Nanling Range, and their surrounding regions. Moreover, these Mesozoic 
granitic intrusions are mainly composed of highly fractionated S- or A-type granites with peraluminous char-
acteristics (A/CNK > 1.1) and high volatile concentrations, which are considered to be generated by biotite- 
dehydration melting in the crust. Because biotite is an important carrier of tin and indium, the breakdown of 
biotite during partial melting could release tin and indium into magmatic-hydrothermal system, leading to Sn-In 
mineralization. During the precipitation of indium minerals from ore-forming fluids, it is preferentially incor-
porated into sphalerite lattice by a coupled substitution of In3+

+ Cu+ ↔2Zn2+, causing a decoupling from tin. 
Therefore, indium resources are dominantly sourced from sphalerite-bearing ores in Sn-polymetallic deposits in 
China. Recently, indium mineralization has been discovered in Sn-poor polymetallic deposits (e.g., the 
Qibaoshan Cu-polymetallic deposit); however, the enrichment mechanism of indium in Sn-poor deposits is still 
unclear. Consequently, we suggest that future studies should focus on the enrichment mechanism of indium in 
Sn-poor polymetallic deposits and the behavior of indium in magmatic-hydrothermal systems, which would 
contribute to a better understanding of the coupling and decoupling of tin and indium and their metallogenesis.   

1. Introduction 

Indium (In), as a silvery-white metal and was discovered in 1863 by 
two German chemists, Ferdinand Reich and Hieronymous Theodor 
Richter, from the analysis of zinc ores in the Freiberg district, Germany 
(Schwarz-Schampera and Herzig, 2002). Indium has two isotopes, 113In 
and 115In (accounting for 4.3% and 95.7%, respectively), and has two 
oxidation states of +1 and +3, with +3 as the most common valence 
state (Schwarz-Schampera, 2014). Because of its good ductility, plas-
ticity, light permeability and electrical conductivity, indium is widely 
used in the electronics, semiconductor, and aerospace industries, 
thereby playing a significant role in national security and the economy 
(Werner et al., 2017). Since the 21st century, with the boom in 

information technology and the new energy industry, the global con-
sumption of indium has increased rapidly, and indium is considered as a 
critical metal (Schulz et al., 2017; European Commission, 2019). 

The indium contents in the upper continental crust, oceanic crust, 
chondrites, and seawater are approximately 0.056 ppm, 0.072 ppm, 
0.08 ppm and 0.2–0.7 ppb, respectively (Schwarz-Schampera, 2014; 
Rudnick and Gao, 2014). It is difficult to form deposits wherein indium 
is the primary product. Most indium deposits are granite-related and are 
associated with Sn-polymetallic deposits in Bolivia, China, Japan, Russia 
and Canada (Ishihara et al., 2006, 2011a, 2011b; Werner et al., 2017; Xu 
and Li, 2018). As an important indium producer, China supplied nearly 
half of the global total refined indium during 2011–2021 (USGS, 2021). 
In China, indium deposits are granite-related, such as the cassiterite- 
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sulfide deposits with relatively high mineralization temperatures. Low- 
temperature deposits without magmatic fluid components generally 
contain negligible indium (Zhang, 1987, 1998; Cook et al., 2009; Ye 
et al., 2011). To better understand the enrichment mechanism of in-
dium, in this contribution, we systematically summarize the latest 
research advances of these granite-related indium deposits in China 
including the geological characteristics, temporal-spatial distribution, 
mineralization processes, and occurrence of indium. Finally, we propose 
the major unresolved scientific problems about indium deposits for 
future studies. 

2. Spatial and temporal distribution of indium deposits in China 

Mainland China tectonically consists of several blocks and orogens, 
including the North China Block, Tarim Block, Yangtze Block, Central 
Asian orogen, Central China orogen, and Tibet-Sanjiang orogen (Fig. 1) 
(Deng et al., 2017). Most large indium deposits are related to Mesozoic 
granites and mainly distributed in the southern Great Xing’an Range, 
southwestern Yangtze Block, western Nanling Range, and their sur-
rounding regions (Figs. 1 and 2) (Xu and Li, 2018; Li et al., 2019). In this 
section, the general features of eight representative In-rich deposits are 
summarized in Supplementary Table S1 and detailed descriptions are 
given as follows. 

2.1. Indium deposits in the southwestern Yangtze Block 

The Yangtze Block is one of the major Precambrian blocks that 

compose mainland China (Zhang, 2017). Numerous and diverse 
mineralization are extensively distributed in this block, of which the Sn- 
In deposits in the southwestern Yangtze Block (SYB) are the well-known 
providers of indium resources worldwide (Hu et al., 2020). In the SYB, 
several world-class Sn-In deposits, such as the Dachang, Gejiu, and 
Dulong deposits, have been discovered in a Devonian to Triassic rift 
basin (Youjiang Basin) (Fig. 3) (Wang et al., 2020). Available data show 
that this region contains nearly 20 kt indium (Ishihara et al., 2011a; Li 
et al., 2015; Xu and Li, 2018), making the SYB the most important In- 
rich region in China (Hu et al., 2020; Li et al., 2020). 

The Dulong Sn-Zn-In polymetallic deposit, located in the Maguan 
County, Yunnan Province, is the largest In-rich skarn-type deposit in 
mining in China (Fig. 4a-b) (Hu et al., 2020). It contains approximately 
7.0 kt In, as well as 0.40 Mt Sn, 4.0 Mt Zn, 0.20 Mt Cu, and minor Pb, Ag, 
and Cd (Li et al., 2016). The average grade of indium is 183 ppm, which 
is much greater than the minimum grades (5–10 ppm) for industrial 
operation (Ishihara et al., 2011a). The deposit is composed of the 
Huashitou, Tongjie, Manjiazhai, Laizizhai, Wukoutong, and Nandang-
chang ore sections from south to north (Fig. 4a). Previous geological 
investigations suggest that all ore bodies are hosted by the Cambrian 
marble and quartz mica schist and are controlled by N-S-trending faults 
(Fig. 4a-c) (Li et al., 2016). The ore minerals in these orebodies mainly 
comprise cassiterite (SnO2), sphalerite (ZnS), magnetite (Fe3O4), chal-
copyrite (CuFeS2), pyrite (FeS2), pyrrhotite (Fe1-xS) and galena (PbS) 
(Fig. 4f-k). In this deposit, the Laojunshan granite composed of two-mica 
monzogranite mainly crops out in the northern part of the ore field 
(Fig. 4a) (Xu et al., 2015). Drilling data suggest that the Laojunshan 

Fig. 1. Distribution of In-rich deposits in China (modified after Liu et al., 2016).  
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granite extends southward with a dip of 15–20◦ and is concealed below 
the main ore sections (Li et al., 2016). Cassiterite U–Pb dating suggests 
that the mineralization occurred from 97.5 Ma to 79.8 Ma (Liu et al., 
2007; Zhao et al., 2018b), which is consistent with the emplacement age 
of the Laojunshan S-type granite (92.9–82.8 Ma) (Xu et al., 2015). 
Therefore, previous studies have proposed that the Dulong Sn- 
polymetallic deposit is a magmatic-hydrothermal skarn-type deposit 
related to Mesozoic granitic magmatism (Xu et al., 2015; Zhao et al., 
2018b). This viewpoint is also supported by trace element studies on 
sphalerite, scheelite, magnetite, pyrite, and cassiterite (Ye et al., 2017, 
2018; Niu et al., 2020; Liu et al., 2021a, 2021b). According to the LA- 
ICP-MS (Laser Ablation Inductively Coupled Plasma Mass Spectrom-
etry) data of sulfides from the Dulong deposit, sphalerite has 0.74 to 
4572 ppm indium and is the most important host of indium (Ye et al., 
2017; Xu et al., 2021a, 2021b). Recently, some sphalerite blebs, with a 
maximum indium concentration of ~15 wt%, were found in hornfels- 
hosted pyrrhotite in the Dulong deposit (Xu et al., 2021a, 2021b). 
Additionally, andradite from the Dulong deposit has been found to have 
166 to 629 ppm indium (Xu et al., 2021b). Because it is an abundant 
silicate mineral in skarn-type deposits, the indium resources hosted in 
andradite may be considerable. 

The Dachang Sn-polymetallic deposit is located in the Nandan 
County, Guangxi Province (Fig. 3). This deposit has a long mining his-
tory extending to the Song Dynasty (960 to 1279 CE) (Guo, 2019). The 
reserves are approximately 9.0 kt In with high average ore grade of 117 
ppm (Ishihara et al., 2011a), as well as 1.5 Mt Sn, 6.8 Mt Zn, 1.4 Mt Pb, 

and 0.4 Mt Cu (Pi et al., 2019). The deposit comprises six ore sections: 
Tongpokeng-Changpo, Gaofeng, Lama, Chashan, Kangma, and Huile, 
where orebodies occur as layers, lenses, and veins hosted in the Middle- 
Upper Devonian carbonate and clastic rocks (Fig. 5a-b) (Guo, 2019). Ore 
minerals in these orebodies include cassiterite, sphalerite, arsenopyrite 
(FeAsS), pyrite, pyrrhotite, galena, and jamesonite (Pb4FeSb6S14) (Guo 
et al., 2018b; Pi et al., 2019). In this district, the Cretaceous intrusions 
are widely distributed, including biotite granite (Longxianggai granite), 
diorite, and granite porphyry dikes (Li et al., 2010). The Longxianggai 
granite (96.6–90.8 Ma, Huang et al., 2019) related to mineralization is 
the largest intrusive body, which is considered to be a peraluminous S- 
type granite with high A/CNK (1.14–1.20) (Zhao et al., 2021; Huang 
et al., 2019). Because its cassiterite U–Pb dating yield mineralization 
ages ranging from 95.8 Ma to 90.3 Ma (Guo et al., 2018b), coinciding 
with zircon U-Pb ages of the Liangxianggai granite (96.6–90.8 Ma), tin 
mineralization is considered to be associated with the Late Cretaceous 
granitic magmatism (Guo et al., 2018b; Huang et al., 2019). In terms of 
ore minerals, in-situ analysis demonstrates that the main carrier of in-
dium is sphalerite with an average concentration of 1020 ppm (Mur-
akami and Ishihara, 2013). Considering that the Cretaceous granite in 
the ore field have higher indium concentrations (0.14–6.8 ppm) than the 
nearby sedimentary rocks (<0.10 ppm) (Fan et al., 2004; Li et al., 2010) 
and the indium content of sphalerite decreases outward from the central 
of intrusive body (Wu, 2009; Dai et al, 2012; Pi et al., 2015), previous 
studies attributed the indium mineralization to the In-rich magma pro-
duced by partial melting of In-rich protoliths in the crust (Li et al., 2010; 
Huang et al., 2019). 

The Gejiu Sn-polymetallic deposit, located in Gejiu County 
(Fig. 5c), Yunnan Province, is the largest primary Sn-polymetallic de-
posit in the world (Fig. 5c) (Xu et al., 2021c). The earliest mining history 
dates back to the Spring and Autumn Period (770 to 476 BCE), and large- 
scale mining activity started in the last century (Guo, 2019). This deposit 
has a total reserve of ~4.0 kt In with an average grade of 207 ppm (Li 
et al., 2015) and contains 3.3 Mt Sn, 3.3 Mt Cu, 4.3 Mt Pb + Zn, and 0.15 
Mt WO3 (Guo, 2019). Almost all of the deposits are clustered in the 
western part of the Gejiu mining district, wherein six deposits were 
separated by E-W trending faults, including Malage, Songshujiao, Gao-
song, Tangziwa, Laochang, and Kafang from north to south (Fig. 5c) (Li 
et al., 2015; Guo et al., 2018a). Due to the extensive hydrothermal 
alteration, there are six ore styles recognized: massive sulfide, 
Sn–granite, skarn, greisen, veined tourmaline, and stratiform-like 
oxidized ores (Guo, 2019). The orebodies generally occur along the 
contact zone between granitic rocks and Triassic carbonates (Fig. 5d) (Li 
et al., 2015; Xu et al., 2021c). Ore minerals in these orebodies are mainly 
composed of cassiterite, chalcopyrite, pyrrhotite, sphalerite, pyrite, 
galena, scheelite (CaWO4), and wolframite ((Fe, Mn)WO4) (Cheng et al., 
2012; Guo et al., 2018a). Previous investigation suggested that the 
igneous rocks in the Gejiu mining district mainly consist of gabbro, 
mafic microgranular enclave-bearing granite, biotite granite, syenite, 
and mafic dikes (Cheng and Mao, 2010). Geochronological studies 
indicate that the mineralization events dominantly span from 85.6 to 
76.4 Ma (Guo et al., 2018a), which agrees with the emplacement age of 
Late Cretaceous granitoids (85.8–77.4 Ma) (Cheng et al., 2013). 
Consequently, mineralization in the Gejiu district is considered to be 
associated with the Late Cretaceous magmatism (Cheng et al., 2012; Guo 
et al., 2018a). Although there are few previous reports in the literature 
of indium mineralization in the Gejiu Sn-polymetallic deposit, dzha-
lindite (In(OH)3), an indium mineral formed in a hypergene environ-
ment, was found in oxidized ores in the deposit (Li et al., 2015). This 
result is further supported by study of Guo et al. (2020), who found that 
indium is highly concentrated in interlayer oxidized ores (182 ppm) but 
not primary sulfide ores (0.21 ppm), indicating the immobility of indium 
during the oxidation process. Regardless of this observation, the most 
economical In-bearing mineral is still sphalerite with high indium con-
centrations (493–4781 ppm) (Li et al., 2015). 

Except for the Sn-polymetallic deposits in the SYB described above, 

Fig. 2. Histogram of mineralization (a) and magmatism ages (b) of In-rich 
deposits in China. Data sources are listed in Supplementary Table S2 and S3. 
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other In-rich deposits with smaller metal reserves, such as the Juban-
keng, Jinziwo, and Dabaoshan deposits, have also been mentioned in 
previous studies (Zhang et al., 2003; Tu, 2004). However, due to their 
small indium resources with low economic values, few studies focused 
on these deposits. Thus, no more detailed data about them will be pre-
sented in this paper. 

2.2. Indium deposits in the western Nanling Range and surrounding 
regions 

The Nanling Range, one of the most important W-Sn metallogenic 
province in China, hosts abundant large to superlarge Sn-W polymetallic 
deposits (Fig. 6) (Yuan et al., 2019; Ni et al., 2021). The indium deposits 
in this region are clustered in the western Nanling Range (WNR), 
including the Xianghualing Sn-polymetallic deposit, Yejiwei Sn- 
polymetallic deposit, and Qibaoshan Cu-polymetallic deposit. Early 
studies suggested that the indium resources hosted in the WNR are much 
less than those in the SYB, which results in the indium mineralization in 
this region to be ignored (Zhang et al., 2003). Recently, published data 
demonstrated that indium is significantly enriched in sphalerite from the 
WNR relative to the SYB (Liu et al., 2017, 2018). For example, sphalerite 
from the Xianghualing Sn-polymetallic deposit has the highest indium 
concentration (up to ~22 wt%) in China, and indium mineralization has 
been found in Sn-poor deposits such as the Qibaoshan Cu-polymetallic 
deposit (Liu, 2017; Liu et al., 2017, 2018). Thus, it is necessary to 
further consider In-rich deposits in the WNR, which may bring us new 
insights into the enrichment mechanisms of indium and provide guid-
ance for future exploitation. 

The Xianghualing Sn-polymetallic deposit is located in the Linwu 

County, Hunan Province, and the tin mineralization occurred in the 
northeastern part of the Tongtianmiao dome (Figs. 6 and 7a). It contains 
0.13 Mt Sn, 0.17 Mt Pb + Zn, 2.8 kt WO3, and 0.18 kt Ag; however, 
indium reserves have not been reported (Lai, 2014). The chemical an-
alyses applied to different ores yield an average indium grade of 163 
ppm (Liu et al., 2017). The orebodies are close to the contact zone be-
tween the Laiziling granites and Cambrian to Devonian carbonate and 
clastic rocks (Fig. 7b-d). Cassiterite, pyrite, galena, sphalerite, chalco-
pyrite, arsenopyrite, and pyrrhotite are common ore minerals in these 
orebodies (Fig. 7e-m). In this district, two granitic stocks (the Laiziling 
and Jianfengling granites) of biotite granite are intruded into the 
Cambrian metasandstone and Devonian carbonate, respectively 
(Fig. 7a). These granites are highly fractionated and peraluminous (A/ 
CNK > 1.1), with high contents of total alkalis (6.9 wt% in average) and 
high 1000 Ga/Al ratios (>4), which are similar to A-type granites (Xiao 
et al., 2019). Zircon U–Pb dating of the Laiziling and Jianfengling 
granites yield ages ranging from 160.7 Ma to 150.4 Ma (Li et al., 2018; 
Xiao et al., 2019), indicating that they emplaced during Late Jurassic 
period. This result coincides with the mineralization ages obtained by 
cassiterite U–Pb age (156.0 Ma) and muscovite Ar-Ar age (154.4 Ma) 
(Yuan et al., 2007, 2008). The close spatial relationship between these 
granites and orebodies and the consistent ages, supports a genetic 
connection between Jurassic magmatism and tin mineralization. Similar 
to other indium deposits, sphalerite in zinc ores from the Xianghualing 
Sn-polymetallic deposit is the most important carrier of indium and has 
high average indium concentrations (1.5 wt%). Other sulfides such as 
chalcopyrite (0.07 wt%) and tetrahedrite (0.43 wt%; Cu12(Sb, As)4S13) 
also have relatively high indium concentrations (Liu et al., 2017). 
Furthermore, the indium concentration of the Laiziling granite 

Fig. 3. Schematic map showing the distribution of major deposits in the Youjiang Basin (modified after Guo et al., 2018a). The Dulong, Dachang, and Gejiu deposits 
are the primary indium deposits in this region. The tonnage and grade of indium are from Ishihara et al. (2011a), Murakami and Ishihara, (2013), Li et al. (2015), and 
Li et al. (2016). 
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Fig. 4. (a) Geological map of the Dulong Sn-polymetallic deposit. (b) Geological cross-section along exploration line 125 (modified after Xu et al., 2015). (c-k) Photos 
of the outcrop, handspecimens and thin sections of the In-rich Dulong deposit: (c) No.13 orebody and its relationship with host rocks; (d) The Cretaceous granite 
porphyry intruding into the Silurian granite gneiss; (e) Medium- to coarse-grained two-mica monzonitic granite of the Laojunshan intrusion; (f) Sulfide ore containing 
sphalerite, pyrrhotite and chalcopyrite; (g) Massive sphalerite-pyrrhotite; (h) Disseminated sphalerite ore crosscut by calcite veins; (i) Sphalerite and chalcopyrite 
enclosed by pyrrhotite; (j) Magnetite intergrowth with sphalerite and pyrrhotite; (k) Galena randomly distributed in the sphalerite matrix. Abbreviations: Py = pyrite, 
Gn = galena, Sp = sphalerite, Po = pyrrhotite, Mt = magnetite, Ccp = chalcopyrite, Cal = calcite, Cst = cassiterite. Ore minerals in the Dulong deposit are listed in 
the insets. The In-bearing minerals and indium concentrations are highlighted by red color, and the granite associated with mineralization is labeled by “zircon U-Pb 
age” in red color, which is also the case in other figures. 
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Fig. 5. (a) Geological map of the Dachang district and (b) geological cross-section along the line A-B (modified after Huang et al., 2019). (c) Geological map of the 
Gejiu district and (d) geological cross-section along the line A-B (modified after Li et al., 2015). The Cretaceous granitoids in (d) include all the Cretaceous ganites 
shown in (c). 
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(0.14–0.62 ppm) is higher than that of continental crust (0.056 ppm), 
supporting the idea that the In-rich, A-type granite is associated with the 
indium mineralization in the Xianghualing Sn-polymetallic deposit (Liu 
et al., 2017). 

The Yejiwei Sn-polymetallic deposit, located in the Chenzhou city, 
Hunan Province, is approximately 1.5 km to the southeast of the world- 
class Shizhuyuan Sn-polymetallic deposit (Figs. 6 and 8a). It contains 
806 t In, with an average grade of 54 ppm, 0.12 Mt Sn, 66 kt Cu, 24 kt 
WO3, and minor Ag, Zn, Ga, and Cd resources (Liu et al., 2018; Zhao 
et al., 2018a). The orebodies mainly occur around the quartz porphyry 
that intruded into the Devonian dolomitic limestone (Fig. 8a), where ore 
minerals mainly include cassiterite, pyrrhotite, arsenopyrite, chalcopy-
rite, pyrite, galena, and sphalerite (Fig. 8e-j). The latest muscovite Ar-Ar 
dating yielded a mineralization age of 154.0 Ma (Liao et al., 2021), 
which is consistent with the emplacement age of the quartz porphyry 
(152.7 Ma) (Zhao et al., 2018a). These coincident ages indicate that the 
polymetallic deposits in the Shizhuyuan-Yejiwei district (158.8–151.1 
Ma) are genetically related to the Late Jurassic granites (160.3–148.2 
Ma) (Zhao et al., 2018a). However, the enrichment of indium in this 
deposit is poorly documented. Available EPMA (Electron Probe Micro-
analyzer) data demonstrate that sphalerite is the most important In- 
bearing mineral, with an average concentration of 2.6 wt% (Liu et al., 
2018). The indium concentrations of the sphalerite decrease gradually 
from granitic intrusions outward to the contact zones, and the maximum 
concentration (~10 wt%) occurred in the porphyry-type ores (Liu et al., 
2018). Additionally, other subordinate In-bearing minerals such as 
chalcopyrite (0.07 wt%) and stannite (0.15 wt%; Cu2FeSnS4) are also 
discovered in this deposit (Liu et al., 2018). 

The Qibaoshan Cu-polymetallic deposit, located to the north of 
the WNR, is the largest Cu-polymetallic deposit in northeastern Hunan 

Province (Figs. 1 and 9) (Hu et al., 2017). It contains 659 t In, with an 
average grade of 57 ppm, as well as 0.28 Mt Cu, 0.57 Mt Pb + Zn, 0.47 
Mt Mn, 31 t Au, >2.0 kt Ag, 2.8 kt Cd, 0.71 kt Ge, 1.1 kt Te, and 1.2 kt Ga 
(Liu, 2017; Yuan et al., 2018). Field investigations suggest that the 
orebodies are dominantly hosted in the altered quartz porphyry and 
Carboniferous dolomitic limestone (Fig. 9 a-c). These orebodies are 
mainly composed of ore minerals, such as pyrite, chalcopyrite, sphal-
erite, marcasite (FeS2), and lillianite (Pb3Bi2S6) (Fig. 9 d-i). In the ore 
field, well-developed EW-trending faults control the emplacement of 
magma (Hu et al., 2017). The Qibaoshan quartz porphyry was charac-
terized by high content of Al2O3, high K2O/Na2O ratios, and high zircon 
δ18O values (8.4 to 10.8‰), indicating that it was generated by the 
partial melting of ancient crust and is similar to S-type granite (Yuan 
et al., 2018). Zircon U–Pb dating indicates that the Qibaoshan quartz 
porphyry was emplaced between 154.8 and 148.3 Ma (Hu et al., 2016; 
Yuan et al., 2018), which is consistent with the mineralization age 
constrained from Rb-Sr dating of ore-bearing quartz veins (153.4 Ma, Hu 
et al., 2017) and molybdenite Re-Os dating (153.2 Ma, Yuan et al., 
2018). Different from other Sn-polymetallic deposits with indium 
enrichment, ores from the Qibaoshan Cu-polymetallic deposit are Sn- 
poor (the Sn concentrations are lower than 70 ppm), and no tin min-
erals have been found in this deposit. However, the average indium 
concentration can be as high as 123 ppm in the sphalerite-pyrite ores, 
where sphalerite with indium concentrations up to 0.10 wt% is the main 
carrier of indium (Liu, 2017). This is the first report that indium 
mineralization has been found in Sn-poor deposit. 

Recently, In-bearing deposits were also reported in the Xiangxi- 
Qiandong Pb-Zn metallogenic belt (Fig. 1), where the indium grades 
of the polymetallic vein-type ores range from 4.8 to 189 ppm (Zhou 
et al., 2017). Although no mineralization-related intrusions were 

Fig. 6. Geological map showing the distribution of major deposits in the western Nanling Range (modified after Ding et al., 2018). The indium deposits in this region 
include the Xianghualing and Yejiwei deposit. The tonnage and grade of indium are from Liu et al. (2017) and (2018). 
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Fig. 7. (a) Geological map of the Xianghualing district. (b-d) Geological cross-sections along exploration lines 49, 9, and 306, respectively (modified after Liu et al., 
2017). (e-m) Photographs of hand specimens and thin sections from the Xianghualing deposit: (e) Massive sulfide ore containing sphalerite and galena. (f) Massive 
sphalerite- pyrite ore. (g) Dense disseminated sulfide ore with sphalerite replacing the calcite of the host rock. (h) Galena replaces the early sphalerite that contains 
inclusions of pyrrhotite, arsenopyrite, and cassiterite. (i) Euhedral cassiterite and sphalerite were replaced by pyrrhotite and pyrite. (j) Sphalerite coexisting with 
galena contains pyrrhotite showing exsolution texture. (k) Abundant pyrrhotite and cassiterite inclusions in sphalerite (backscattered electron image). (l) Sphalerite 
and galena are co-crystalized with pyrrhotite. (m) Sphalerite contains the exsolutions of pyrrhotite and galena inclusions. Abbreviation: Py = pyrite, Apy = arse-
nopyrite, Gn = galena, Sp = sphalerite, Po = pyrrhotite, Cal = calcite, Cst = cassiterite. 
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Fig. 8. (a) Geological map of the Yejiwei Sn-polymetallic deposit in the western Nanling Range (modified after Zhao et al., 2018a). (b-j) Photographs of outcrops, 
hand specimens, and thin sections of ores from the Yejiwei deposit. (b) Granite porphyry; (c) The boundary between the wall rock and granite porphyry. (d-e) The 
boundary between the wall rock and sulfide ore. (f-g) The mineralized wall rock is crosscut by a calcite vein and the sulfides include galena and sphalerite. (h) 
Photomicrographs of the fine-grained sulfides in (e), showing that the sulfides are composed of galena, pyrite, sphalerite, and pyrrhotite. (j) Sphalerite and pyrite are 
replaced and cemented by galena. (k) Chalcopyrite replaces sphalerite, arsenopyrite, and pyrrhotite. Abbreviations: Py = pyrite, Apy = arsenopyrite, Gn = galena, Sp 
= sphalerite, Po = pyrrhotite, Ccp = chalcopyrite, Cal = calcite, Cst = cassiterite. 
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discovered in Pb-Zn ore field, geophysical data suggest that there are 
hidden intrusions at depth (Zhou and Wen, 2021). Thus, Zhou et al. 
(2017) suggests that the metallogenic belt potentially contains unex-
plored granite-related high-temperature Sn-Cu-In sulfide deposits. 
However, the genesis of these deposits remains unclear due to a lack of 
precise geochronological constraints. Previous work on Au deposits (eg. 

the Pinqiu and jinjing Au deposits) and MVT (Mississippi Valley-Type) 
Zn-Pb deposits (eg. the Shizishan Pb-Zn deposit) showed that there are 
multiple mineralization events in this region during Paleo-Caledonian 
(Wang et al., 2011; Duan et al., 2014). This result indicated that these 
deposits, including In-bearing Pb-Zn deposits, may be related to the 
Guangxi Orogeny (a significant tectonic-thermal event during 460–405 

Fig. 9. (a) Geological map of the Qibaoshan Cu-polymetallic deposit. The tonnage and grade of indium are from Liu (2017) and Yuan et al. (2018). (b) Geological 
cross-section along exploration line 20 (modified after Yuan et al., 2018). (c-k) Photographs of outcrops, hand specimens, and thin sections from the Qibaoshan 
deposit. (c) Sulfide orebody and its relationship with altered quartz porphyry. (d) Sulfide orebody is crosscut by the fracture zone filled with clay. (e) Oxidized 
orebody. (f-g) Dense disseminated sulfide ore containing sphalerite and pyrite. (h) Porous sphalerite dominated ore. (i) Granular pyrites are cemented by sphalerite 
containing chalcopyrite inclusions. (j) Marcasite replaces pyrite and sphalerite. (k) Sphalerite contains lillianite and chalcopyrite inclusions. Abbreviations: Py =
pyrite, Apy = arsenopyrite, Sp = sphalerite, Ccp = chalcopyrite, Mc = marcasite, Lil = lillianite. 
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Ma in the SYB) (Zhou and Wen, 2021). Therefore, the Paleo-Caledonian 
may be another important period for indium mineralization in China, 
and vein-type Pb-Zn deposits in the Xiangxi-Qiandong metallogenic belt 
may be a potential source of indium. 

2.3. Indium deposits in the southern Great Xing’an Range 

The southern Great Xing’an Range (SGXR) is located in the north-
eastern part of the mainland China, where multistage tectonic-magmatic 
activities and mineralization events have been recognized (Zeng et al., 
2016). Recently, a series of Late Jurassic-Early Cretaceous Sn- 
polymetallic deposits have been discovered in the SGXR (Fig. 10) 
(Mao et al., 2019b). Mao et al. (2018, 2019a, 2021) suggested that the 
Sn-polymetallic deposits in the SGXR are similar to those in the Bolivian 
tin metallogenic belt, in terms of geology, alteration and mineralization 
style, and tectonic environment. Considering the latter is the most 
important In-rich ore belt in the world (Xu and Li, 2018; Torró et al., 
2019), the SGXR may has great resource potential for indium like the 
Bolivian tin metallogenic belt. Several In-rich deposits, including the 
Meng’entaolegai, Dajing, Budunhua, Baiyinuo’er, Naoniushan, and 
Aonaodaba Sn-Pn-Zn-Ag polymetallic deposits have been reported in the 
literature (Tu, 2004); however, most of these deposits are poorly studied 
and only the Meng’entaolegai and Dajing deposits are well documented 
(Zhang et al., 2004, 2006; Ishihara et al., 2008). 

The Meng’entaolegai Ag-polymetallic deposit, located in the 
eastern Inner Mongolia, has a mining history beginning in the 1950s 
(Fig. 10b-d). It contains >500 t In, with an average grade of 118 ppm, as 
well as 0.16 Mt Pb, 0.3 Mt Zn, 3.0 kt Sn, 2.0 kt Ag, and 1.8 kt Cd (Zhang 
et al., 2006). In the ore field, orebodies mainly occur as polymetallic 
sulfide veins controlled by E-W-trending faults (Fig. 10d), and ore 
minerals mainly include galena, sphalerite, pyrite, chalcopyrite, arse-
nopyrite, cassiterite, stannite, and Ag minerals (Zhang et al., 2004, 
2006). The magmatic intrusions in this district include the Duerji granite 
and Meng’entaolegai granite, of which the former is mainly composed of 
biotite granite and the latter comprise biotite granite and muscovite 
granite (Song et al., 2014). Although orebodies are mainly hosted in the 
Meng’entaolegai granite batholith, the mineralization age constrained 
from muscovite Ar-Ar dating (179.0 Ma, Zhang et al., 2003) is incon-
sistent with the emplacement age of Meng’entaolegai (240.5–234.3 Ma) 
and Duerji granites (154.5 Ma) (Song et al., 2014). The δ34S and δ18O 
values of sulfides and fluid inclusions from this deposit range from 
− 1.7‰ to 4.6‰ and 4.8‰ to 7.9‰, respectively, suggesting that the ore- 
forming fluids may originate directly from a magmatic system (Zhu 
et al., 2004). However, because the Pb isotopic composition of the ores 
(206Pb/204Pb 18.131–18.308, 207Pb/204Pb 15.421–15.564, 208Pb/204Pb 
37.690–38.116) is quite different from those of the granites 
(206Pb/204Pb 18.460–19.445, 207Pb/204Pb 15.514–15.607, 208Pb/204Pb 
38.003–38.932) in this region, Zhang et al. (2002) suggested that the 
mineralization is likely related to a concealed intrusion emplaced during 
the Jurassic periods. Because metal resources have been exhausted, 
research on the Meng’entaolegai deposit is hampered. Available data 
show that the indium concentrations of sphalerite from this deposit 
range from 85 to 2660 ppm and increase with the mineralization tem-
perature (Zhang et al., 2004, 2006). 

The Dajing Sn-Cu polymetallic deposit, located in the Linxi 
County, Inner Mongolia, is a large polymetallic deposit containing 1.5 
Mt Zn, 0.30 Mt Pb, 0.30 Mt Cu, 75 kt Sn, and 3.3 kt Ag, as well 768 t In in 
an average grade of 112 ppm (Fig. 10f-h) (Ishihara et al., 2008; Wang 
et al., 2015). Ore veins in this deposit are mainly hosted by Permian 
sandstone, and comprise ore minerals such as pyrite, pyrrhotite, arse-
nopyrite, cassiterite, chalcopyrite, sphalerite, and galena (Liu et al., 
2019). In the Dajing district, zircon U–Pb dating is consistent with 
magmatic activity at 253.8–239.0 Ma and 170.7–162.0 Ma and repre-
sented by E-W-striking dikes (Jiang et al., 2012). These results are 
inconsistent with the mineralization ages constrained from sericite Ar- 
Ar dating (138.0 Ma) and cassiterite U–Pb dating (144.0 Ma) (Liao 

et al., 2014). However, some igneous rocks with eruption/emplacement 
ages of 144.0–146.0 Ma were discovered in the peripheral district, 
suggesting that the Dajing deposit could be genetically related to a 
concealed granite emplaced at ~140.0 Ma (Jiang et al., 2012; Liao et al., 
2014). Due to the absence of geochemical data on ore minerals, the 
occurrence of indium is still unclear. However, the chemical composi-
tions of ores show that indium is poorly correlated with zinc (R = 0.05) 
but better correlated with copper (R = 0.65) (Ishihara et al., 2008). 
Moreover, the indium contents of copper concentrates are higher than 
that of zinc concentrates, suggesting that indium may be incorporated 
into copper sulfide (and/or sulfosalt) rather than sphalerite (Ishihara 
et al., 2008). Fluid inclusion studies suggested that the composition of 
ore-forming fluids are extremely complex and sourced from three fluid 
systems: a mantle-derived, Cu-rich fluid; a crust-derived, Sn-rich fluid; 
and low-temperature Pb-Zn-Ag-rich fluid (Wang et al., 2015; Liu et al., 
2019). So far, it remains unclear which fluid is responsible for indium 
mineralization in this deposit. 

2.4. Indium mineralization in other regions 

In addition to the indium deposits described above, there are some 
In-bearing deposits reported in other regions. For example, Liu et al. 
(1998) reported some In-bearing gold ores (5.0–17 ppm) in western 
Qinling. Guo et al. (2006) noted that the Chahe Sn-polymetallic in 
Sichuan Province contains considerable indium resources, with the 
highest grade reaching up to 187 ppm indium. In Tibet, two indium 
minerals, native indium (In) and dzhalindite, were reported by Zhao 
et al. (2010) in the Bangong-Nujiang copper polymetallic metallogenic 
belt. The Lawu Cu-Pb-Zn polymetallic deposit located in this belt has an 
average indium grade of 45 ppm. In Fujian Province, the Zhongjia Sn- 
polymetallic deposit has an estimated 569 t indium with an average 
grade of 76 ppm (Mao et al., 2013) and in the Zijinshan Cu-Au deposit, 
roquesite (CuInS2) has been reported (Wang et al., 2014). In Qinghai 
Province, roquesite was reported in the Saishitang-Rilonggou Cu-Sn ore 
field, and 136 t indium was estimated there (Liu et al., 2016; Wang et al., 
2016). All these findings suggest that China may have great resource 
potential for indium, and more efforts should be put into these newly 
discovered In-bearing deposits. 

3. Indium occurrence in minerals 

Identifying the indium occurrence in minerals is crucial for under-
standing the incorporation and enrichment mechanism of indium. In 
most indium deposits in China, sphalerite is the most important carrier 
of indium. To date, indium minerals have only been reported in a few 
deposits: (1) Roquesite occurs in the Zijinshan Cu-Au deposit and Cu-Sn 
skarn ores in the Saishitang-Rilonggou ore field, which is consistent with 
a relatively high-temperature and Cu-rich environment (Wang et al., 
2014; Liu et al., 2016). (2) Native indium and dzhalindite were reported 
in skarn Cu-Fe deposits in Tibet, where native indium is hosted in calcite 
and sphalerite, while dzhalindite is mainly hosted in quartz. Dzha-
lindite, as a common indium mineral in supergene environments, has 
also been found in the oxidized ores of the Gejiu deposit (Zhao et al. 
2010; Li et al., 2015). (3) Damiaoite (PtIn2) and yixumite (Pt3In) were 
first discovered by Yu (1997a, 1997b) in the Damiao Fe deposit, Hebei 
Province. Generally, vermicular damiaoites are exsolved from spherical 
yixumite, or yixumite is enclosed by damiaoite (Yu, 1997a, 1997b). 
Although the SYB hosts abundant indium resources, no indium minerals 
are found in primary ores. This may be attributed to the presence of 
abundant sphalerites that sequester indium in its structure and inhibit 
the formation of indium minerals. 

In the past two decades, in-situ analysis techniques, such as LA-ICP- 
MS and EPMA, have been widely applied to investigate the occurrence 
of indium in sphalerite. It has been revealed that indium is homoge-
neously distributed in sphalerite from the SYB and shows a positive 
correlation with copper, corroborating the coupled substitution of In3+
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Fig. 10. (a) Simple tectonic map and (b) the dis-
tribution of major deposits in the southern Great 
Xing’an Range (modified after Mao et al., 2019). 
The Meng’entaolegai and Dajing deposits are the 
primary indium deposits in this region. The tonnage 
and grade of indium are from Zhang et al. (2006) 
and Ishihara et al. (2008). (c) Geological map of 
granites in the Meng’entaolegai district, and (d) the 
Meng’entaolegai Ag-polymetallic deposit. (e) The 
geological cross-section of representative orebodies 
(modified after Zhang et al., 2006). (f) Geological 
map of the Dajing Sn-polymetallic deposit and (g-h) 
geological cross-section along exploration lines 55 
and 38 (modified after Yuan et al., 2018). The 
tonnage and grade of indium are from Zhang et al. 
(2006) and Ishihara et al. (2008). Note no granites 
are labeled by “zircon U-Pb age” in red color due to 
the ore-related intrusions being ambiguous in this 
region. Similarly, no mineral is marked in red in (f) 
due to a lack of geochemical data on ore minerals.   
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+ Cu+ ↔ 2Zn2+ (Murakami and Ishihara, 2013; Li et al., 2015; Xu et al., 
2021b). This substitution mechanism was directly observed in In-rich 
sphalerite blebs from the Dulong deposit using high-angle annular 
dark field scanning transmission electron microscopy (HAADF STEM) 
(Xu et al., 2021a). In addition to copper, charge balance can also be 
achieved by involving minor silver (with an oxidation of +1) in sphal-
erite structure (Trofimov et al., 2020). Based on the results of the atom 
probe and Kuchi diffraction analyses, Krause et al. (2020) further pro-
posed that indium and copper could exist as discrete exsolved nano-
phases in sphalerite. Recently, some sphalerites with an atomic In/Cu 
ratio greater than 1 were discovered in the Dachang deposit, suggesting 
the existence of In-rich nanoparticles in these sphalerites (Pi et al., 
2019), but more research is needed to support this hypothesis. 

Compared with sphalerite from the SYB, sphalerite from the WNR 
has higher indium concentrations, and indium is heterogeneously 
distributed in sphalerite grains. In the Xianghualing deposit, indium 
concentrations can reach 7.0–8.0 wt% in the core of sphalerite and ~22 
wt% in the rim (Liu et al., 2017). The extremely high indium concen-
trations in sphalerite from this region likely resulted from the In-rich 
ore-forming fluid (Valkama et al., 2016b; Liu et al., 2017). However, 
because of a shortage of Zn in the WNR, a large amount of indium was 
sequestered by limited sphalerite, resulting in an exceptional enrich-
ment of indium in its structure. Consequently, it can be deduced that 
indium minerals are more likely to be found in the WNR relative to the 
SYB. 

4. The characteristics of In-bearing magmatic-hydrothermal 
systems 

4.1. Characteristics and genesis of granitic intrusions 

Indium is moderately to highly incompatible during partial melting, 
and tends to concentrate in highly fractionated magma (Sun, 1982; Liu 
et al., 1984). Almost all the indium deposits in China are related to A/S- 
type granites, suggesting that these granites may play an important role 
in indium enrichment. 

Currently, the indium resources in China are primarily sourced from 
Sn-polymetallic deposits, which is consistent with strong correlation 
between indium and tin. According to previous studies, the granites 
associated with tin mineralization in South China are generated by 
partial melting of argillaceous sedimentary rocks (Fig. 11a) and are 
peraluminous, highly fractionated, and volatile-rich (Yuan et al., 2019; 
Mao et al., 2019b). Because of the low mobility of indium during 
chemical weathering, it tends to remain in weathered rocks (Liu et al., 
1984; Lopez et al., 2015). Similarly, tin is also immobile in surficial 
environments and easily adsorbed by clay minerals in sediments (Romer 

and Kroner, 2014, 2016), which can form biotite- and muscovite-rich 
metamorphic mineral assemblages via prograde metamorphism (Wolf 
et al., 2018). 

Previous studies (Liu et al., 1984; Gion et al., 2018; Wang et al. 2019) 
suggest that biotite is an important carrier of indium and tin. If melt 
generation is controlled by biotite-dehydration melting, indium and tin 
could be synchronously released into the melt. However, the breakdown 
of biotite would need to occur at temperatures > 800 ◦C (Wolf et al., 
2018). Mao et al. (2019b) and Yuan et al. (2019) systematically sum-
marized the geochemical characteristics of granites in South China, and 
found that the formation Sn-mineralized granite is controlled by biotite- 
dehydration melting under high temperature (800 ± 20 ◦C). However, 
the heat generated by the thickening of the crust is not enough to sup-
port the biotite-dehydration melting (Clark et al., 2011; Zhao et al., 
2022a). Such high temperature requires the input of additional heat 
from the mantle. This extensive existence of mantle-derived mafic 
microgranular enclaves and mafic/ultramafic dikes in many Sn- 
polymetallic deposits in South China supports external heating by 
interaction with mantle material (Zhao et al., 2022b). Therefore, biotite- 
dehydration melting triggered by mantle-derived heat could be a crucial 
process for Sn-In mineralization (Yuan et al., 2019; Jiang et al., 2020; 
Sui et al., 2020). 

Based on the study of the Mesozoic deposits and granites in South 
China, previous studies proposed that the magmatic and metallogenic 
belts in the SYB and WNR were controlled by the subduction of the Neo- 
Tethys Plate and Paleo-Pacific plate, respectively (Zhang et al., 2017, 
2018; Xu et al., 2018; Huang et al., 2019). Because of roll-back of the 
oceanic slab during subduction, additional heat could be brought from 
the mantle into the crust during asthenosphere upwelling, resulting in 
the breakdown of biotite in the metasedimentary crust and release of 
indium and tin. Indeed, besides indium and tin, biotite is also a main 
carrier of barium, while muscovite is a main carrier of lead in meta-
sedimentary rock. If melt is generated by biotite-dehydration melting, 
the melt will display a lower Pb/Ba ratio; otherwise, the Pb/Ba ratio of 
melt will be elevated once the partial melting is controlled by muscovite- 
dehydration melting (Finger and Schiller, 2012). In the Pb-Ba diagram 
(Fig. 11b), the ore-related granites from the SYB mainly plot in the field 
of biotite-dehydration melting, whereas ore-related granites in the WNR 
mainly plot in the field of muscovite-dehydration melting. Considering 
biotite-controlled melting are responsible for the Sn-In mineralizations 
(Yuan et al.,2019; Zhao et al., 2022a), the indium resource hosted in the 
SYB is more abundant than that in the WNR. Thus, the origin of the 
source magma has a great influence on the indium enrichment. 

Fig. 11. Plots of (a) Rb/Ba versus Rb/Sr (after Sylvester, 1998) and (b) Pb versus Ba for granites from the major In-rich deposits in China. Line in 11b is after Finger 
and Schiller (2012), which delineates the fileds of the granites with low Pb/Ba ratio (labeled as biotite-dehydration melting in this study) and high Pb/Ba ratio 
(labeled as muscovite-dehydration melting in this study). More explanations are included in main text. (Data are sourced from Guo et al., 2015; Li et al., 2018; Guo 
et al., 2018a, 2018b; Zhao et al., 2018b; Yuan et al., 2018). 
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4.2. Characteristics of ore-forming fluid 

The characteristics of ore-forming fluids, such as temperature and 
compositions, are crucial to understand the ore-forming processes. 
Because indium generally occurs as a trace element in sulfide ores, 
previous studies on fluid inclusions have paid little attention to indium 
mineralization. 

Combined with the field observations, the temperature of ore- 
forming fluid is considered as a key factor controlling the enrichment 
of indium (Zhang et al., 2006). Indium is significantly concentrated in 
the granite-proximal locations (Wu, 2009; Guo et al., 2020). Based on 
the published fluid inclusion data of In-rich deposits, Zhang et al. (2003) 
proposed that the indium grades of ores increase with mineralization 
temperatures from 190 ◦C to 350 ◦C, and 250–320 ◦C is the most 
favorable temperature range, which is similar to the mineralization 
temperature obtained from other In-rich deposits worldwide (Shimizu 
and Kato, 1991; Schwarz-Schampera and Herzig, 2002; Jovic et al., 
2011; Shimizu and Morishita, 2012; Torró et al., 2019). 

In addition, the composition of ore-forming fluids seems to be 
another important control on the enrichment of indium. Previous studies 
have suggested that indium is preferentially concentrated in Sn-rich 
deposits, while Sn-poor deposits generally have much lower indium 
concentrations (<10 ppm) in their ore-forming fluids (Zhang, 1987, 
1998; Zhu et al., 2006; Yuan et al., 2020). Therefore, Zhang et al. (2007) 
suggested that the presence of tin is vital for indium enrichment. 
Recently, a positive correlation between indium and tin was also 
observed in fresh granites, altered rocks, and skarn minerals from 
several indium deposits in China (Wang et al., 2019). LA-ICP-MS anal-
ysis of fluid inclusions also revealed various indium concentrations from 
0.2 ppm to 20 ppm in high-temperature magmatic-hydrothermal fluids 
(350–700 ◦C), and the highest indium concentration (up to 34 ppm) of 
fluid inclusions was observed in Sn-W-mineralized granites (Audetat 
and Zhang, 2019). Overall, one striking feature is that the indium de-
posits are characterized by high tin concentrations in their ore-forming 
fluid system. 

In addition to tin, other metal elements, such as Cu, Zn, Fe, and Cd, 
also have a great influence on the enrichment of indium. Indium is 
generally substituted into sphalerite via a coupled substitution with 
copper (Cu+ + In3+ ↔ 2Zn2+), thus availability of copper in the 
mineralizing fluids is important to indium enrichment in sphalerite 
(Cook et al., 2012; Shimizu and Morishita, 2012; Andersen et al., 2016; 
Frenzel et al., 2016; Torró et al., 2019). In indium-rich deposits, pre-
cipitation of indium minerals occurs when the indium concentration is 
high enough to exceed the substitution capacity of sphalerite (Cook 
et al., 2011). An In (ppm)/Zn (%) ratio > 50 and indium grade > 40 ppm 
were proposed as limiting conditions for the formation of indium min-
erals (Valkama et al., 2016a, 2016b). The effect of iron on the indium 
enrichment is highlighted by the high indium content of Fe-rich sphal-
erite (Seifert and Sandmann, 2006; Pavlova et al., 2015; Li et al., 2015). 
The relationship between indium and cadmium is clearly shown by the 
“indium window”, in which indium is highly concentrated in sphalerites 
with 0.2–0.6 wt% cadmium (Dill et al., 2013). Therefore, the ore- 
forming fluid of In-rich deposits is very complex, which is consistent 
with the fact that indium is always associated with polymetallic deposits 
rather than deposits dominated by single metal resources. Further 
studies on ore-forming processes, including fluid- and melt-inclusions 
from causative intrusions and ore mineral assemblages, need to be 
further considered to reveal the transport and participation mechanism 
of indium in metal-rich fluid systems. 

5. Behaviors of indium in magmatic-hydrothermal system 

5.1. The behavior of indium during magma evolution 

The behavior of indium in magmatic-hydrothermal systems remains 
poorly understood. Because In3+ can substitute for Fe2+ in 

ferromagnesian phases (Liu et al., 1984), the probability of indium 
mineralization decreases as the proportion of ferromagnesian minerals 
increases in associated granites. In granitic melt, biotite and amphibole 
are the common ferromagnesian phases, thus it is important to assess the 
partitioning behavior of indium between them and granitic melt. Ex-
periments conducted by Gion et al. (2018) determined the partition 
coefficients for indium between biotite (DBt/Melt

In ), amphibole (DAmp/Melt
In ) 

and melt. They found that DBt/Melt
In is a function of biotite compositions 

and ranges from 0.6 ± 0.1 to 16 ± 3. As the proportion of Fe2+ in the 
octahedral site and tetrahedral aluminum increases, the DBt/Melt

In de-
creases. However, the compositions of amphibole have a minor influ-
ence on DAmp/Melt

In (36 ± 4). Because I-type granites commonly contain 
amphibole which can sequester a large amount of indium and prevent it 
from significantly concentrating in ore-forming fluid, the possibility of 
indium mineralization of I-type granite is lower than that of S- and A- 
type granites (Gion et al., 2019). Wang et al. (2019) examined the 
behavior of indium in granites from the SYB and WNR, and found that 
the DBt/Melt

In shows a decreasing trend with granitic magma evolution, 
which is consistent with the observations that indium mineralization is 
always associated with highly fractionated granites. 

In addition, volatiles (F, Cl, B, P, etc.) in the melt play an important 
role in both magma genesis and indium mineralization (Moura et al., 
2014; Simons et al., 2017). Volatiles can effectively reduce the viscosity 
of the magma while increasing ion diffusivity and they can decrease the 
solidus temperatures and change the eutectic compositions (Keppler and 
Wyllie, 1991; London, 1997). Research by Simons et al. (2017) revealed 
elevated contents of indium in the peraluminous granites of the Cor-
nubian batholith with increasing contents of F, Li, and P. Moreover, the 
existence of volatiles can reduce the proportion of bridging oxygen and 
increase the solubility of water in the melt, which is favorable for ele-
ments to enter the melt with high activity coefficients during partial 
melting (Hu et al., 2009; Sui et al., 2020; Gion et al., 2019). When the 
magmatic-hydrothermal fluids exsolve from the metal-rich magma, 
volatiles such as F− and Cl− can combine with metal elements to form 
stable complexes and then migrate together (see below). 

5.2. Behaviors of indium in hydrothermal fluid 

According to the classification of soft-hard acids and bases (Pearson, 
1963), In3+ is relatively hard and can complex with hard ligands such as 
F− , OH− , Cl− and SO2−

4 (Wood and Samson, 2006). The experiment 
conducted by Seward et al. (2000) showed that In3+ mainly existed as 
stable chloride (InCl−4 ) and hydroxide (InClOH-) complexes in hydro-
thermal fluids, and InCl−4 was the dominant species at 300 ◦C to 350 ◦C 
(Seward et al., 2000). Similar to indium, tin also tends to complex with 
chlorine in aqueous fluids (Hu et al., 2009; Zhao et al., 2022c). It is 
widely accepted that these two elements can migrate efficiently in 
chlorine-rich ore-forming fluids. However, it is noteworthy that most Sn- 
In-related granites are highly fractioned and F-rich (Moura et al., 2014; 
Valkama et al., 2016a, 2016b; Simons et al., 2017; Ivashchenko, 2021). 
As proposed by Wood and Samson (2006), at standard state (25 ◦C and 1 
bar), fluoride complexes is the dominant species of indium in hydro-
thermal fluid rather than hydroxide complexes when fluoride activities 
is greater than 10− 3 and pH = 5. Indium may migrate efficiently under 
acidic, F-rich, and elevated temperature–pressure conditions, such as 
greisenization (Wood and Samson, 2006; Broman et al., 2018; Ivash-
chenko, 2021). 

Greisenization is an important process causing re-enrichment of in-
dium, and has been extensively studied (Yu et al., 2010; Ivashchenko, 
2021; Xu et al., 2021c). During greisenization, F-rich, acidic and low- 
salinity magmatic fluids interact with granitic rocks, which leads to 
the alteration of biotite (the main carrier of indium and tin) into 
muscovite, and chlorite (Breiter et al., 2019; Launay et al., 2019, 2021). 
In this process, tin and indium were leached out from primary biotite or 
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other Sn-In-bearing minerals, resulting in the re-enrichment of tin and 
indium in hydrothermal fluids, which is evidenced by mass balance 
calculations applied to greisens (Ivashchenko, 2021; Xu et al., 2021c). 
As greisenization continues, the pH of the fluids increases and the 
temperature decreases, and then, the complexes of tin and indium 
become unstable and precipitate from the fluids (Chen et al., 2018; 
Gaskov and Gushchina, 2020). Fluorine and chlorine, as important li-
gands, are the most active components during greisenization (Yu et al., 
2010; Chen et al., 2018). In the Gejiu district, such element redistribu-
tion was recently reported by Xu et al. (2021c), indicating that metal 
redistribution caused by greisenization could play an important role in 
Sn-In mineralization. 

Although indium and tin can migrate together in hydrothermal 
processes, indium tends to concentrate in sphalerite rather than cassit-
erite when it precipitates. Indium is a chalcophile element with an ionic 
radius of 0.94 Å for hexahedral coordination and 0.76 Å for tetrahedral 
coordination (Shannon, 1976). The metal elements in sphalerite have 
similar ion radii and oxidation states, such as Zn2+ (0.74 Å), Cu+ (0.74 
Å), and Fe2+ (0.78 Å), which are similar to In3+ (0.76 Å) in tetrahedral 
coordination. However, tin is tetravalent in cassiterite (SnO2) with an 
ionic radius of 0.83 Å in hexahedral coordination, which is quite 
different from In3+. Therefore, large amounts of In3+ tend to accumulate 
in sphalerite with a tetrahedral structure (Wang et al., 2019). 

6. Prospects for future research 

Abundant indium resources and an increasing number of In-bearing 
deposits have been reported in recent years in China, bringing new 
challenges to classic indium mineralization theory. We suggest that the 
followings should be strengthened in future research. 

6.1. Indium mineralization in Sn-poor deposits 

Since the indium concentration is much higher in granite-related Sn- 
polymetallic deposits than in other types of deposits, Sn-In polymetallic 
deposits are ideal for studying indium mineralization. However, some 
deposits with conspicuous indium enrichment were recently shown to be 
Sn-poor, which challenge the theory of relationship between tin and 
indium (Liu, 2017). Apart from the Qibaoshan Cu-polymetallic deposit, 
indium enrichment was also found in Sn-poor deposits such as the 
Chitudian Pb-Zn-Ag deposit in Henan province, with an average indium 
grade of 81 ppm (the authors’ unpublished data), and the Dabaoshan 
Mo-W-Cu-Pb-Zn polymetallic deposit in Guangdong Province (Wu et al., 
2019). These findings suggest that indium and tin may decouple in some 
cases, and tin is not necessary for indium enrichment. Unfortunately, the 
coupling and decoupling mechanisms of Sn-In are still unclear. Further 
investigations should give more focus on these Sn-poor deposits, which 
is significant for the recovery and reprocessing of indium from Sn-poor 
deposits. 

6.2. Geochemical behavior of indium in melts and fluids 

Although an intimate relationship between indium and tin has been 
observed in ores, rocks, and fluid inclusions, no experiments were con-
ducted to demonstrate the effect of tin on indium enrichment. It is 
ambiguous whether tin and indium can form a certain complex com-
pound in hydrothermal fluids, as proposed by Zhang et al. (2007). 
Therefore, understanding the behavior of indium during melt and fluid 
evolution and subsequent deportment in ore assemblages is fundamental 
to confine the metallogenic process of indium. 

6.3. Pre-enrichment of indium 

For In-bearing ores, the minimum grade for industrial operation is 
5–10 ppm (Tu, 2004), which is approximately 100–200 times higher 
than the abundance of indium in continental crust (0.056 ppm). Because 

of the high concentration of indium in granitic hydrothermal systems, 
indium is considered to originate from granitic magma (Bauer et al., 
2019). Therefore, the best candidate for indium mineralization is In-rich 
magma. Worldwide, Sn(-In) metallogenic belts are mainly distributed 
along the margins of ancient continents that separated from the Gond-
wana supercontinent (Romer and Kroner, 2016). Romer and Kroner 
(2014) suggested that the Gondwana supercontinent experienced strong 
chemical weathering during the Precambrian. As discussed in Section 
2.2, tin and indium tend to be enriched in clay-rich sedimentary rocks 
produced by chemical weathering, and such rocks are ideal for gener-
ating Sn-In-rich magma by partial melting. Thus, chemical weathering 
may be an important control on the pre-enrichment of indium and tin. 
From this perspective, the relationship between indium and tin can be 
reasonably explained. Future studies should focus on the behavior of 
indium and tin during chemical weathering, which could provide new 
insight into the relationship between tin and indium. 

6.4. Indium resources in silicate minerals 

The occurrence state of indium in sphalerite has been well investi-
gated (Section 3). Various methods, including leaching, electrolysis and 
flotation, have been widely applied to extract indium from different In- 
bearing raw materials (such as Zn concentrates, smelting slag, and dust), 
and the recovery rate of these methods is better than 95% (Du et al., 
2017; Wang et al., 2017). However, andradites were recently proven to 
be an important In-bearing silicate mineral in the Dulong deposit, and 
the positive correlation between indium and iron suggests that In3+ may 
be incorporated into garnet by substituting Fe3+ (Xu et al., 2021b; Lyu 
et al., 2020). Because garnet is widespread in skarn-type deposits, it may 
host considerable indium resources. Unfortunately, we know little about 
the occurrence state of indium in silicate minerals, which results in 
wasted indium. In the future, more attention should be given to the 
occurrence state of indium in silicate minerals. 

7. Conclusions  

(1) Indium deposits in China are mainly associated with Sn- 
polymetallic deposits in the southwestern Yangtze Block, south-
ern Great Xing’an Range, western Nanling Range, and their sur-
rounding regions. Most of these indium deposits are related to 
Mesozoic granitic systems and the mineralization ages cluster at 
70–100 Ma and 150–160 Ma.  

(2) Sphalerite is the main carrier of indium, which is incorporated 
into the sphalerite crystal structure by a coupled substitution of 
In3+ + Cu+/Ag+ ↔2Zn2+. The relatively high availability of 
copper (and silver, to a lesser extent) in the mineralization system 
enable indium to enter sphalerite crystal lattice in large 
quantities.  

(3) Indium is incompatible during partial melting and is compatible 
in biotite and amphibole during crystallization. It is transported 
in hydrothermal fluid as chloride complexes. The greisenization 
induced by F-rich magmatic fluid may play an important role in 
the enrichments of tin and indium. A strong correlation between 
indium and tin in granite-related magmatic-hydrothermal system 
suggests that the enrichments of tin and indium are controlled by 
the same physicochemical conditions. 

(4) Tin and indium are minimally soluble during chemical weath-
ering and could be adsorbed by clay minerals, which results in the 
pre-enrichment of Sn-In in sediments. Melting of such sedimen-
tary rocks is ideal for generating Sn-In-rich magma and associated 
Sn-In mineralization. 

(5) The discovery of Sn-poor deposits with indium enrichment sug-
gest that tin and indium can decouple in some case. It is necessary 
to examine the geochemical behavior of indium in melts and 
hydrothermal fluids, which could contribute to a better 
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understanding of the coupling and decoupling mechanism of tin 
and indium. 
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Torró, L., Melgarejo, J., Gemmrich, L., Mollinedo, D., Cazorla, M., Martínez, Á., Pujol- 
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