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• PM2.5, water-soluble inorganic ions, 
δ15N–NO3

- and δ18O– NO3
− were char-

acterized in Lanzhou. 
• The contribution of coal combustion to 

atmospheric gradually increased in 
winter. 

• In spring, the aerosol components of 
mineral dust have a catalytic effect on 
the heterogeneous reactions of N2O5.  
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A B S T R A C T   

Nitrate (NO3
− ) is a standout amongst the essential inorganic aerosols in the atmosphere. Stable isotopic constraint is 

a robust means to identify the oxidation mechanisms for atmospheric particulate nitrate (NO3
− ) production. 

However, rarely studies noted the heavily polluted environments of northwest China. In this study, fine particulate 
matter (PM2.5) samples were gathered starting from December 2017 till April 2018 in the urban zone of Lanzhou, 
northwest China, and water-soluble ions, δ15N– NO3

− and δ18O– NO3
− , were analysed to explore the possible 

sources of NO3
− aerosols. The average concentration of PM2.5 was 63.1 ± 22.6 μg m− 3, indicating severe fine PM 

pollution. The formation of secondary pollutants NO3
− , SO4

2− , and NH4
+ concentrations were higher in winter than 

in spring. The Ca2+, Na+, and Mg2+ concentrations were much higher in spring than in winter, and the concen-
tration of Ca2+ was higher than those in other cities, which implies that the PM2.5 concentration is significantly 
affected by dust. The δ15N and δ18O values were lower in warmer months, confirming that the contribution of each 
nitrate source and the oxidation pathways change similarly as the season transforms from cold to warm. The ni-
trogen sources were analysed using stable isotope analysis in R (SIAR). The results showed that coal combustion, 
biomass burning, vehicle exhausts, and soil microbial emissions account for 42.2 ± 9.9%, 27.8 ± 16.2%, 22.2 ±
12.3%, and 7.7 ± 5.2% of the nitrate in PM2.5 in winter and 30.7 ± 11.4%, 28.3 ± 15.7%, 26.5 ± 14.4%, and 14.4 
± 6.9% in spring, respectively. The fractional contributions of coal combustion gradually increased in winter. These 
results are useful for reducing NOx emissions in urban environments and clarifying the relationship between 
regional NOx emissions and atmospheric NO3

− pollution or deposition.  
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1. Introduction 

Particulate pollution is receiving increasing attention in China due to 
due to serious pollution events. (Thishan Dharshana et al., 2010; Ven-
ecek et al., 2019). Such pollution episodes are one of the greatest 
environmental issues in China. Fine particles (PM2.5) is the primary 
cause of haze pollution, which can be directly emitted (primary) or 
formed through multiphase gas-to particle conversion processes (sec-
ondary) in the atmosphere. Sulfates and nitrates from aqueous genera-
tion are considered to be major sources of secondary formation in PM2.5 
(Quan et al., 2014; Dong et al., 2020). Nitrate is a major part of atmo-
spheric aerosols. However, nitrate aerosols affect the surface tempera-
ture of the Earth, acid rain formation, and human health (Wang and 
Wang, 2014), playing a key role in environmental chemistry and climate 
change (Twomey, 1977; Albrecht, 1989). Therefore, determining the 
source(s) of aerosol nitrate and its transport and transformation in the 
atmosphere will provide the necessary basis for improving air quality. 

Nitrogen oxides (NOx = NO + NO2) are the precursors of atmo-
spheric nitric acid (Fang et al., 2011). Anthropogenic nitrogen oxides are 
emitted during fossil fuel combustion and from vehicles (Galloway et al., 
2004), whereas lightning, biomass burning, and biological soil emis-
sions are natural sources of NOx (Galanter et al., 2000; Schumann and 
Huntrieser, 2007; Hudman et al., 2012), and there is uncertainty over 
their relative contributions. The sources of atmospheric NOx were 
studied by field measurements of NOx emissions from particular point 
sources (such as coal-fired power plants (Ma et al., 2016) and gas-fired 
boilers (Yue et al., 2018). However, such observations are difficult to use 
in regional NOx inventories. The Comprehensive Air Quality Model 
(CAMx) and Community Multiscale Air Quality (CMAQ) are usually 
accompanied by some level of uncertainty that may lead to differences 
in the magnitude of source contributions (Han et al., 2009; Zhao et al., 
2013). Although satellite data coupled with models can both evaluate 
large-scale NOx fluxes and distinguish NOx sources (Lu et al., 2016; Ding 
et al., 2017), the results of the model rely on in-situ observations. Since 
NOx is mainly oxidized to granular nitrate in heavily polluted areas, 
δ15N is considered to be an effective tool for identifying the source of 
aerosol NO3

− . Although the impact of kinetic and equilibrium isotopic 
fractionation of δ15N during the conversion of NOx to NO3

− and the 
isotopic effect of δ15N-δ18O associated with NOx oxidation must be 
considered (Walters et al., 2016). Previous studies of δ15N– NO3

− have 
largely produced qualitative descriptions of possible sources (Hastings 
et al., 2003; Elliott et al., 2009; Altieri et al., 2013). However, that 
isotopic techniques can only reveal source information qualitatively, 
and that methods for providing accurate quantitative estimates need to 
be further explored. In recent studies improved the Bayesian model for 
apportioning atmospheric NOx sources and quantitatively apportioned 
the respective contribution of major sources for NOx in southwest China 
(Liu et al., 2017); Bohai Sea (Zong et al., 2017) and Beijing (Luo et al., 
2019). 

The oxidation pathways, leading to the formation of atmospheric 
NO3

− , have been evaluated using δ18O of NO3
− , because different oxi-

dants participate in NOx cycle and NO3
− formation, and their nitrogen 

isotope values are also different. There are multiple pathways of NO3
−

formation. The N2O5 and OH pathways are the most important path-
ways, and are influenced by several factors such as temperature, hu-
midity, and aerosol surface reactivity (Wankel et al., 2010). In Asia, 
δ18O–O3 values are generally between 90‰ and 122‰, while δ18O–OH 
concentrations are generally between − 15‰ and 0‰ (Johnston and 
Thiemens, 1997; Fang et al., 2011). Throughout its creation in the 
environment, the mass-independent fractionation of ozone brings about 
unique isotopic singularities of ozone molecules. The information of 
oxidants involved in the δ18O–NO3

− value was used to analyse the 
conversion of nitrogen oxides to nitrate (Hastings et al., 2003; Hastings 
et al., 2004; Savarino et al., 2007; Morin et al., 2009, Tsunogai et al., 
2010; Xiao et al., 2015; Bourgeois et al., 2018). Thus, nitrogen and ox-
ygen isotopes can also be used to investigate the oxidation processes of 

NOx and nitrate transport through the atmosphere (Morin et al., 2009; 
Wankel et al., 2010; Kawashima and Kurahashi, 2011). 

To our knowledge, the focus of current studies is mainly placed on 
concentration changes or the variety of a single species of PM2.5 during a 
specified period, and the complete chemical composition in Lanzhou is 
considered including sources of the particulate matter (Tan et al., 2017; 
Filonchyk et al., 2018; Du et al., 2020). More importantly, there is a lack 
of research on the isotopic composition of nitrogen compounds in the 
atmosphere, especially in Lanzhou. Therefore, the present research aims 
to determine the source of nitrogen oxides in aerosol samples collected 
from the urban area in Lanzhou and define the formation pathways of 
nitrate aerosols based on the precursor NOx species and their variations 
in different seasons. 

2. Methods 

2.1. Sampling site and sampling details 

Lanzhou is the administrative centre and biggest city of Gansu 
Province, located in northwest China. It is located on both sides of the 
Yellow River and in a valley where the Qinghai–Tibet Plateau, Inner 
Mongolia Plateau, and Loess Plateau intersect. It is surrounded on three 
sides by mountains with peaks between 1500 m and 2000 m above sea 
level. These topographic characteristics cause continental semi-arid 
climate, characterised by a low air humidity, low wind speed and 
frequent inversion layers in winter. The annual precipitation is 327 mm 
and annual mean temperature is 10.3 ◦C. (solar hours: 2446 h). Petro-
chemicals, oil refining, and manufacturing are the main industries in 
Lanzhou, and coal is its main energy source. Pollution events frequently 
occur in Lanzhou in winter (Chu et al., 2008; Li et al., 2017; Du et al., 
2020). In spring, Lanzhou is affected by large sandstorms from the Gobi 
Desert and Tarim Basin, causing strong particulate pollution (Filonchyk 
et al. 2016, 2018; Wang et al., 2016). 

A total of 139 aerosol samples were collected from December 1, 
2017, to April 22, 2018(Winter was from December 2017 to February 
2018, and Spring was from March to April 2018), at Lanzhou University 
(36.05◦N, 103.86◦E). Lanzhou University Chengguan Campus is located 
in the central area of Lanzhou city, which is mainly influenced by urban 
residents without local pollution Lanzhou is windy and still. The wind 
direction is easterly in spring and north-easterly in winter. The wind 
speed in Lanzhou is small, and the wind frequency is the most quietly 
wind. Samples were collected at a special high flow rate (1.05 ± 0.3 m3/ 
min) using quartz filters (8 × 10 in., Tissuquartz™filters, 2500 qAT-up, 
Pallflex, Washington, USA) and A KC-1000 sampler (Laoshan Electronic 
Equipment Research Institute, Qingdao, China). The sampling time 
started at 18:00 and lasted for 23.5 h for each sample. All samples were 
stored at − 20 ◦C before chemical analysis. 

The mass concentrations of PM2.5, SO2, NO2, and O3 were recorded at 
the China National Environmental Monitoring Centre (http://www. 
cnemc.cn/). Ground-based meteorological parameters (including the 
surface wind speed (WS), temperature (T), and RH) and meteorological 
observation data were sourced from the National Meteorological Center 
of China Meteorological Administration (http://data.cma.cn/). 

2.2. Chemical and isotopic analysis 

According to the method reported by (Tian et al., 2021), samples 
were stored at − 20 ◦C before the experiment. In the laboratory, all 
sample filters before and after sampling were weighed. One-eighth fil-
ters were cut up, placed in 50 mL deionised water (Millipore, 18.2 MΩ) 
and subjected to ultrasound at room temperature for 30 min. The sam-
ples were centrifuged in 4200 r/min for 10 min and then the compo-
nents of the supernatant were passed through a 0.22 μm pinhole filter 
using a syringe, decanted into a fresh 50 mL tube, and stored in a 
refrigerator at − 20 ◦C before chemical analysis and determination of 
dual isotopic compositions. The significant water-soluble inorganic 
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species in the extract were analysed utilising an ion chromatograph 
(model ICS-1100 and ICS-900 for anions and cations, respectively) 
equipped with a conductivity detector (ASRSULTRA), suppressor 
(ASRS-300 for the ICS-1100 and CSRS-300 for the ICS-900), separator 
columns (AS11-HC for anions and CS12A for cations), and guard col-
umns (AG11-HC for anions and CG12A for cations). The precision of the 
analyses for every ionic species might have been superior to 5%. 

The δ15N and δ18O values of NO3
− were determined by the denitri-

fication method (Yeatman et al., 2001; Casciotti et al., 2002), which is 
widely used for aerosols, rainwater, and snow (Savarino et al., 2007; 
Morin et al., 2009; Vicars et al., 2013; Felix et al., 2015; Luo et al., 2018). 
Samples were analysed to determine the dual isotopic composition as 
previously reported by (Luo et al., 2018). In short, NO3

− was reduced to 
N2O by Pseudomonas aureofaciens (ATCC 13985) without N2O reductase. 
Then GasBench-II and continuous flow isotope ratio mass spectrometer 
(IRMS; Thermo Fisher DELTA V advantage; Thermo Fisher Scientific, 
Inc., USA) were used for on-line analysis of dual isotopes of N2O. Four 
international standards (USGS32, USGS34, USGS35, and IAEA-N3) and 
a laboratory standard were used to correct for the variations observed in 
the measured data. The standard deviations of the replicate measure-
ments of these standards were better than ±0.2‰ for δ15N, and ±0.5‰ 
for δ18O. 

2.3. Modelling analysis 

2.3.1. Backward trajectories 
The hybrid single-particle Lagrangian Integrated Trajectories (HYS-

PLIT) model and Global Data Assimilation System (GDAS) information 
were used to ascertain the backward trajectory every 6 h and 72 h at 500 
m to analyse the origins of air masses transporting aerosols. The flight 
trajectories of air masses at an altitude of 500 m were calculated. The 
HYSPLIT model is available at the National Oceanic and Atmospheric 
Administration (NOAA) Air Resource Laboratory website (http://www. 
arl.no aa.gov/H YSPLIT.php). 

2.3.2. Bayesian isotopic mixing model 
The Bayesian isotopic mixing model can estimate the contribution of 

each source to a mixture, and the uncertainties associated with multiple 
sources are explicitly considered in the simulation, which the un-
certainties were evaluated for the δ15N variabilities of major nitrogen 
sources (using the δ15N values of each source, expressed as mean ± SD, 
as inputs). At the same time, isotope fractionation during the formation 
of different mixture components is also taken into account (Parnell et al., 
2013). 

The mixing model (Parnell et al., 2010) can be expressed by defining 
a set of N-mixture measurements for J isotope by k source contributors, 
as follows: 

Xij  =
∑k

k=1
Fk⋅(Sjk  +  Cjk)  + ?jk (1)   

Sjk ~ N (μjk; ωjk
2)                                                                                   

Cjk ~ N (λjk; τjk2)                                                                                  

εjk ~ N(0; σj
2)                                                                                       

Where all F values sum to unity; Xij is the isotope value j of the mixture i; 
Sjk is the source value k for isotope j (k = 1, 2, 3, …, K), and is normally 
distributed with a mean μjk and standard deviation ωjk. Fk is the pro-
portion of source k estimated by the SIAR model; cjk is the fractionation 
factor for isotope j on source k and is normally distributed with a mean 
λjk and standard deviation τjk. εjk is the residual error representing the 
additional unquantified variation between individual mixtures, and is 
normally distributed with a mean of 0 and a standard deviation σj, as 
described in detail elsewhere (Moore and Semmens, 2008; Jackson 
et al., 2009; Parnell et al., 2010). 

In this section, we attempted to use δ15N– NO3
− combined with SIAR 

model to quantify the potential sources of particulate nitrate in Lanzhou 
during the sampling period. According to previous studies, fractionation 
values obtained in controlled studies were very high, according to which 
the δ15N– NO3

− values in particulates would be at least 52‰ higher than 
that of NOx. Accordingly, the isotope fractionations during the NOx 
oxidation processes, we considered that the available fractionation 
values might not be directly applicable to source analysis of this study. 
To further interpret the observed δ15N – NO3

− values in PM2.5 for 
relative contributions of major NOx sources, we calculated the ε values 
using the method of (Walters and Michalski, 2015; Walters et al., 2016; 
Zong et al., 2017). 

Atmospheric NO2 is first converted to the HNO3 through two domi-
nant reactions (i.e., reactions of NO2 with OH⋅ and N2O5 with H2O) and 
the HNO3 is then converted to NO3

− (p). So far, the isotope effect be-
tween HNO3 and NO3

− is negligible (Walters et al., 2016; Zong et al., 
2017; Chang et al., 2018), i.e., the δ15N–HNO3 equals the δ15N– NO3

− . 
Therefore, the overall isotope effects (i.e., the ε values in our study) of 
atmospheric NO2 conversion to NO3

− (p) were determined by the con-
tributions of the above two reactions (fOH and fN2O5, respectively) to the 
oxidations of NO2 to HNO3 formation.  

ε = fOH × εOH + fN2O5 × εN2O5 (Eqn 1)                                                   

In which fOH + fN2O5 = 1, εOH and εN2O5 values are isotope frac-
tionations during the above two reactions, respectively. 

Because both reactions of NO2 with OH⋅ and N2O5 with H2O are 
exchange reactions, both εOH and εN2O5 values reflect isotope equilib-
rium effects in respective reaction. The εOH values can be calculated 
using the following mass-balance equation (Walters et al., 2016).  

εOH = 1000 × ((15αNO2/NO - 1) (1 - fNO2) / ((1 - fNO2) + (15αNO2/NO × fNO2))  
(Eqn 2) 

Where the 15αNO2/NO value is the equilibrium isotope fractionation 
factor between NO2 and NO, which is a temperature-dependent function 
(see Eqn (4)), and the fNO2 is the fraction of NO2 in the total NOx. The 
fNO2 values is from 0.2 to 0.95. Similarly, the εN2O5 values can be 
calculated from the following equation (Walters et al., 2016)  

εN2O5 = 1000 × (15αN2O5/NO2 - 1)                                               (Eqn 3) 

In which the 15αN2O5/NO2 refers to the equilibrium isotope effects be-
tween N2O5 and NO2, which is a temperature-dependent function (see 
Eqn (4)). The 15αNO2/NO and 15αN2O5/NO2 in Eqns (2) and (3) (expressed 
the 15αX/Y) were calculated by Eqn (4):  

1000 (15αX/Y-1) = A / T4 × 1010 + B / T3 × 108 + C / T2 × 106 + D / T × 104 

(Eqn                                                                                               4) 

Where A = 3.8834, B = − 7.7299, C = 6.0101 and D = − 0.17928 for 
15αNO2/NO; and A = 0.69398, B = − 1.9859, C = 2.3876 and D =
− 0.16308 for 15αN2O5/NO2 (Walters and Michalski, 2015). In the study, 
the temperature (T) is shown in Fig. 1a. 

The fOH and fN2O5 values were determined by the 18O fractionations 
of the above two reactions, respectively e (Walters et al., 2016; Zong 
et al., 2017; Chang et al., 2018), which can be expressed in Eqn (5).  

δ18O–NO3
- = [δ18O– NO3

− ]OH × fOH + [δ18O– NO3
− ]N2O5 × fN2O5 (Eqn 5) 

Where fOH + fN2O5 = 1. The [δ18O– NO3
− ]OH was calculated by the 

following equations (Eqn (6)).  

[δ18O– NO3
− ]OH = 2/3 × [δ18O–NO2]OH + 1/3 × [δ18O–OH]OH (Eqn     6) 

Where the [δ18O–NO2]OH and [δ18O–OH]OH values were calculated by 
Eqn (7) and Eqn (8), respectively.  

[δ18O–NO2]OH = 1000 × (18αNO2/NO - 1) × (1-fNO2)/((1-fNO2)+(18αNO2/NO ×

fNO2))+[δ18O-NOx] (Eqn                                                                   7) 
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[δ18O–OH]OH = (δ18O–H2O) + 1000 × (18αOH/H2O - 1) (Eqn                  8) 

In Eqn (7) and Eqn (8), the 18αNO/NO2 and 18αOH/H2O (expressed as 
the 18αX/Y) values were calculated by the following equation (Eqn (9)).  

1000(18αX/Y-1) = A / T4 × 1010 + B / T3 × 108 + C / T2 × 106 + D / T × 104 

(Eqn                                                                                               9) 

Where A = − 0.04129, B = 1.1605, C = − 1.8829 and D = 0.74723 for 
18αNO/NO2; and A = 2.1137, B = − 3.8026, C = 2.2653 and D = 0.5941 
for 18αH2O/OH (Walters et al., 2016). In our study, the temperature (T) 
data is shown in Fig. 1a. 

The [δ18O– NO3
− ]N2O5 values in Eqn (5) were calculated by Eqn (10).  

[δ18O– NO3
− ]N2O5 = 5/6 × (δ18O–N2O5) + 1/6 × (δ18O–H2O) (Eqn     10) 

In Eqn (10), the δ18O–H2O values were estimated as the δ18O values 
of tropospheric water vapor (− 12.5 ± 17.6‰) (Walters et al., 2016), and 
the δ18O–N2O5 values were (126.4 ± 7.1)‰ (Walters et al., 2016). 

The NO3
− of PM2.5 in Lanzhou, a Monte Carlo simulation was per-

formed to generate 10000 feasible solutions, which determined that the 
error between predicted and measured δ18O was less than 0.5‰. The 
standard deviations of each variable in the above calculations were 
estimated by the Monte Carlo method and were finally propagated into 
the uncertainties of the ε(NO2→HNO3) values. These ε(NO2→HNO3) values 
were considered the δ18O– NO3

− based calculation (Zong et al., 2017). 
found that the model results with 0.52 times the equilibrium fraction-
ation value had the highest probability distribution of all source 

contributions and were considered to be the final solution in this study. 

3. Results and discussion 

3.1. Chemical characteristics of PM2.5 

The PM2.5 concentration ranged from 28.7 μg m− 3 to 149.5 μg m− 3, 
with an average of 63.1 ± 22.6 μg m− 3; this value is fundamentally 
higher than that recommended by the world Health Organization (35 μg 
m− 3). The results of the variation of PM2.5 mass concentration are pre-
sented in Table 1 and Fig. 1b; the concentration was 28.7 μg m− 3 –149.5 
μg m− 3 during the winter (mean of 66.3 ± 23.1 μg m− 3), that is, higher 
than that in spring (31.2 μg m− 3–145.5 μg m− 3, mean of 57.5 ± 27.6 μg 
m− 3). These results can be attributed to the increase in coal burning for 
domestic heating and the enhancement in the stability of the atmo-
spheric boundary layer during winter (Cao et al., 2005; Xiao et al., 
2014). 

Water-soluble inorganic ions (WSIIs) were the major components of 
PM2.5 in Lanzhou (Table 1). The NO3

− , SO4
2− , and NH4

+ concentrations 
and atmospheric conditions (e.g., T, RH, and gas precursors) exhibited 
seasonal changes (Fig. 1; Table 1). The NO3

− and NH4
+ concentrations 

were relatively high in winter than in spring. The higher NO3
− and NH4

+

contents observed in our study could be ascribed to the transformation 
of NH3 (g) into NH4

+ (p) and that of HNO3 (g) into NO3
− (p) at low 

ambient temperature conditions. Table 1 show that the SO4
2− concen-

tration was slightly lower in winter than in spring, and the SO2 con-
centration decreased in spring. WS and SO4

2− concentrations were 

Fig. 1. Temporal variations of T, RH and W (a), PM2.5, NO3
− (b) concentrations, and NO2, O3, (c) concentrations from Dec 2017 to Apr 2018.  
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positively correlated (r = 0.23) in spring and negatively correlated (r =
− 0.08) in winter, suggesting that the SO4

2− concentrations are affected 
by external sources such as dust. 

The high NO3
− , SO4

2− , and NH4
+ concentrations indicate that many 

secondary pollutants are produced. The nitrogen and sulfur oxidation 
ratios (NOR and SOR) were used to evaluate the extent of the photo-
chemical oxidation of NO2 and SO2 (Ohta and Okita, 1990; Fu et al., 
2008; Luo et al., 2019). The NOR and SOR values greater than 0.1 
indicate the generation of secondary nitrate and sulfate pollutants. The 
NOR and SOR values obtained in this study were greater than 0.1 in both 
seasons. Fig. 1c and Table 1 show that the NOR in winter was higher 
than that in spring, indicating that the photochemical oxidation reaction 
of NO2 was more significant in winter. Therefore, it can be concluded 
that the oxidation efficiency of gaseous NO2 is improved at low tem-
peratures, leading to the sudden increase of NO3

− concentration in 
winter (Lin and Cheng, 2007). However, the SOR is higher in spring than 
in winter, and the correlation between SO4

2− and SO2 is low (r = 0.06). 
When mineral cation concentrations are high, large amounts of SO4

2−

are associated with cations such as Ca2+. The large increase in the mass 
concentration of SO4

2− in spring is related to the local sand and dust 
weather (Wang et al., 2016). In addition, the aerosol Cl− mainly origi-
nates from sea salt (Luo et al., 2016) or coal combustion (Wei Xie et al., 
1999; Xu et al., 2016). During the study period, it can be seen from the 
backward trajectories that almost all air masses come from land rather 

than sea (Fig. 2), which means that sea salt Cl− was negligible in the 
study area. Meanwhile, we find that a positive correlation was found 
between the NO3

− values and Cl− concentrations of PM2.5 (r = 0.43, p <
0.01) in winter, further indicates that Cl− mainly originates from coal 
combustion in city environments. 

3.2. Dual isotopes of nitrate in PM2.5 

Table 1 shows that the range of δ15N– NO3
− was rather large 0.2‰– 

17.4‰, (mean of 10.2 ± 4.0‰). The δ18O– NO3
− value ranged from 

55.5‰ to 108.2‰ (mean of 78.7 ± 8.2‰) and was higher than that 
observed in other studies in Summit, the Gulf of Aqaba, Mt. Lulin and 
other cities (Table 2). 

The δ15N value was low in spring and high in winter; these obser-
vations were similar to those reported for northern China (Zong et al., 
2017). The δ15N–NO3

- values in winter (4.2‰–17.4‰, mean of 12.0 ±
3.1‰) were significantly different from those in spring (0.17‰–16.7‰, 
mean of 7.0 ± 3.5‰), suggesting that NOx sources change in winter. For 
example, the δ15N value NOx from coal combustion is high (Felix et al., 
2012), whereas those related to mobile sources or microbial processes 
tend to be more negative (Li and Wang, 2008; Felix and Elliott, 2014; 
Walters et al., 2015). Many studies have shown that NOx sources can be 
traced by using the δ15N– NO3

− value (Kojima et al., 2011; Altieri et al., 
2013; Savarinoa et al., 2013; Geng et al., 2014). The relatively higher 

Table 1 
Mean (and standard deviation) seasonal concentrations of PM2.5 mass, ionic species, and gaseous pollutants along with the mean ambient temperature and mean 
relative humidity measured in Lanzhou from Dec 2017 to Apr 2018.  

Component (unit) Winter Spring Annual value 

Mean Range Mean Range Mean Range 

PM2.5(μg m− 3) 66.3 ± 23.1 28.7–149.5 57.5 ± 20.6 31.2–145.5 63.1 ± 22.6 28.7–149.5 
Cl− (μg m− 3) 3.1 ± 1.9 0.5–12.7 2.7 ± 2.1 0.3–11.1 2.9 ± 2.0 0.3–12.7 
NO3

− (μg m− 3) 14.7 ± 9.3 2.7–51.6 7.7 ± 3.2 0.7–15.2 12.2 ± 8.4 0.7–51.6 
SO4

2− (μg m− 3) 14.3 ± 6.7 5.6–49.2 11.9 ± 6.1 1.2–33.9 13.4 ± 6.6 1.2–49.2 
K+(μg m− 3) 0.6 ± 0.4 0.1–2.8 0.7 ± 0.4 0.1–2.5 0.6 ± 0.4 0.1–2.8 
Na+(μg m− 3) 1.4 ± 1.8 0.1–12.9 2.1 ± 2.0 0.2–9.2 1.7 ± 1.9 0.1–12.9 
Ca2+(μg m− 3) 4.3 ± 5.1 1.4–17.4 9.7 ± 3.8 3.1–23.5 6.8 ± 3.6 1.4–23.5 
Mg2+(μg m− 3) 0.2 ± 0.2 0.1–1.4 0.6 ± 0.4 0.1–2.4 0.4 ± 0.3 0.1–2.4 
NH4

+(μg m− 3) 7.6 ± 4.2 1.3–24.9 3.6 ± 1.6 0.1–6.6 6.2 ± 4.0 0.1–24.9 
NO2 (μg m− 3) 64.3 ± 23.0 19.3–123.9 52.6 ± 15.9 16.8–77.6 60.0 ± 21.4 16.8–123.9 
SO2 (μg m− 3) 39.7 ± 14.5 10.6–71.0 19.5 ± 8.3 5.3–42.8 32.2 ± 15.9 4.5–71.0 
O3(μg m− 3) 44.5 ± 15.6 23.1–87.4 72.1 ± 16.2 48.1–131.7 54.7 ± 20.7 23.1–131.7 
NOR 0.14 ± 0.06 0.0–0.4 0.10 ± 0.05 0.0–0.2 0.13 ± 0.1 0.0–0.4 
SOR 0.20 ± 0.09 0.1–0.5 0.30 ± 0.12 0.1–0.6 0.2 ± 0.1 0.07–0.64 
δ15N– NO3

− (‰) 12.0 ± 3.1 4.2–17.4 7.0 ± 3.5 0.2–16.7 10.2 ± 4.0 0.2–17.4 
δ18O– NO3

− (‰) 81.8 ± 6.2 66.1–96.4 73.2 ± 8.4 55.5–108.2 78.7 ± 8.2 55.5–108.2  

Fig. 2. Back-trajectory clustering results for 2017.12–2018.4 at Lanzhou. (a), (b) represent Winter and Spring (different color showed the trajectories and the 
proportion of air masses expressed as a percentage). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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δ15N value may be attributed to the increase in coal combustion during 
winter. 

In our study, the δ18O–NO3
- obtained in winter (66.1‰–96.4‰, 

mean of 81.8 ± 6.2‰) was higher than that in spring (56.7‰–92.5‰, 
mean of 75.7 ± 7.2‰). Generally, the δ18O values of OH radicals range 
from − 15‰ to 0‰ (Fang et al., 2011), and those of O3 vary from 90‰ to 
122‰ (Krankowsky et al., 1995; Johnston and Thiemens, 1997). The 
linear correlation between δ18O and δ15N is shown in Fig. 3; the corre-
lation coefficient (r) was determined to be 0.60 (p < 0.001). We 
observed low and high NO3

− , δ15N, and δ18O concentrations in warmer 
and cooler months, respectively, which indicates that the contributions 
of each nitrate source and oxidation pathway changed with the change 
in temperature in different seasons. As previously reported, this in-
dicates that in seasons with cooler temperatures and longer nights, O3 
plays a more important role in the formation of nitrate than OH radical 
with lower concentration (Elliott et al., 2009; Xiao et al. 2015, 2020). In 
spring, the δ18O values were higher in Lanzhou than those reported from 
other regions worldwide (Table 2). The aerosol samples might contain 
high concentrations of mineral dust, which has a highly reactive surface 
(Hanisch and Crowley, 2001; Mogili et al., 2006; Wankel et al., 2010). 
The mineral dust particles in tropospheric aerosols provide surfaces for 
the adsorption and reaction of trace atmospheric gases (Usher et al., 
2003). The results of previous studies have shown that heterogeneous 
reactions of N2O5 with mineral dust aerosols lead to the reduction of the 
NOx and O3 concentrations and the aerosol components of the mineral 
dust have a catalytic effect on the reactions. Thus, O3 and mineral dust 

plays a greater role in spring in Lanzhou. 

3.3. Source apportionment of δ15N–NO3
- in PM2.5 

In this study, the uncertainty of ε (NO2 → HNO3) values was obtained 
by Monte Carlo method, and these ε (NO2 → HNO3) values were 
calculated from δ18O– NO3

− measurements. The ε value was calculated 
to be 9.7 ± 0.41‰ in winter and 8.8 ± 0.42‰ in spring. The main 
contributors of the NOx in this study were coal combustion (13.7 ±
4.6‰) (Felix et al. 2012, 2015; Walters and Michalski, 2015), vehicle 
exhausts (− 7.2 ± 6.1‰) (Moore, 1977, Heaton, 1990, Ammann et al., 
1999; Felix and Elliott, 2014, Walters et al., 2015), biomass burning (1.0 
± 4.1‰) (Fibiger and Hastings, 2016), and biogenic soil emissions 
(− 30.1 ± 9.2‰) (Li and Wang, 2008; Felix and Elliott, 2014). The 
contribution fraction of NOx from different sources to NO3

− was deter-
mined by the Bayesian model calculation (Fig. 4); these sources 
contributed to NOx in the following decreasing order: coal combustion 
> biomass burning > vehicle exhausts > soil microbial emissions, with 
the respective values in winter (spring) being 42.2 ± 9.9% (30.7 ±
11.4%), 27.8 ± 16.2% (28.3 ± 15.7%), 22.2 ± 12.3% (26.5 ± 14.4%), 
and 7.7 ± 5.2% (14.4 ± 6.9%). These data showed that the contribution 
of coal combustion to NOx was higher in winter, indicating that coal 
combustion is the dominant source of NOx during the cooler months in 
Lanzhou. The results mentioned above are consistent with the previous 
research results in Lanzhou (Qiu et al., 2016). Our experiments confirm 
that the contribution rate of NOx sources vary in different seasons. 

Table 2 
Comparison of δ15N–NO3

− and δ18O–NO3
− data from studies in various locations worldwide.  

Location Information Sample types δ15N–NO3
− (‰) δ18O–NO3

− (‰) Reference 

Summit 2001.03, 2001.08 snow − 15.3–16.7 65.~79.6 Hastings et al. (2004) 
Dumont d’Urville 2001.1.16–2001.12.22 HVAS − 46.9–10.8 60–110 Savarino et al. (2007) 
the coast of California 2010.5.14–2010.6.7 HVAS − 6.2–8 50.7–80.3 Vicars et al. (2013) 
the Gulf of Aqaba 2003.08–2004.11 TSP − 6.9–1.9 66.1–85.3 Wankel et al. (2010) 
Mt. Lulin 2010.1.13–2010.12.31 TSP − 17.2–6.5 10.8–92.4 Guha et al. (2017) 
Sanjiang 2013.10.08–2013.10.18 PM2.5 9.5–13.8 57.2–75.1 Chang et al. (2018) 
Zhanjiang 2015.05–2017.11 Precipitation − 1.8–4.1 42.7–61.6 Chen et al. (2019) 
Nanchang 2017.09–2017.12 PM2.5 − 10.5–12.5 34.5–91.9 Xiao et al. (2020)  

Fig. 3. The correlation plot between δ15N and δ18O values and color represent temperature. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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4. Conclusion 

Our results showed that the PM2.5 concentration ranged from 28.9 
μg m− 3 to 149.5 μg m− 3 (average 63.1 ± 22.6 μg m− 3), and nitrate, 
sulfate, calcium, and ammonium were the dominant species. The main 
reasons for serious pollution are weak convection and inversion layer in 
winter in Lanzhou, which makes it difficult for pollutants to transport 
and aggravates the pollution level. In addition, high humidity conditions 
are conducive to the formation of new particles. Secondary sand- 
blowing or dusty weather in spring also exacerbates pollution. 

The δ15N value of NO3
− varied from 0.2‰ to 17.4‰ (mean value of 

10.2 ± 4.0‰) and the δ18O of the nitrate ranged from 55.5‰ to 108.2‰ 
(mean value of 78.7 ± 8.2‰). The δ15N and δ18O values showed strong 
seasonal variation, indicating that the sources of NOx and the oxidation 
pathways of nitrate change from winter to spring in Lanzhou. 

According to the Bayesian isotope mixing model, the contribution 
rate of NOx sources differ in different seasons. Although coal burning is 
the main source in spring and winter, the contribution rate of soil mi-
crobial emissions gradually increases with the increase of temperature. 
The measurement of nitrogen and oxygen isotopes using isotope tech-
nology and Bayesian model simulation for the first time in Lanzhou will 
help clarifying the relationships between regional NOx emissions and 
atmospheric NO3

− pollution or deposition. Furthermore, these will be 
helpful in reducing NOx emissions in urban environments, thereby 
contributing toward mitigating air pollution. 
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