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A B S T R A C T

Ecosystem water use efficiency (WUE) reflects the intimately coupled relationship between the carbon and water
cycles in terrestrial ecosystems. However, the inter-annual variation and its drivers of WUE are poorly under-
stood at regional/global scale, due to either limited data availability or uncertainties in current data streams. In
this study, we used process-based models simulated gross primary productivity (GPP) and evapotranspiration
(ET) data to estimate the ecosystem WUE (eWUE, GPP/ET) in China for 1979–2012. The eWUE estimates were
validated against eddy covariance-based values from 35 flux towers. The inter-annual variation of the eWUE was
quantified and its responses to annual precipitation (AP), annual mean temperature (AMT), and annual mean
leaf area index (AMLAI) were analyzed. The key findings were as follows. (i) The mean annual eWUE over China
was 1.48 ± 1.04 g C kg−1 H2O and had a slightly increasing but not significant trend (7.32× 10−4 g C kg−1

H2O yr−1, p < 0.05) from 1979 to 2012. (ii) The spatial distribution of the eWUE trend showed large spatial
variability. ∼21.4% and ∼19.0% of vegetated land in China had significant increasing and decreasing trends
(Mann-Kendall test, p < 0.1), respectively. The increasing eWUE was mainly found in the northeast, southwest,
and central areas of China, while the decreasing eWUE was mostly distributed in west China. (iii) The inter-
annual variation of the spatially averaged annual eWUE was negatively correlated with that of AP and AMT, and
positively correlated with that of AMLAI. In ∼41.4%, ∼9.9%, and ∼3.1% of vegetated land in China the inter-
annual variation of eWUE was dominated by the inter-annual variations of AP, AMT, and AMLAI, respectively. In
most land of north China and west China the inter-annual variation of eWUE was dominated by the inter-annual
variation of AP, while in central, east and south China all the AP, AMT, AMLAI, and other drivers played
important roles.

1. Introduction

Water use efficiency (WUE) is a key parameter that reflects the in-
tegrated effects of the water, energy, and carbon cycles on ecosystem
processes (Ito and Inatomi, 2012; Keenan et al., 2013). Therefore,

quantifying the spatio-temporal variations in WUE and revealing its
drivers are crucial to understand both the patterns in terrestrial eco-
system carbon-water coupling and their responses to climate change.
This provides insight into regional vegetation growth prediction and
ecosystem management (Liu et al., 2016; Cheng et al., 2017; Huang
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et al., 2016; Knauer et al., 2017).
The definition of WUE varies at different level of organizations

(Ponton et al., 2006; Beer et al., 2009; Zhou et al., 2014; Boese et al.,
2017). At the ecosystem scale, a widely used WUE indicator (eWUE) is
the ratio of gross primary productivity (GPP) to evapotranspiration (ET)
(Reichstein et al., 2007; Huang et al., 2015; Guerrieri et al., 2016). It
represents the adjustment of vegetation photosynthesis to water loss
(Huang et al., 2015). In recent decades, many studies have investigated
the spatio-temporal patterns in eWUE across a wide range of ecosystems
by using ET and GPP from eddy covariance (EC) observations (Hu et al.,
2008; Yu et al., 2008; Bruemmer et al., 2012; Zhu et al., 2015; Guerrieri
et al., 2016; Xie et al., 2016; Jones et al., 2017), satellite remote sensing
(Lu and Zhuang, 2010; Tang et al., 2014; Gang et al., 2016; Huang
et al., 2017; Yu et al., 2017), and process-based land models (e.g.,
terrestrial ecosystem model [TEM] or land surface model [LSMs]) (Tian
et al., 2011; Huang et al., 2015; Sun et al., 2016a). Nevertheless, it is
still difficult to accurately quantify eWUE at regional and global scales,
because of the difficulties in the estimation of reliable GPP and ET data
(Zhang et al., 2015a, 2016; Oliveira et al., 2017; Tang et al., 2017). To
well estimate regional and global eWUE, it is critical to first obtain
reliable ET and GPP datasets.

Because eWUE not only depends on the strength of the coupling
strength between GPP and ET but also on its responses to climatic and
biotic factors (Huang et al., 2016), the spatio-temporal variations of
eWUE can be quite obvious and its drivers vary with ecosystem types
and spatial scales. Many studies have reported the eWUE variations and
its drivers at site scale (Hu et al., 2008; Yu et al., 2008; Xiao et al., 2013;
Zhu et al., 2015; Helman et al., 2017; Quan et al., 2018). However, our
knowledge about the eWUE variations and its drivers at regional and
global scales is still uncomplete, because the regional and global eWUE
estimates are always associated with significant uncertainties and the
control factors of eWUE are largely varied with ecosystem types. For
example, based on remote sensing GPP and ET data, Tang et al. (2014)
estimated global eWUE and found a negative eWUE trend with a value
of −4.5× 10-3 g C kg−1 H2O yr−1 over 2000–2013. On contrary, Xue
et al. (2015) and Cheng et al. (2017) both reported significant and
positive global eWUE trends during the same period, based on remote
sensing and process-based model methods, respectively. In addition,
based on EC-derived eWUE, Yu et al. (2008) reported that annual eWUE
linearly decreased with annual precipitation (AP) and annual mean
temperature (AMT). In comparison, using measurements from more EC
sites, Zhu et al. (2015) found that the eWUE changed with AP in a

logarithmical manner and linearly increased with AMT. At global, Xue
et al. (2015) found that in most land areas, eWUE was positively cor-
related with AP and negatively correlated with AMT, respectively.

China has an enormous land area, encompassing a large range of
ecosystems and climate types. The extreme diversity in climate, eco-
zones, land cover, soil, and topography leads to a considerable spatio-
temporal variability in eWUE and makes it difficult to accurately esti-
mate eWUE at the national scale. Recently, Liu et al. (2015) and Zhang
et al. (2015a) estimated eWUE in China using process-based model and
remote sensing approaches, respectively. However, the periods studied
were limited to after 2000, and the controls on the spatio-temporal
variations in eWUE and the uncertainties associated with the eWUE
estimates were not fully discussed.

Process-based models forced with observation-based inputs provide
relatively ideal tools to estimate eWUE and investigate its responses to
drivers at site- to global scale, and have the advantage of explicitly
including main physiological processes that control eWUE over long
time periods (Tian et al., 2011; Huang et al., 2015). Here, using GPP
and ET data from process-based land surface models, we estimate the
eWUE and analyze it main drivers across China. The three main ob-
jectives were to (i) estimate annual eWUE in China over the last three
decades (i.e., 1979–2012), (ii) quantify the spatio-temporal variations
in eWUE over China during the last three decades, and (iii) examine the
response of the inter-annual variation of eWUE to that of the climatic
(e.g., precipitation and temperature) and biotic (e.g., leaf area index
[LAI]) variables.

2. Materials and methods

2.1. ET and GPP data

In our previous work, based on multiple LSMs simulations we have
developed a China ET dataset (Hereafter LSMs-ET), which has a spatial
resolution of 0.25°× 0.25° and covers the period 1979–2012 (Sun
et al., 2017). This ET data was used to estimate eWUE over China in this
study. It has been evaluated against measurements from nine EC towers
and ET estimates derived from regional water-balance analyses. In
addition, it was also compared with independent ET products from
remote sensing (Mu et al., 2007) and upscaling (Jung et al., 2011)
methods. More details of the ET dataset can be found in Sun et al.
(2017).

The GPP data used in this study were generated by forcing a

Fig. 1. Location of the EC-GPP flux tower sites used
in this study. The base map is MODIS land-cover
product for 2001 (Friedl et al., 2002). The land cover
types include evergreen needleleaf forests (ENF),
evergreen broadleaf forests (EBF), deciduous nee-
dleleaf forests (DNF), deciduous broadleaf forests
(DBF), mixed forests (MF), closed shrublands (CSL),
open shrublands (OSL), grasslands (GL), woody sa-
vannas (WSN), permanent wetlands (PW), croplands
(CL), urban and built-up lands (UB), savannas (SN),
snow and ice (SI), barren or sparsely vegetated lands
(BSV), water bodies (WB), and cropland/natural ve-
getation mosaics (C/NVM).
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process-based model with observation-based meteorological forcing
and soil datasets. It has the same spatio-temporal resolution and time
period as the LSMs-ET data. Before it was used to estimate eWUE, the
GPP data was first validated against the EC-derived GPP from 16 China
flux towers and then compared with independent GPP products from
remote sensing and upscaling methods. The details of the model and the
GPP simulations are provided in the following sections.

2.2. EC flux tower data

The EC data used in this study included two datasets. The first was
the EC-derived GPP data (EC-GPP), which was used to validate our
process-based model GPP simulations in this study. It included mea-
surements from 16 EC flux towers and were collected from published
papers and the Chinese flux observation and research network
(ChinaFlux, Yu et al., 2006). The second was the EC-based eWUE data
(EC-eWUE), which were extracted from Liu et al. (2015) and included
35 flux towers. It should be noted that some of the flux towers used in
the two EC datasets were same.

The land cover types of the EC-GPP sites included six croplands, five
grasslands, two mixed forests, two evergreen broadleaf forests, and a
woody savanna (Fig. 1). For the sites that did not directly provided GPP
estimates, we used the REddyProcWeb online tool (https://www.bgc-
jena.mpg.de/bgi/index.php/Services/REddyProcWeb) to fill data gaps
and partition the net ecosystem exchange of CO2 (NEE) into GPP and
ecosystem respiration (Re). A total of 39 site-year EC-derived GPP
measurements were collected (Table 1).

The land cover types of the 35 EC-eWUE sites consisted of 13 for-
ests, 14 grasslands, five croplands, and three wetlands, across a range of
climate zones (Fig. S1). For each site the annual eWUE during the ob-
serving periods was provided (Table S1). More details about this EC-
eWUE dataset can be found in Liu et al. (2015).

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.ecolind.2018.07.003.

2.3. The models

We used the Dynamic Land Model (DLM) to estimate GPP in China
over 1979–2012. DLM is the recently updated version of the Ecosystem-
Atmosphere Simulation Scheme (EASS), which is a remote sensing-
based LSM developed by Chen et al. (2007a, 2007b). The current DLM
has been coupled to the Community Land Model, version 4.0 (CLM4.0)
framework (Oleson et al., 2010) by replacing the original photosynth-
esis and energy flux modules with the EASS based formulations and
optimizing the parameters (Chen et al., 2013). Recently, the DLM
model has been improved by adding a vegetation dynamic model with a
state-of-art phenology module (Chen and Che, 2016) and modifying soil

moisture and temperature parameterizations (Sun et al., 2016b). The
validations showed that the improved model performs well in radiation,
evapotranspiration, gross primary production (GPP) simulations (Chen
et al., 2013; Yan et al., 2014; Sun et al., 2017).

In this study, the DLM model was run offline from 1979 to 2012 at a
spatial resolution and time step of 0.25°× 0.25° and daily, respectively.
Before obtaining the GPP outputs, the model was spun-up for 34 years
(from 1979 to 2012). The photosynthesis parameters in the DLM model
for different plant functional types were the optimized ones from Chen
et al. (2013) (Table S2).

2.4. Model inputs

Instead of using the reanalysis-based forcing that is taken as a de-
fault by the models, we adopted an observation-based China high re-
solution meteorological forcing dataset to drive the DLM model. The
forcing dataset was produced by the Data Assimilation and Modeling
Center for Tibetan Multi-spheres, Institute of Tibetan Plateau Research,
Chinese Academy of Sciences (Yang et al., 2010). It covers the period
from 1979 to 2012, with a temporal resolution of 3 h and spatial re-
solution of 0.1°× 0.1°. It was produced by merging observations from
740 meteorological stations operated by the China Meteorological Ad-
ministration, the Global Land Data Assimilation System dataset, and
several satellite remotely sensed meteorological products.

For the land surface datasets, we used a recently developed soil
texture dataset with a 30 arc-second resolution to replace the model
defaults. The dataset was developed for LSMs at Beijing Normal
University (Shangguan et al., 2013). It was produced by merging soil
information from 8979 soil profiles and the Soil Map of China. The LAI
data was prescribed Moderate Resolution Imaging Spectroradiometer
(MODIS) derived LAI. Other model land surface datasets were taken
from the model defaults, which were derived from satellite remote
sensing or synthetic land surface characteristic products.

2.5. Climate, satellite and other auxiliary data

We considered precipitation and temperature as the climatic drivers
and LAI as the biotic driver that mostly contribute to eWUE variations.
The precipitation and temperature data used were downloaded from
the China Meteorological Data Service Center (http://data.cma.cn/en).
They were produced by interpolating observations from 2472 China
meteorological stations from 1961 onwards at monthly time scales and
a spatial resolution of 0.5°× 0.5°. To match our eWUE estimates, they
were regridded to a spatial resolution of 0.25°× 0.25° and then ag-
gregated to annual values.

The LAI data were retrieved from the Global Inventory Modeling
and Mapping Studies third generation (GIMMS3g) LAI product, which

Table 1
Characteristics of the EC-GPP flux tower sites.

Sites Coordinates IGBP classes Start-end years References

CN-Cha 42.40°N, 128.10°E Mixed Forests 2003–2005 ChinaFlux
CN-Yuc 36.95°N, 116.60°E Croplands (maize) 2003–2005 ChinaFlux
CN-Xsh 21.95°N, 101.20°E Evergreen Broadleaf Forests 2003–2005 ChinaFlux
CN-Qia 26.73°N, 115.07°E Woody Savannas 2003–2005 ChinaFlux
CN-Din 23.17°N, 112.53°E Evergreen Broadleaf Forests 2003–2005 ChinaFlux
CN-Hab 37.61°N, 101.31°E Grasslands 2003–2005 ChinaFlux
CN-Dan 30.85°N, 91.08°E Grasslands 2004–2005 ChinaFlux
CN-Nmg 43.55°N, 116.68°E Grasslands 2003–2005 ChinaFlux
CN-Du1 42.05°N, 116.67°E Croplands 2005–2006 Li et al. (2013)
Miyun 40.63°N, 117.32°E Croplands (fruiter) 2008–2010 Liu et al. (2013)
Tongyu 44.59°N, 122.52°E Grasslands 2004–2006 Wang et al. (2010)
Guantao 36.52°N, 115.13 °E Croplands (maize) 2009–2010 Liu et al. (2013)
Wulws 36.52°N, 115.13 °E Cropland (cotton) 2009–2010 Wang et al. (2015)
Yingke 38.85°N, 100.42 °E Croplands (maize) 2008–2009 Liu et al. (2008)
Arou 38.05°N, 100.46°E Grasslands 2010 Ma et al. (2008)
Anji 30.48°N, 119.67°E Mixed Foresrs 2011 Zhang and Ge (2014)
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was derived from the GIMMS3g normalized difference vegetation index
(NDVI) product using a neural network algorithm. It covers period of
1981–2011 and has a spatial and temporal resolution of 1/12° and bi-
monthly, respectively. More details about the GIMMS3g LAI product
can be found in Zhu et al. (2013).

Several auxiliary datasets were used to further evaluate and analyze
our GPP and eWUE estimates, including the MODIS GPP (MOD17
version 055, Zhao and Running, 2010), the model tree ensemble (MTE)-
based upscaled GPP (MTE-GPP, Jung et al., 2011), the MODIS land-
cover (Friedl et al., 2002), and the GIMMS3g NDVI data (Tucker et al.,
2005). The MOD17 GPP was derived from NASA Earth Observing
System satellite data since 2000 and provides GPP estimates at 1-km
spatial resolution and 8-day intervals. In this study, the monthly
MOD17 GPP was used and aggregated to a spatial resolution of
0.25°× 0.25°. The MTE-GPP was an observation-driven global monthly
gridded GPP. It was produced by first training the MTEs based on re-
mote sensing indices, climate and meteorological data, and land use
information at site-level and then applying the MTEs to generate global
GPP with a 0.5°× 0.5° spatial resolution and a monthly temporal re-
solution. The MTE-GPP was regridded to a spatial resolution of
0.25°× 0.25° before it was used to evaluate our modeled GPP. The
MODIS 1 km land cover data in 2001 were used to analyze eWUE
variations among the main vegetation types. The GIMMS3g NDVI were
used to extract out the vegetated land in China by identifying the pixels
with maximum NDVI values larger than 0.1.

2.6. Methods

We used the linear least-square regression method to determine the
spatially averaged eWUE trends. An F test was used to examine the
statistical significance of the trends, and a p value < 0.05 was con-
sidered significant. A breakpoint (BP) detecting method as described in
Chen et al. (2014) was used to further determine the eWUE variation,

with significant slope values (p < 0.05).
The nonparametric Mann-Kendall (M-K) test (Mann, 1945; Kendall,

1975) method was used to determine annual eWUE trends and to
quantify the statistical significance of the trends for each pixel. Ac-
cording to the Z-values from the M-K test, the eWUE pixels were divided
into seven classes: significant decrease (Z-value < −2.32, with
p < 0.01); medium decrease (Z-value < −1.96, with p < 0.05); de-
crease (Z-value < −1.65, with p < 0.1); not significant (|Z-value
| < −1.65); increase (Z-value > 1.65, with p < 0.1); medium in-
crease (Z-value > 1.96, with p < 0.05); and significant increase (Z-
value > 2.32, with p < 0.01).

The multiple linear regression approach was used to diagnose the
responses of the inter-annual variation of the spatially averaged eWUE
to that of the drivers over China:

= × + × + × +y γ P δ T φ LAI εpre tem lai (1)

where y is the spatially averaged annual eWUE; P, T, and LAI are the
spatially averaged AP, AMT, and annual mean leaf area index (AMLAI),
respectively. All the variables, including y were normalized values (Eq.
(2)).γpre, δtem, and φlai are the fitted regression coefficients. ε is the re-
sidual error term. As described in Piao et al. (2013), although γpre, δtem,
and φlai are not the true sensitivities of eWUE to the derivers, they can
be regarded as apparent sensitivities and used to represent the con-
tributions of variations in each driver to the eWUE variation.

=
−z x x
σi

i
(2)

where xi is the eWUE or driver variables in ith year. x and σ are the
mean and the standard deviation of variable x , respectively. zi is the
normalized x in ith year.

To quantify the relative contributions of the inter-annual variation
of each driver to eWUE for each pixel, we also performed partial cor-
relation analysis between eWUE and one driver after statistically

Fig. 2. The GPP datasets vs. monthly GPP values from 16 EC sites (Table 1). The solid and dashed lines are the 1:1 and regression lines, respectively. The values of
DLM, MODIS, and MTE GPP were from grids that encompass the tower locations.
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controlling changes in the other drivers. For example, the partial cor-
relation coefficient between eWUE and AP ( −reWUE P T LAI,( , )) was calcu-
lated as following:

=
− ∗

− ∗ −

−

− − −

− −

r
r r r

r r(1 ) (1 )
eWUE P T LAI

eWUE P T eWUE LAI T P LAI T

eWUE LAI T P LAI T
,( , )

,( ) ,( ) ,( )

,( )
2

,( )
2 (3)

where −reWUE P T,( ) is the partial correlation coefficient between eWUE
and AP after statistically controlling the AMT:

=
− ∗

− ∗ −

−

− − −

− −

r r r r
r r(1 ) (1 )

eWUE P T
eWUE P eWUE T P T

eWUE T P T
,( ) 2 2 (4)

where −reWUE P, −reWUE T , and −rP T is the simple correlation coefficients
for eWUE-AP, eWUE – AMT, and AP-AMT, respectively. −reWUE LAI T,( )
and −rP LAI T,( ) in Eq. (3) were analogous to −reWUE P T,( ).

Following Wang et al. (2017), based on the partial correlation
coefficients between the drivers and eWUE, we also constructed a map
of eWUE dominant drivers to reveal the spatial variability of eWUE
dominant driver over China.

3. Results

3.1. GPP evaluations

Before estimating the eWUE, we first estimated the GPP of China for
1979–2012 using the DLM model. The GPP estimate were validated
against EC-derived values from 16 flux towers and independent esti-
mates from MODIS and MTE GPP. The EC-based evaluations showed
that our DLM GPP had the highest coefficient of determination (R2),
with a value of 0.71, followed by the MTE and MODIS GPP, with R2

values of 0.66 and 0.62, respectively (Fig. 2). Nevertheless, as with the
MTE and MODIS GPP, overall the DLM GPP also underestimated the
measurements. Comparisons between these three GPP datasets and EC
observations at each site suggested that the GPP underestimations oc-
curred mainly at arid and semi-arid crop sites (Fig. S2, Wulws and
Yingke) during growing seasons. This result was consistent with pre-
vious studies that the uncertainties of GPP estimates from current
process-based models are high for heavily managed agricultural areas
(Guanter et al., 2014). Moreover, our DLM GPP estimated a mean an-
nual GPP of 5.66 Pg C over China (2000–2011), which was intermediate
between that of MODIS (5.16 Pg C) and MTE (6.52 Pg C) GPP. The
spatial patterns of the mean annual GPP of DLM, MODIS, and MTE were
also similar. Overall, our evaluation validated the reliability of the DLM
GPP dataset, and thus it can be used to further estimate the eWUE over
China.

3.2. eWUE evaluations

Based on the DLM GPP and the LSMs-ET, we estimated the eWUE in
China for 1979–2012. We used the EC-eWUE data from Liu et al. (2015)
(Table S1 & Fig. S1) to validate our eWUE estimates. The validations
showed that our eWUE estimates explained 64% of the EC-eWUE
variability (Fig. 3), with a mean bias (BIAS) and root-mean-square error
(RMSE) value of −0.19 and 0.58 g C kg−1 H2O, respectively. It was not
surprised that the cropland sites had large uncertainties, especially at
the Yinke site, due to the significant uncertainties in the GPP simula-
tions at those sites. The annual eWUE estimates for grassland sites
ranged from 0.37 to 1.43 g C kg−1 H2O, which had the best agreement
with EC-eWUE, when compared to the other land cover types. Except
for the Kubuqi site, the annual eWUE estimates of forest sites were
higher than the estimates for other land cover types
(1.40–3.20 g C kg−1 H2O) and agreed well with measurements. For the
wetland sites, the eWUE was slightly underestimated when compared to
the measurements.

3.3. Spatial pattern of annual eWUE over China

Fig. 4 shows the spatial distributions of the mean annual DLM GPP,
LSMs-ET and eWUE, and the standard deviation of annual eWUE for
1979–2012. Overall, the spatial pattern of the eWUE (Fig. 4c) was si-
milar to GPP (Fig. 4a), but different from ET (Fig. 4b). Compared to the
GPP and ET, the eWUE pattern also had a significantly larger spatial
variability. The highest annual eWUE regions were found in the forest
region in northeast China, where the annual GPP was relatively high,
while ET was relatively low. It was consistent with the GPP pattern, in
which all the forest regions in northeast, central, southwest and south
China had a high eWUE. The cropland regions in north and northeast
China had a relatively low eWUE and the north and Tibetan Plateau
grassland areas had the lowest eWUE.

According to our eWUE estimates, the mean annual eWUE over
China for 1979–2012 was 1.48 ± 1.04 g C kg−1 H2O. ∼9.4% of the
vegetated land in China had an annual eWUE larger than 3.0 g C kg−1

H2O, ∼22.3% had an annual eWUE within the range of
2.0–3.0 g C kg−1 H2O, ∼28.4% had an annual eWUE from 1.0 to
2.0 g C kg−1 H2O, and ∼39.9% had an annual eWUE lower than
1.0 g C kg−1 H2O.

Fig. 4d suggests that the standard deviation of annual eWUE ranged
from 0.05 to 0.87 g C kg−1 H2O. The regions with high eWUE in
northeast, southwest, central and south China had higher standard
deviations (> 0.1 g C kg−1 H2O). In contrast, in the north and west
China where there was a low eWUE, the standard deviations were
smaller, and generally less than 0.1 g C kg−1 H2O. The spatial dis-
tribution of the coefficient of variation of the annual eWUE (Fig. S3)
clearly showed that the inter-annual variations in eWUE were relatively
small in most areas of east and south China. In contrast, in some desert
and surrounding regions in northwest China, the inter-annual variations
in eWUE were high. The vegetation types in these regions were mainly
shrublands and grasslands, where both GPP and ET were strongly in-
fluenced by the inter-annual variations in climatic factors, such as
precipitation.

3.4. Spatio-temporal variations of annual eWUE over China

Fig. 5 shows the inter-annual variation of the spatially averaged
eWUE over China from 1979 to 2012. An insignificant and positive
trend, with a value of 7.32×10-4 g C kg−1 H2O yr−1 was found,

Fig. 3. The model-based eWUE vs. EC-based measurements. The solid and da-
shed lines are the 1:1 and regression lines, respectively. The triangle, inverted
triangle, dot and inverted rectangle denote grasslands, croplands, wetlands and
forests sites, respectively. The values of model-based eWUE were from grids
that encompass the tower locations.
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indicating that the annual eWUE in China slightly increased over the
past three decades. A BP was detected in 1989, which divided the whole
annual eWUE series into two periods, with significantly different eWUE
trends. In the 1979–1989 period, the spatially averaged annual eWUE
significantly increased at a rate of 1.40×10-2 g C kg−1 H2O yr−1

(p < 0.01). In contrast, after 1989 it significantly decreased, with a
value of −2.26× 10-3 g C kg−1 H2O yr−1 (p < 0.01).

The spatial distribution of M-K based annual eWUE changes showed
that, ∼21.4%, ∼16.9%, and ∼12.2% of the vegetated land in China

experienced an increase (p < 0.1), medium increase (p < 0.05), and
significant increase (p < 0.01) eWUE during 1979–2012, respectively
(Fig. 6). These increased eWUE regions were dispersedly distributed in
northeast, southwest and central China. In contrast, ∼19.0%, ∼15.2%,
and ∼11.3% of the vegetated land in China had a decrease (p < 0.1),
medium decrease (p < 0.05), and significant decrease (p < 0.01)
eWUE, respectively. These decreased eWUE regions were mainly found
in deserts and their surrounding regions in west China and parts of
northeast, southeast, and southwest China. In ∼59.6% of the vegetated
land in China the eWUE changes were insignificant, and mainly dis-
tributed in north China, east China and the south Tibetan Plateau.

Moreover, we calculated the mean annual eWUE of different vege-
tation function types and analyzed their inter-annual variations. The
results showed that the DNF had the highest mean annual eWUE, fol-
lowed by DBF, MF, EBF, SN, ENF, CL, GL and Shrub (Table 2). The DBF
and ENF had significantly increasing eWUE trends (p < 0.05), with
values of 3.0× 10−3 and 3.1×10−3 g C kg−1 H2O yr−1, respectively.
The EBF, MF, CL, GL and SN showed increasing trends, but the trends
were not significant, with values of 1.2× 10−4, 2.2× 10−3,
1.5× 10−3 2.1× 10−4 and 1.7×10−3 g C kg−1 H2O yr−1, respec-
tively (Fig. 7). In contrast, the DNF and Shrub had insignificantly de-
creasing eWUE trends, with values of −4.8×10−3 and
−5.0× 10−4 g C kg−1 H2O yr−1, respectively. These results indicated
that the slightly increasing eWUE over China during 1979–2012 (Fig. 5)
was mainly resulted from the eWUE increases in forest, savannas and
cropland vegetation types.

Fig. 4. The spatial distributions of the mean annual GPP, ET and eWUE, and the standard deviation of annual eWUE in China over 1979–2012. a. The mean annul
GPP from the DLM simulations in this study; b. the mean annual ET of the LSMs-ET from Sun et al. (2017); c. the mean annual eWUE based on the DLM GPP and
LSMs-ET datasets; d. the standard deviation of annual eWUE over 1979–2012.

Fig. 5. Inter-annual variations of spatially averaged eWUE over China during
1979–2012. The dashed line is the regression line. * indicates that the trend is
not significant (p > 0.05).
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3.5. Effects of the inter-annual variations of AP, AMT and AMLAI on
eWUE

Here, we examined the responses of inter-annual variations of
eWUE to two climatic drivers (AP and AMT) and one biotic driver
(AMLAI). First, we compared the detrended anomalies between spa-
tially averaged annual eWUE and that of the drivers. The results
showed that the inter-annual variations in AP, AMT, and AMLAI all had
considerable effects on eWUE (Fig. 8). However, the magnitudes of the
effects were significantly different. The AP seemed to have a dominant
role in controlling year-to-year variation in eWUE during some periods
(e.g., 1999–2007), but not in the other periods. There was no sig-
nificantly identical variation between the eWUE and AMT anomalies.
The year-to-year variation in spatially averaged AMLAI and eWUE was
identical well during 1982–1989, but not for the other periods. These
results indicated that the inter-annual variation of eWUE was largely
determined by the combined effects of multiple drivers. We compared
the spatial distribution of the trends of annual eWUE and that of the
drivers (Fig. 9). The result showed that there was no a similar spatial
pattern between the eWUE trend and the drivers’ trends, further de-
monstrated the largely combined effects of multiple drivers on eWUE
variation.

To quantify the responses of the inter-annual variations of eWUE to
that of the each driver, we calculated the apparent sensitivities (i.e., the
regression coefficients in Eq. (1)). Because the GIMMS3g LAI covers the

period from 1982 to 2011, and a BP was detected in 1986 for the
spatially averaged annual eWUE over 1982–2011, the regression coef-
ficients were calculated for the whole eWUE period (1982–2011), sig-
nificantly increasing eWUE period (1982–1986) and significantly de-
creasing eWUE period (1986–2011), respectively (Table 3). The results
showed that except the AMT sensitivity in the decreasing eWUE period
(δtem, −0.54), the other sensitivities were insignificant. Nevertheless,
these sensitivities still reflected the relative contributions of the varia-
tions in each driver to eWUE. The inter-annual variation of eWUE was
negatively correlated with AP, with sensitivities of −0.19, −0.27, and
0.13 for the whole eWUE period, increasing eWUE period, and de-
creasing eWUE period, respectively. The inter-annual variation of
eWUE was also negatively correlated to AMT, but the sensitivities were
much higher than that of AP, with values of −0.39, −2.39 and −0.54
for the whole, increasing and decreasing eWUE periods, respectively. In
contrast, the responses of eWUE to AMLAI were positive, with sensi-
tivities of 0.15, 0.56 and 0.03 for the whole, increasing and decreasing
eWUE periods, respectively.

Fig. 10 shows the spatial distributions of the partial correlation
coefficients between annual eWUE and the drivers, and spatial dis-
tribution of the eWUE dominant driver over China during 1982–2011.
The inter-annual variation of eWUE was significantly correlated with
AP in ∼44.2% of vegetated land in China, in which ∼98% was nega-
tive and mainly distributed in northeast China, Inner Mongolia and
Tibetan Plateau areas. In ∼16.2% of the vegetated land in China the
inter-annual variation of eWUE was significantly correlated with AMT.
∼76.9% and ∼23.1% of these eWUE-AMT significantly correlated re-
gions had negative and positive partial correlation values, respectively.
The negatively correlated regions were dispersedly distributed in cen-
tral, south and west China, and the positively correlated regions were
mainly founded in some small areas in Tibetan Plateau. In contrast to
AP and AMT, the inter-annual variation of AMLAI was significantly
correlated with eWUE in only ∼6.4% of vegetated land in China, which
dispersedly distributed over China.

The eWUE dominant driver map was constructed by identified
pixels with significant and maximum partial correlation values between
eWUE and the drivers. It suggested that in ∼41.4%, ∼9.9% and
∼3.1% of vegetated land in China the inter-annual variation of eWUE
was dominated by variations in AP, AMT, and AMLAI, respectively. In
Tibetan Plateau and north China AP was the most important driver, but

Fig. 6. The change levels of annual eWUE in China during 1979–2012. The levels were determined with the M-K test method.

Table 2
The mean annual eWUE of different vegetation function types in China over
1979–2012.

Vegetation function types Mean annual WUE (g C kg−1 H2O)

DBF 2.81 ± 0.07
DNF 3.82 ± 0.15
EBF 2.54 ± 0.11
ENF 2.27 ± 0.08
MF 2.69 ± 0.07
CL 1.76 ± 0.05
GL 0.86 ± 0.03
Shrub 0.79 ± 0.02
SN 2.31 ± 0.07
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in central, east and south China except AP, AMT, and AMLAI, inter-
annual variations in the other factors (e.g., rising-CO2, N deposition and
solar radiation et. al.) that beyond the scope of this study also sig-
nificantly contributed to the eWUE variation.

4. Discussion

4.1. The pattern and variations of annual eWUE in China

Unlike the patterns of GPP and ET, with their significantly latitu-
dinal gradients, our eWUE estimates suggested that eWUE over China
had a large spatial variability, with the highest eWUE in forest regions
around 50°N, followed by a high eWUE in forest and savanna regions
between 20 and 35°N, a low eWUE in croplands between 20 and 50°N,
and the lowest eWUE in grasslands and shrublands between 28 and
50°N (Fig. 4c). These eWUE geographic characteristics agreed well with
the eWUE latitudinal variations in the Northern Hemisphere as de-
termined from FLUXNET sites (Tang et al., 2014) and independent
process-based model simulations (Zhang et al., 2014; Liu et al., 2015).
As reported by Tang et al. (2014), this latitude and vegetation type
dependency in eWUE pattern means that eWUE is determined not only
by several environmental or physiological variables, but also by the
complicated effects of a multiplicity of abiotic and biotic factors.

When investigating the inter-annual variations of spatially averaged
annual eWUE, we found an insignificant and positive annual eWUE
trend in China during the last three decades, with a value of
7.32×10−4 g C kg−1 H2O yr−1. This positive trend was consistent
with independent global eWUE trends reported by Cheng et al. (2017)
and Huang et al. (2015). Using a newly developed eWUE model Cheng
et al. (2017) reported a global eWUE trend of 13.7× 10−3 g C kg−1

H2O yr−1 (p < 0.001) during 1982–2012. Huang et al. (2015) found
that global eWUE trend values were 1.0× 10-4, 7.0× 10-4, and
5.6×10-3 g C kg−1 H2O yr−1 during 1982–2008 for the nitrogen de-
position, climate change and rising-CO2 scenarios, respectively. By

determining the BP of the annual eWUE series, we found that before
1989, eWUE significantly increased (p < 0.01), with a trend value of
1.4× 10−2 g C kg−1 H2O yr−1, and significantly decreased (p < 0.01)
at a rate of −2.26× 10−3 g C kg−1 H2O yr−1 after 1989. These
changes in the eWUE trend were similar to that reported for Asia and
global by Zhang et al. (2014) and Tang et al. (2014), respectively. Using
process-based model eWUE estimate, Zhang et al. (2014) found that the
annual eWUE did not substantially change in East Asia during
1982–2006, but had increasing and decreasing trends for the
1982–1995 and 1995–2006 periods, respectively. These eWUE trends
were similar to our result in Fig. 5, and the small difference was caused
by the different study period and area and uncertainties in the eWUE
estimates. Based on the MODIS GPP and ET data, Tang et al. (2014)
reported a negative global annual eWUE trend, with a value of
−4.5× 10−3 g C kg−1 H2O yr−1 for the 2000–2013 period. Never-
theless, the inter-annual variations of eWUE from our study (Figs. 6 &
9a) were not quite consistent with that reported by Liu et al. (2015). A
reasonable explanation was that the study periods in our study
(1979–2012) and Liu et al. (2015) (2000–2011) was different. Besides,
it also related with the uncertainties of the GPP estimates used in dif-
ferent studies.

In spatial distribution, we found that the significant eWUE changes
areas over study period showed large spatial variability. The main
reason was that eWUE is closely related with vegetation function types.
As shown in Fig. 7, different vegetation types may have significant
different trends, even though they existed under same climate condition
(Fig. 1). Moreover, the large spatial variability in precipitation may be
also an important reason (Fig. 9).

Overall, in many regions of northern, eastern, and southern China,
the southern Tibetan Plateau and northern Xinjiang the annual eWUE
over China did not significantly changed during the past three decades.
On one hand, in some of these regions significant increases in pre-
cipitation enhanced vegetation growth (Fig. 9d), but with the in-
creasing precipitation and temperature ET was also increased. As a

Fig. 7. The spatially averaged annual eWUE trends of different vegetation function types in China during 1979–2012. * indicates that the trend is not significant
(p > 0.05).
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result, changes in eWUE may be not significant (e.g., northern Xinjiang
and north China). On the other hand, the spatial distributions of the
trends of GPP (Fig. S4) and ET (Fig. S5) suggested that in many of these
regions the small changes in both GPP and ET generated insignificant
eWUE trends. The regions with significantly increasing eWUE were
scattered over central, northeast and southwest China. In central and
southwest China, although precipitation was decreasing in some areas,
LAI and temperature were increasing, and resulted in increasing eWUE.
A possible reason was that ET is energy-limited rather than water-
limited in these regions. As Yu et al. (2008) reported, in the northeast
China forest regions, both GPP and ET significantly increase with
warming, and the increasing rate of GPP is faster. The significantly
warming during the last three decades (Fig. 9c) generated increasing
eWUE in northeast China. The regions with significantly decreasing
eWUE were mostly distributed in the north Tibetan Plateau and desert
regions in northwest China. In these regions, ET is water-limited and
vegetation is sparse. Both the increases of precipitation and tempera-
ture (Fig. 9b and c) resulted in significantly increasing ET, but relative

small changes in vegetation growth (Figs. S4 and S5). Thus, the eWUE
was significantly decreasing in these arid regions.

4.2. The responses of eWUE variation to AP, AMT and AMLAI

Using our eWUE estimates, we examined the responses of the inter-
annual variation of eWUE to precipitation, temperature, and LAI over
China. We found that the inter-annual variation of the spatially aver-
aged annual eWUE over China was negatively correlated with AP and
AMT, and positively correlated with AMLAI. For the AP, it was con-
sistent with previous EC-based results reported by Yu et al. (2008), but
different with Xiao et al. (2013) and Zhu et al. (2015). Base on EC-
derived eWUE from three forest sites, Yu et al. (2008) reported that
annual eWUE linearly decreased with increasing AP. In comparison,
using measurements from more EC sites, Xiao et al. (2013) and Zhu
et al. (2015) found that annual eWUE changed with AP in a logarith-
mical manner. This discrepancy was because our analyses was based on
integrated regional eWUE rather than site measurements. In addition,

Fig. 8. Comparisons of the detrended anomalies of spatially averaged annual eWUE and its drivers over China.
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we found that the significant and negative eWUE-AP correlated regions
covered most areas of northeast China, Inner Mongolia, and Tibetan
Plateau. An explaination is in these arid and semi-arid regions when AP
was increasing the rate of increase was faster for ET than GPP, and vice
versa. In a recent experimental study, Zhang et al. (2015b) also con-
firmed this hypothesis. Through a manipulative experiment, Zhang
et al. (2015b) found that in the semiarid temperate steppe of northern
China, additional precipitation (i.e., over and above the natural pre-
cipitation) had a significantly positive effect on the ecosystem CO2

exchange but had a trivial effect on GPP.
Based on EC-derived eWUE, Zhu et al. (2015) reported that there

was a positive and linearly correlation between annual eWUE and MAT.
In contrast, in this study we found that the spatially averaged annual
eWUE over China was negatively correlated to MAT. Analogous to the
eWUE-AP result, this difference might be duo to the annual eWUE used
in our study was regionally integrated values rather than EC-based
measurements at site scale. Besides, we compared the patterns of an-
nual eWUE and MAT (Fig. S6) and found that the MAT for high eWUE
regions (> 3.0 g C kg−1 H2O) ranged from −5 °C in northeast China to

20 °C in southwest China. This result further demonstrated that there
were no a significant linear relationship between eWUE and MAT at
large scales and across a range of ecosystems.

Previous EC-based and process-based model eWUE studies have
showed that LAI strongly affected eWUE and even primarily determined
the eWUE seasonal and inter-annual variations (Hu et al., 2008; Zhang
et al., 2014). For example, based on model experiments (scenario
analysis), Zhang et al. (2014) conclude that the increases in eWUE over
East Asia during 1982–2006 were firstly attributed to the increased LAI,
followed by the effects of meteorological factors. In contrast, our sen-
sitivity analyses showed that although the spatially averaged annual
eWUE was positively correlated with AMLAI, the regions with sig-
nificant eWUE-AMLAI correlation were only found in 6.4% of the ve-
getated land in China. This limited effect of AMLAI on eWUE mainly
because of the non-linear relationship between eWUE and AMLAI. As
reported by Liu et al. (2015), and Tong et al. (2009), although annual
eWUE rapidly increased with increasing AMLAI when AMLAI was less
than ∼1.5 (depending on vegetation types), it slowly increased even
decreased with increases in AMLAI under large AMLAI. The patterns of
AMLAI (Fig. S7) over China showed that except the AP and AMT
dominant regions (Fig. 10d) AMLAI values in the other regions were
larger than 1.5.

4.3. Uncertainties in the GPP and eWUE datasets

We validated our DLM GPP estimate against the EC-derived GPP
from 16 flux towers and compared it with two independent GPP data-
sets (MTE and MODIS). Our GPP estimate performed better than the
MTE and MODIS GPPs at the site scale, and had a similar spatial pattern
to the MODIS and MTE GPPs at the regional scale. However, un-
certainties still inevitably remained in our GPP estimate. First, as with
the MODIS and MTE GPP, the DLM model underestimated cropland

Fig. 9. Spatial distributions of the trends of eWUE (a), AP (b), AMT (c), and AMLAI (d) over China during 1982–2011.

Table 3
The trends of spatially averaged annual eWUE and the sensitivities of eWUE
variation to its drivers over China.

Perioda WUE trendb (g C kg−1 H2O
yr−1)

Regression coefficients

γpre δtem φlai P-value

1982–2011 −6.47×10−4* −0.19 * −0.39 * 0.15 * 0.26
1982–1986 2.40×10−2 −0.27 * −2.39 * 0.56 * 0.26
1986–2011 −1.84×10−3 −0.13 * −0.54 0.03 * 0.08

a A break point was detected in 1986.
b *Indicates insignificant (p > 0.05).
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GPP, indicating that the model parameterizations for cropland should
be further improved. Second, our DLM GPP had a similar pattern to the
other independent GPP products, but with a lower mean annual GPP
(5.66 Pg C) when compared with some of them. For example, the MTE-
based GPP from Jung et al. (2011) (MTE-Jung, 6.52 Pg C) and Yao et al.
(2017) (MTE-Yao, 6.62 Pg C), and EC-LUE GPP (6.04 Pg C) from Li et al.
(2013) had a higher mean annual GPP. These differences might have
resulted from the underestimation of DLM GPP for cropland, and might
also be due to the differences in the time periods of the different da-
tasets: DLM (1979–2012), MTE-Jung (1982–2011), MTE-Yao
(1982–2015) and EC-LUE (2000–2009). Nevertheless, it should also be
noticed that the mean annual value of our DLM GPP was higher than
that of MODIS (5.16 Pg C) and EC-LUE GPP (5.38 Pg C) from Yuan et al.
(2010).

We validated our eWUE estimates against EC-derived eWUE from 35
flux towers. Overall, our eWUE estimates agreed well with EC-based
eWUE. Not surprisingly, eWUE was underestimated for some cropland
sites, because of the underestimation in GPP estimates at these sites.
There were also several limitations in our EC-based site validations,
which also resulted in uncertainties. The first limitation was the scale
issue. Our modeled and EC-derived eWUE represented spatial scales of
0.25°× 0.25° (∼25 km) and 1–3 km, respectively. This scale mismatch
may arise considerable uncertainties for the validations. The second
limitation was the uncertainties from the EC-based eWUE, which was
derived as the ratio of EC-based GPP to ET. The NEE partitioning GPP
method results in significant uncertainties in EC-GPP (Rawlins et al.,
2015) and the energy closure issues of EC measurements result in un-
certainties in both EC-derived GPP and ET (Hjhendricks et al., 2011). As
a result, these EC-based GPP and ET uncertainties induce the EC-eWUE
uncertainties, which may also significantly affect the evaluations of our

eWUE estimates.

5. Conclusion

In this study, using GPP and ET simulations from process-based
models, we estimated the eWUE in China during 1979–2012, quantified
its spatio-temporal pattern and examined the effects of the inter-annual
variations in AP, MAT, and AMLAI on it. The main findings are as
follows:

(1) Except for a few cropland sites the DLM-based eWUE estimates
agreed well with EC-derived values. The large uncertainties of
eWUE estimates in cropland sites were mainly due to the significant
underestimations in the DLM modelled GPP at those sites, sug-
gesting that the photosynthesis parameterizations of cropland in the
model should be further refined.

(2) The spatially averaged annual eWUE over China was
1.48 ± 1.04 g C kg−1 H2O, and had a slightly increasing but not
significant trend (7.32×10-4 g C kg−1 H2O yr−1, p < 0.05) from
1979 to 2012. The spatial distribution of the eWUE trend showed
large spatial variability. ∼21.4% and ∼19.0% of vegetated land in
China had significant increasing and decreasing trends (p < 0.1),
respectively. The increasing eWUE was mainly found in northeast,
southwest and central of China, while the decreasing eWUE was
mostly distributed in west China and parts of northeast, southeast,
and southwest China.

(3) The inter-annual variation of spatially averaged eWUE over China
was negatively correlated with that of AP and AMT, but positively
correlated with that of AMLAI. In ∼41.4%, ∼9.9% and ∼3.1%
vegetated land of China the inter-annual variation of eWUE was

Fig. 10. Spatial distributions of the partial correlation coefficients between eWUE and AP (a), AMT (b), and AMLAI (c), and spatial distribution of eWUE dominant
driver during 1982–2011 over China (d).
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dominated by AP, AMT, and AMLAI, respectively. In most land of
north China and west China, AP was the dominant drivers. In
central China, east China, and south China, except the AP, AMT,
and AMLAI dominated the eWUE inter-annual variation in some
regions the other factors (ring-CO2, drought, N deposition, and solar
radiation, et. al.) that did not involve in this study also played
dominant role.

Overall, our eWUE estimates and analyses provided valuable data-
sets and information for understanding the carbon-water coupling
mechanisms of terrestrial ecosystem. Nevertheless, the other environ-
mental factors, such as, the ring-CO2, drought, N deposition, and ra-
diation that also have impacts on eWUE variations were not considered
in this study. Future studies should further explore the effects of these
factors on eWUE.
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