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A B S T R A C T   

The low-medium temperature Zn-Pb deposits in the Sichuan-Yunnan-Guizhou (SYG) metallogenic region contain 
not only Pb and Zn but also abundant critical metals such as Ge, Ga, and In. The majority of previous studies 
focus on the genesis of Pb and Zn metals, and the research on Ge, Ga and In in the SYG region has become a topic 
in recent years due to economic importance of these metals. In this review, the distribution, occurrence, and 
enrichment mechanism of Ge, Ga, and In in Zn-Pb deposits in the SYG region is summarized. Sphalerite is the 
main host mineral of Ge, Ga, and In, with contents of up to ~1300 ppm, ~600 ppm, and ~1191 ppm, respec-
tively. Pyrite from the Fule Zn-Pb deposit is also rich in Ge (up to 340 ppm), which may be due to involvement of 
magmatic components in the ore-forming fluids. Germanium, Ga, and In mainly appear in the form of isomor-
phism in sphalerite. Independent minerals of Ge such as ruizhongite (Ag2□)Pb3Ge2S8), are only found in the 
Wusihe Zn-Pb deposit. Copper is the main coupling ions for substitution of Ge, Ga, and In in sphalerite. However, 
the positive correlation of Ge with Pb, Mn and Ag in the sphalerite of Huodehong, Shaojiwan, Shanshulin, and 
Qingshan Zn-Pb deposits may indicate other means of substitution or existence of nanometer Ge minerals with 
similar composition to the ruizhongite. The substitution mechanisms of Ge and Ga vary with layers in the zoned 
sphalerite from the Nayongzhi Zn-Pb deposit, possibly indicating that physical or chemical variations in fluids 
will affect the substitution ways of Ge and Ga in sphalerite. 

The growth direction and crystal structure of ZnS also exert control over the contents of Ge, Ga, and In. The 
enrichment degree of Ge, Ga, and In changes between (110) and (111) crystal planes, and the wurtzite structure 
is beneficial to the infiltration of large ions (Ge, Ga, and In). Compared to sphalerite with euhedral texture, 
colloform sphalerite is conducive to the enrichment of Ge. For zoned sphalerite such as the rhythmic banding and 
the conventional zone, the former lacks zoning of Ge, Ga and In but the latter shows elemental zonation and Ge is 
enriched in the black domains. The correlation between the contents of Ge, Ga, and possible In in sphalerite and 
Pb or Zn isotopes of sulfides indicates the significant contribution of basement rocks for the enrichment of these 
metals. During the mineralization process, Ge tends to be enriched in dark or early sphalerite, including the 
Daliangzi, Tianbaoshan, Huize, Nayongzhi, Fule, Fuli, Wusihe, and Maoping deposits, which may be due to the 
variations in temperature or fluid evolution. The opposite variation trend of Ge and Ga with sphalerite color or 
stage in the Daliangzi, Nayongzhi, Maoping, Shaojiwan, and Wusihe Zn-Pb deposits indicates that Ge and Ga may 
behave differently during precipitation of sphalerite.   

1. Introduction 

Research on critical metals such as Ge, Ga, and In has been paid 

numerous attention in recent years due to their unique use in green 
energy and high-technology fields. These metals have high economic 
value and supply scarcity (Wang et al., 2013; Guberman, 2015; Wen 
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et al., 2020). Among them, Ga and Ge are widely used in the semi-
conductor industry, whereas In is commonly used in smart devices and 
solar cells. There is also a trend with significant increase in demand for 
these metals in the future (Frenzel et al., 2016; Schulz et al., 2017; Wen 
et al., 2020). Recycling is an important source of Ge supply, but to 
guarantee future metal availability, the exploration for new deposits as 
well as the evaluation of known deposits for these elements is still a 
matter of considerable importance. The average contents of Ge, Ga, and 
In in the continental crust are 1.4 ppm, 15 ppm, and 0.05 ppm, 

respectively (Hans Wedepohl, 1995). The disperse features of these el-
ements make them rarely form independent metal deposits, but typically 
associated with mineral deposits such as Zn-Pb sulfide and coal deposits 
(Wen et al., 2020), and their reserves are significantly lower compared 
to other common metals (Bernstein, 1985; Cook et al., 2009; Wen et al., 
2020). All over the world, associated Ge in Zn-Pb deposits account for 
75% of the total Ge resource (USGS, 2020). Therefore, understanding 
the distribution, occurrence, and enrichment mechanisms of Ge, Ga, and 
In in Zn-Pb deposits is crucial for the exploration and utilization of these 

Fig. 1. Regional geology map of the SYG region and the distribution of Zn-Pb deposits. Faults I to IV are Anning River, Xiaojiang, Weining-Shuicheng, and Mile- 
Shizong faults, respectively (Modified from Wu et al., 2023; Liu and Lin, 1999; Luo et al., 2020). 
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critical metals. 
The adjacent area among Sichuan, Yunnan, and Guizhou (SYG) 

provinces hosts over 400 Zn-Pb deposits and occurrences with more than 
26 million tons (Mt) of Pb and Zn metals, grading at 5 wt% Pb and 10 wt 
% Zn, forming the prominent SYG Pb-Zn metallogenic region (Zhou 
et al., 2018c). The SYG region provides 27% of the total Pb + Zn 
resource in China, making it one of the largest Zn-Pb producers in the 
world (Fig. 1) (Hu et al., 2017; Zhou et al., 2018a, b, c). In addition to Pb 
and Zn, associated metals such as Ge, Ga, In, Cd, and Tl in the SYG region 
are also economic products and have become an important source of 
dispersed elements in China (Hu et al., 2021; Luo et al., 2022b; Wei 
et al., 2021a,b; Wen et al., 2020). Due to the economic significance of 
this metallogenic region, numerous studies have been carried out on the 
genesis of the Zn-Pb deposits. These Zn-Pb deposits share some similar 
features: 1) occurrence of associated dispersed elements in most de-
posits; 2) relatively simple mineral assemblages with sphalerite and 
galena being main ore minerals; 3) carbonate rocks being the mainly 
host rock; 4) the ore body is primarily controlled by reverse fault and 
fold systems; 5) ore-forming fluid dominated by low-medium tempera-
ture (120–250 ◦C) and middle to high salinity (<20 wt% NaClequiv); 6) 
sulfur derivation from thermochemical reduction of marine sulfate and/ 
or evaporite; 7) spatially associated with the ~260 Ma Emeishan flood 
basalts; 8) mainly formed in the Indosinian period, which is closely 
related to the post-collisional orogeny of the Indosinian block and the 
Yangtze block (Appendix A Table 1; Huang et al., 2004 and references 
therein; Meng et al., 2015, 2019; Zhou et al., 2015; Zhou et al., 2023). 
Based on these studies, the Zn-Pb deposits in the SYG region are 
considered as Mississippi Valley-type (MVT) type (Hu et al., 2017; Zhou 
et al., 2018a, b; Yang et al., 2019, 2022b). However, most studies mainly 
focus on the genesis of Pb and Zn, research on associated metals such as 
Ge, Ga, and In is not enough. 

In recent years, the research on Ge, Ga, and In has become an in-
ternational hot topic. These studies include favorable deposit types of 
Ge, Ga, and In (Cook et al., 2009; Ye et al., 2011), independent minerals 
and nanoclusters (Fougerouse et al., 2023; Meng et al., 2023b), the 
valence state and the substitution mechanism (Belissont et al., 2016, 
2019; Bonnet et al., 2017; Liu et al., 2023). In addition, the relationship 
between the enrichment of Ge, Ga and In and crystal structure (Johan, 
1988; Belissont et al., 2014, 2016; Pring et al., 2020), mineral textures 
(Barrie et al., 2009; Belissont et al., 2014; Cook et al., 2015), source of 
ore-forming materials (Torró et al., 2023), physical–chemical condition 
(Bauer et al., 2019), and deposit types (Cook et al., 2009; Ye et al., 2011; 
Zheng et al., 2023) has been illustated. Compared to international 
studies on Ge, Ga, and In, studies of these elements in the SYG region are 
limited and mainly focus on sulfide textures (Luo et al., 2022a), mineral 
chemistry (Hu et al., 2019, 2021; Li et al., 2020; Meng et al., 2019, 2022, 
2023a; Wei et al., 2018, 2019, 2021b, c; Yang et al., 2022b), sphalerite 
type and Ge isotopes (Meng et al., 2015), aiming to understand the main 
host minerals, the occurrences, and the possible factors controlling the 
enrichment of Ge, Ga, and In. 

In this review, we summarize the research progress on Zn-Pb deposits 
in the SYG region and focus on the genesis of critical metals such as Ge, 
Ga, and In in these deposits. The main contents include: 1) basic 
geological features of Ge-, Ga- and In-bearing Zn-Pb deposits; 2) the 
distribution of Ge, Ga, and In in minerals such as sphalerite at the scale 
of deposit, mineralization stages, and textures; 3) the occurrence of 
these critical metals and related substitution mechanism; 4) the con-
trolling factors for the enrichment of Ge, Ga and In. This review provides 
a comprehensive understanding of Ge, Ga, and In in the Pb-Zn deposits 
in the SYG region and has significant implication to ore genesis, mineral 
exploration and utilization of these critical metals. 

2. Regional geology 

The southwest China comprises the Yangtze and Cathaysia blocks, 
and the Sanjiang fold belt system (Fig. 1a; John et al., 1990). The SYG 

region, situated on the southwestern margin of the Yangtze block, is part 
of a the low-medium temperature metallogenic province in SW China 
(Hu et al., 2017). The SYG region is a triangular area bounded by three 
regional faults, the NS-trending Anning River fault, the NE-trending 
Mile-Shizong fault, and the NW-trending Weining-Shuicheng fault 
(Fig. 1b). In addition to the three regional faults, the Xiaojiang fault is 
also developed in SYG region (Fig. 1b). Several NE and NW secondary 
faults and fold belts have emerged (Fig. 1b; Huang et al., 2004; Zhou 
et al., 2018c). The distribution of Zn-Pb deposits in the SYG region is 
predominantly controlled by reverse faults and anticlines, with some 
deposits influenced by normal faults (such as the Yinchanggou deposit) 
(Tan et al., 2017). The SYG region is an important MVT Zn-Pb metal-
logenic region in China and even the world. In addition to Pb and Zn 
(>20 Mt), dispersed elements such as Ge, Ga, and In are present in most 
deposits. For example, the Fule deposit in NE Yunnan province contains 
~ 329 t Ge and 177 t Ga, whereas the Huize deposit contains ~ 525 t Ge. 
The Tianbaoshan deposit in the SE Sichuan contains ~ 258 t Ga, and 
122 t Ge (Appendix A Table 2; Liu et al., 2022a; Zhou et al., 2018a; Zhu 
et al., 2016b,a). The Ge, Ga, and In reserves in the SYG region were 
estimated based on the Zn grade and reserve and the average content of 
Ge, Ga and In in sphalerite. It is estimated that the Ge resource in the 
SYG region are greater than 3500 t, the Ga resource are greater than 800 
t, and the In resource in the main In-rich Maliping Zn-Pb deposit are 
greater than 60 t. According to the scale classification of Ge, Ga and In 
deposits, the SYG region hosts abundant large-scale Ge deposits (≥200 
t), and small-scale Ga and In deposits (<400 t; <100 t) (Appendix A 
Table 2). 

The strata in the SYG region primarily consist of pre-Sinian basement 
rocks unconformably covered by sediments that are mainly carbonate 
(Liu and Lin, 1999; Zhao et al., 2010; Zhou et al., 2013a, d, 2015). The 
basement of the Yangtze Block mainly consists of Proterozoic to Archean 
crystalline and folded basement rocks, including the migmatite and 
gneiss of the Kangding Group, the metamorphic clastic rocks and spilite- 
keratophyre of the Dahongshan Group, and clastic rock with minor 
carbonate rocks of the Kunyang/Huili Group from the bottom to top 
(Zhao et al., 2010; Li et al., 2013; Zhu et al., 2020). The Zn-Pb deposits in 
the SYG region are mainly found in the Sinian, Cambrian, Ordovician, 
Silurian, Devonian, Carboniferous, and Permian carbonate strata 
(Fig. 1b). The Permian Emeishan flood basalts as the primary igneous 
rock in this region host magmatic deposits such as Fe-Ti-V oxide and Ni- 
Cu-(PGE) sulfide deposits (Xiong et al., 2023; Zhou et al., 2018c; Zhu 
et al., 2020). 

3. Critical metal-bearing Zn-Pb deposits in the SYG region 

The SYG region is predominantly characterized by Zn-Pb deposits 
that are widely distributed in the NE and NW directions, which are 
mainly controlled by the regional NE-trending Shizong-Mile fault and 
NW-trending Yadu-Shuicheng faults (Fig. 1b). The deposits in the 
northeastern Yunnan and southern Sichuan provinces are located in the 
NE direction, including the Jinshachang, Maoping, Huodehong, Huize, 
Maozu, Lehong, and Tianbaoshan deposits, whereas those in north-
western Guizhou are located in the NW direction including the Shan-
shulin, Qingshan, Shaojiwan, Yadu, and Zhugongtang deposits (Fig. 1b) 
(Zhou et al., 2013a, b, d, 2015). The ore-hosting strata in the NE- 
direction deposits are usually older than those in the NW direction. In 
the NE direction, the ore-hosting strata are mainly of Sinian age, fol-
lowed by the Permian and Cambrian strata, whereas those of NW di-
rection mainly range from Devonian to Permian in age (Fig. 1b; 
Appendix A Table 2). In both directions, the dominant magmatic rocks 
are Permian Emeishan basalts with a few diabase dykes occurring in the 
Qingshan and Shanshulin deposits in the NW direction (Zhou et al., 
2018b). The deposits in the NE direction are typically large in size in 
terms of Pb and Zn compared to those in the NW direction (Appendix A 
Table 2). There are no significant differences in ore types, structures and 
textures between deposits in NW and NE directions. The geological 
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features of deposits in these two directions are summarized in 
Appendix A Table 1 and represented deposits are described below. 

3.1. Zn-Pb deposits in the NE direction of the SYG region 

3.1.1. Daliangzi 
The Daliangzi deposit is situated in the southwestern part of the SYG 

region. The Daliangzi deposit has Pb + Zn reserves of ~ 4.5 Mt grading 
at 10.5% Zn and 0.75% Pb. The ore bodies are related to a carbonized 
structural breccia belt in the mining area. The ore minerals are mainly 
sphalerite, galena, and chalcopyrite. Calcite, quartz, pyrite and dolomite 
are the main gangue minerals. Bitumen is also found in massive and 
brecciated ores (Li et al., 2022b). 

Sphalerite in the Daliangzi deposit is the main host mineral of Ge, Ga, 
and In (Li et al., 2022a, b). Germanium, Ga and In exist in the form of 
isomorphism in sphalerite, and no Ge, Ga, and In independent minerals 
are found. Dark sphalerite is relatively rich in Ge (average 61 ppm), 
whereas light sphalerite is relatively rich in Ga (average 57 ppm) (Li 
et al., 2022b). The Ga content of sphalerite is positively correlated with 
Cu and Ag, whereas the Ge is positively correlated with Cu (Li et al., 
2022b). 

3.1.2. Maoping 
The Maoping Zn-Pb deposit is situated in the northeastern part of 

Yunnan Province (Yang et al., 2019, 2022b). The total Pb + Zn resource 
of this deposit exceeds 3 Mt with Pb + Zn grades ranging from 12% to 
30% (Tan et al., 2019b). The Maoping deposit includes three ore bodies 
hosted in the Devonian Zaige Formation, the Lower Baizuo Formation, 
and the Lower Weining Formation, respectively (Han et al., 2007b; Tan 
et al., 2019b). Sphalerite and galena are the main ore minerals, whereas 
dolomite, quartz, pyrite and calcite are the main gangue minerals (Han 
et al., 2007b; Wu et al., 2021). 

In the Maoping Zn-Pb deposit, sphalerite is the primary host mineral 
of Ge, Ga, and In (Wei et al., 2021b; Yang et al., 2022b). Germanium, Ga, 
and In were considered to be present in the form of isomorphism in 
sphalerite, which possily substitutes Zn directly or via coupled substi-
tution with Cu and other elements (Wei et al., 2021b; Yang et al., 2022b; 
Wang et al., 2023a). Germanium is relatively enriched in brown sphal-
erite (average 141 ppm), whereas Ga is detected in light sphalerite 
(average 4 ppm) (Wang et al., 2023a). There is no difference in In 
content between the brown and light sphalerite (average 12 ppm). The 
differential enrichment of Ge, Ga, and In in sphalerite of different ore 
bodies is controlled by the different contents of these elements in the 
ore-bearing strata, temperature and sulfur fugacity (Wei et al., 2021b; 
Niu et al., 2023; Wang et al., 2023a). 

3.1.3. Huize 
The Huize Zn-Pb deposit is situated in the western part of the 

Yunnan-Guizhou junction. The proven reserves of Pb + Zn are approx-
imately 7 Mt, with average grades of around 25–35 % for Pb + Zn (Bao 
et al., 2017). The deposit mainly includes two mining areas: Kuang-
shanchang and Qilinchang. The ore bodies primarily occur within the 
Lower Carboniferous Baizuo Formation (Li et al., 2006; Meng et al., 
2019; Zhang et al., 2022). Ore minerals are mainly sphalerite and 
galena, whereas gangue minerals are mainly calcite, pyrite, and dolo-
mite with minor quartz, barite, and gypsum (Han et al., 2007a; Oye-
bamiji et al., 2020, 2023). 

Sphalerite is the main host mineral of Ge, Ga and In, mainly in the 
form of isomorphism (Ye et al., 2011; Oyebamiji et al., 2020). Inde-
pendent Ge mineral was observed in the deposit, which is mainly 
composed of Ge and Al (Zhang et al., 2008). Germanium, Ga, and In are 
mainly hosted in the early sphalerite with average contents of 12 ppm, 
35 ppm, 3 ppm, respectively (Oyebamiji et al., 2020). Moreover, Ge is 
mainly enriched in the dark zone of the zoned sphalerite with contents 
up to 1000 ppm (Liu et al., 2022a). Correlation analysis shows that Ge 
and In in sphalerite are mainly coupled with Cu (Oyebamiji et al., 2020; 

Liu et al., 2022a). 

3.1.4. Maliping 
The Maliping Zn-Pb deposit is located in the southwest of the SYG 

region. It is a large Zn-Pb deposit newly discovered in recent years (Hu 
et al., 2019; Luo et al., 2019). The Pb + Zn reserves of the Maliping 
deposit are more than 2 Mt, and the average grades of Pb and Zn are 
4.18% and 9.38%, respectively (Luo et al., 2019). The main ore-hosting 
rock of the deposit is dolostone and shale of lower Cambrian Meishucun 
Formation. Ore minerals mainly include sphalerite and galenite, and 
gangue minerals mainly include quartz, dolomite, pyrite, and calcite 
(Luo et al., 2019). 

The Maliping Zn-Pb deposit is abnormally rich in In in the SYG region 
(up to 342 ppm, average 78 ppm) (Appendix A Table 2 and 3). 
Germanium, Ga and In have no independent minerals, and mainly exist 
in the form of isomorphism in sphalerite. The In enrichment in the de-
posit may be related to the intermediate-acid magmatic rocks in the 
basement rocks (Hu et al., 2019). 

3.2. Zn-Pb deposits in the NW direction of the SYG region 

3.2.1. Nayongzhi 
The Nayongzhi Zn-Pb deposit is located in the southeastern limb of 

the Wuzhishan anticline. The main ore-hosting strata is the dolostone of 
the Qingxudong Formation. No exposed magmatic rocks were found in 
this mining area (Chen et al., 2017; Zhou et al., 2018b). The Nayongzhi 
Zn-Pb deposit consists of four mining areas: Lumaolin, Jinpo, Yuhe, and 
Shayan. The reserves and average grades of Pb + Zn in Lumaolin, Jinpo, 
and Shayan mining areas are 0.38 Mt (4.06%), >0.44 Mt (6.24%), and 
> 0.53 Mt (6.61%), respectively (Yang et al., 2018b). The ore minerals 
consist of sphalerite and galena, and gangue minerals are mainly calcite 
and dolomite (Zhou et al., 2018b). 

Gallium and Ge in sphalerite mainly appear in the form of isomor-
phism, and no inclusions or independent minerals are found. In the 
zoned sphalerite, the brown cores have relatively high Ge content 
(average 547 ppm), whereas pale-yellow and light color rims have 
elevated Ga (average 159 ppm) and the content of In is very low 
(average < 1 ppm) (Wei et al., 2021c). Correlation analysis shows that 
Ga is coupled with Cu and Ag, whereas In is coupled with Sn (Wei et al., 
2018). 

3.2.2. Tianqiao 
The Tianqiao Zn-Pb deposit is located in the east-central part of the 

SYG region, within the northwestern area of the Yadu-Mangdong tec-
tonic belt. The distribution of ore bodies in this deposit is primarily 
controlled by the fault and anticline. The ore bodies are mainly hosted in 
the dolomitic limestone in the upper part of the Lower Carboniferous 
Dapu Formation and coarse-grained dolostone in the middle and lower 
part of the Baizuo Formation (Zhou et al., 2009; Yang et al., 2022b). The 
identified Pb + Zn metal reserve is 0.4 Mt, with the average grades of Pb 
and Zn are 5.5 % and 16.7 %, respectively (Zhou et al., 2013d, 2014b). 
The primary metallic minerals are sphalerite and galena, with calcite 
and pyrite being the predominant gangue mineral (Zhou et al., 2009, 
2013d, 2014b). 

Sphalerite is the main host mineral of Ge, Ga and In compared with 
pyrite (Meng et al., 2022; Yang et al., 2022b). Galena is another host 
mineral of Ge with average Ge content of 23 ppm (Zhao et al., 2011). 
Germanium, Ga, and In in sphalerite mainly exist in the form of 
isomorphism. At present, no independent minerals of Ge, Ga, and In 
have been found in the deposit. Light sphalerite is richer in Ge and Ga 
(average 91 ppm and 25 ppm, respectively) than dark sphalerite 
(average 76 ppm and 14 ppm, respectively). Correlation analysis shows 
that Ga and Ge are coupled with Cu, whereas Ag also be involved in the 
substitution of Ga or Ge by Cu (Yang et al., 2022b). 
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Fig. 2. The contents of Ga, Ge and In in sphalerite (a), galena (b) and pyrite (c) in Zn-Pb deposits in the SYG region. Data sources of sphalerite: Jinshachang (JSC) (Li, 
2019; Wu et al., 2019b); Maoping (MP) (Wei et al., 2021b; Yang et al., 2022b; Niu et al., 2023; Wang et al., 2023a); Maozu (MZ) (Li et al., 2020); Huize (HZ) (Ye 
et al., 2011; Wu et al., 2019b; Oyebamiji et al., 2020; Oyebamiji et al., 2023); Lehong (LH) (Wei et al., 2019); Huodehong (HDH) (Hu et al., 2021; Luo et al., 2022b); 
Maliping (MLP) (Hu et al., 2019); Daliangzi (DLZ) (Yuan et al., 2018; Wu et al., 2019b; Li et al., 2022b); Tianbaoshan (TBS) (Ye et al., 2016; Yu et al., 2022); 
Nayongzhi (NYZ) (Wei et al., 2021c); Shanshulin (SSL), Qingshan (QS), Yadu (YD), Tianqiao (TQ) and Shaojiwan (SJW) (Yang et al., 2022b); Liangyan (LY) (Wang 
et al., 2023b); Wusihe (WSH) (Luo et al., 2020); Fule (Li, 2016); Fuli (Liang et al., 2023). Data sources of galena and pyrite: Dalizngzi (Li et al., 2022a); Tianqiao 
(Meng et al., 2022); Maliping (Hu et al., 2019); Huodehong (Hu et al., 2021; Luo et al., 2022b); Maoping (Wei et al., 2021b; Yang et al., 2022b); Shaojiwan, 
Shanahulin (Yang et al., 2022b); Huize (Meng et al., 2019); Fule (Li et al., 2019). 
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3.2.3. Qingshan 
The Qingshan Zn-Pb deposit is located in the Weining-Shuicheng Zn- 

Pb metallogenic belt, close to the junction of the SYG region. The main 
ore-bearing surrounding rock is limestone of the Upper Maping For-
mation and sandstone and shale of the Middle Permian Liangshan For-
mation (Meng et al., 2023a). The Emeishan basalts and diabase are the 
main igneous rocks. The mining district is divided into two mining areas, 
namely the Qingshan and Hengtang. The Zn-Pb ore bodies predomi-
nantly occur as steeply dipping veins and frequently exhibit intensive of 
Zn-Pb mineralization. Proven reserves of Pb + Zn exceed 0.3 Mt, with Pb 
and Zn grades of 3.76 % to 9.92 % and 34.96 % to 37.58 %, respectively 
(Yang et al., 2022b; Meng et al., 2023a). The main ore minerals are 
sphalerite and galena. Gangue minerals mainly include dolomite, 
calcite, barite, pyrite, and quartz (Zhou et al., 2013b; Yang et al., 
2022b). 

Sphalerite is the main host mineral of Ge, Ga and In, and Ge may also 
be enriched in pyrite and marcasite (Yang et al., 2022b; Meng et al., 
2023a). No independent minerals and inclusions of Ge, Ga and In are 
found. There are also a large number of oxidized ores in the Qingshan 
deposit, which also show the enrichment of Ge, Ga and In (Zhang et al. 
unpublished). Germanium is relatively enriched in brown sphalerite of 
the Qingshan deposit (average 233 ppm), and the contents of Ga and In 
in sphalerite are very low. Gallium is coupled with Cu, but the linear 
correlation between Ge and Cu is poor (Yang et al., 2022b). 

3.3. Other Zn-Pb deposit of the SYG region 

The Wusihe Zn-Pb deposit is located in the north of SYG region. The 
main ore-hosting rocks of the deposit are breccia dolostone, black sili-
ceous rock of the Upper Sinian Dengying Formation and carbonaceous 
shale of the Lower Cambrian Qiongzhusi Formation (Xiong et al., 2016, 
2018). Igneous rocks and metamorphic rocks of basement strata are 
developed in the mining area, and Emeishan basalt is not exposed. The 
reserves of Pb + Zn are more than 5.4 Mt, and the average grades of Pb 
and Zn are 2.0 % and 8.6 %, respectively (Luo et al., 2021). The main ore 
minerals of the deposit include sphalerite and galena, and gangue 
minerals include quartz, dolomite, calcite, pyrite, and apatite. 

The Wusihe Zn-Pb deposit is the deposit most rich in Ge and Ga of 
sphalerite in the SYG region. There are possibly two forms of Ge in 
sphalerite: isomorphism (Luo et al., 2021) and independent minerals 
(Meng et al., 2023b). The isomorphism is inferred from the positive 
correlation between Ge and Cu, Fe, and Ag. The Ge independent mineral 
is the newly discovered Ruizhongite, (Ag2□)Pb3Ge2S8, in sulfide matrix 
(Meng et al., 2023b). The differential enrichment of Ge in the zoned 
sphalerite is possibly controlled by the precipitation rate and crystalli-
zation process of sphalerite (Luo et al., 2021). 

4. The distribution and occurrence of Ge, Ga and in 

4.1. Distribution of Ge, Ga and in in different types of minerals 

Understanding the main host minerals of Ge, Ga, and In in Zn-Pb 
deposits is essential for exploring and utilizing these metals. Sphalerite 
is a significant host mineral of Ge, Ga, and In (Cook et al., 2009; Ye et al., 
2011). Studies indicate that Ga and In are predominantly enriched in 
non-recrystallized sphalerite, while the content of Ga and In in chalco-
pyrite increases after recrystallization (220–800 ◦C) (George et al., 
2016). Research on the Arre deposit suggests that the form of Ge in 
sphalerite can be transferred and form discrete minerals or nanoparticles 
when exposed to the conditions of metamorphism, deformation, and 
high temperature (below 400 ◦C) (Fougerouse et al., 2023). This in-
dicates that apart from sphalerite, other minerals in the deposit may also 
serve as hosts for elements such as Ge, Ga, and In. The deposits in the 
SYG region typically form within a temperature of 120–250 ◦C (Zhou 
et al., 2018c), obviously lower than recrystallization (220-800 ◦C) and 
metamorphic temperature (400-800 ◦C). Moreover, there is no 

metamorphic modification after Pb-Zn ore formation. Therefore, Ge, Ga, 
and In transfer during recrystallization due to metamorphism and 
deformation cannot be used to explain the enrichment of these metals in 
the SYG region. 

Sphalerite is the main mineral hosting Ge, Ga, and In in the Zn-Pb 
deposits of the SYG region, with contents up to ~ 1300 ppm, ~600 
ppm, and ~ 1191 ppm, respectively (Appendix A Table 2 and 3; Fig. 2a). 
Galena and pyrite are commonly associated with sphalerite in the SYG 
region. Whether galena and pyrite are also important host minerals of 
Ge, Ga, and In remains controversial. In galena, the contents of Ge, Ga, 
and In are very low, ranging from below detection limit to 6.49 ppm, 
5.55 ppm, and 0.25 ppm, respectively (Appendix A Table 2 and 3; 
Fig. 2b). The contents of Ge, Ga, and In in pyrite are similar to those in 
galena, ranging from below detection limit to 61.8 ppm, 0.32 ppm, and 
13.7 ppm, respectively (Appendix A Table 2 and 3; Fig. 2c). Germanium 
is only relatively rich in pyrite from the Fule Zn-Pb deposit (Appendix A 
Table 2 and 3; Fig. 2c), with content of 0.8–340 ppm, which was 
interpreted as the involvement of Emeishan basalts in the ore-forming 
fluids (Zhou et al., 2018a). Pyrite in the Zn-Pb deposits associated 
with magmatic activity could serve as a potential vector mineral for Ge 
enrichment, aiding future exploration for Ge. 

4.2. The occurrences of Ge, Ga, and in 

4.2.1. The valences of Ge, Ga, in and their common coupling elements in 
sphalerite 

Several studies have investigated the valences of Ge in sphalerite 
from various environments by the micro-X-ray absorption near-edge 
structure (μ-XANES), including the Tres Marias MVT Zn deposit in 
Mexico (Cook et al., 2015), the vein-type Saint-Salvy deposit in France 
(Belissont et al., 2016), the super-giant carbonate-hosted Zn-Pb-Ag de-
posits of the MacArthur River in Australia, Fule Zn-Pb deposit in SYG 
region (Wei, 2022), and simulated sphalerite under MVT deposit con-
ditions (Liu et al., 2023). These studies indicate that Ge4+ is the main 
valance in sphalerite. However, in the world-class MVT deposits of 
central Tennessee, United States, Ge2+ was found only in the banded 
sphalerite with low Fe content (701–3607 ppm), which was interpreted 
to be due to variations in oxygen fugacity (Bonnet et al., 2016, 2017). 
Germanium in other minerals, such as pyrite and chalcopyrite, is also 
present as Ge4+ (Etschmann et al., 2017; Belissont et al., 2019). 

Gallium predominantly exists in the form of Ga3+ (Gray et al., 2005), 
with occasional occurrences of Ga2+ and Ga+ (Schulz et al., 2017). In-
dium occurs as In3+ in sphalerite (Alfantazi and Moskalyk, 2003). In 
aqueous solutions, both Ga3+ and In3+ are the primary forms of these 
ions (Wood and Samson, 2006). 

Based on the substitution mechanism and Ab initio quantum chem-
ical simulation, the most probable coupling elements for Ge and Ga 
entering into sphalerite crystal structure are Cu and Fe (Liu et al., 2023). 
Copper typically exists in geological fluids as Cu(I) chloride and 
hydrogen sulfide complexes (Seward et al., 2000; Cook et al., 2012). It 
has been confirmed that Cu in In-rich sphalerite from the Toyoha deposit 
in Japan, which was formed below 300 ◦C, exists in the form of Cu+

(Cook et al., 2012). Copper is present as Cu+ and Fe is present as Fe2+ in 
sphalerite from the vein-type Saint-Salvy deposit in France, which was 
formed between 80 and 580 ◦C. Cu+ was also observed in sphalerite 
synthesized under simulated MVT conditions (Liu et al., 2023). How-
ever, Fe-rich sphalerite (>6 mol.% Fe) possibly containing minor 
amount of Fe3+ (Belissont et al., 2016). In summary, Cu+ and Fe2+ are 
main forms of Cu and Fe, respectively, in sphalerite. The primary 
mechanism of incorporating In in the sphalerite is to couple with Cu and 
Sn for substitution. Tin can exist in the forms of Sn2+, Sn3+, and Sn4+. 
However, the valence of Sn was not reported in sphalerite (Cook et al., 
2009; Belissont et al., 2014; Torró et al., 2023). 

4.2.2. Isomorphic substitution 
The most common form of Ge, Ga, and In in sphalerite in SYG region 
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is isomorphism (Wei et al., 2018, 2019, 2021b, c; Hu et al., 2019, 2021; 
Li et al., 2019, 2020, 2022b). The proposed substitution mechanism of 
Ge includes Ge4+ and Ge2+: Ge4+ + 2(Cu, Ag)+ ↔ 3Zn2+ (Yuan et al., 
2018; Hu et al., 2019; Wei et al., 2019; Li et al., 2022b; Yang et al., 
2022a), Ge4+ + □(□ represents vacancy) ↔ 2Zn2+ (Cook et al., 2015; 
Luo et al., 2021; Liu et al., 2023), Ge4+ + 2Fe2+ + □ ↔ 4Zn2+ (Yuan 
et al., 2018; Liu et al., 2023), 4(Cu+ + Sb3+) + (Ge4+ + 2Ag+) + 2□ ↔ 
13Zn2+ (Li et al., 2020), Ge4+ + Mn2+ ↔ 3(Zn, Cd)2+ (Hu et al., 2021), 
Ge4+ ↔ 2Fe2+, nCu2+ + Ge2+ ↔ (n + 1)Zn2+ (Ye et al., 2016; Li et al., 
2022b), Ge2+ ↔ Zn2+ (Luo et al., 2021), 2Cu++Ge2+↔2Zn2+, Ge2+ ↔ 
Fe2+, Ge2+ + Mn2+ ↔ 2(Zn, Cd)2+ (Hu et al., 2021). The proposed 
substitution mechanism of Ga in sphalerite in the SYG region mainly 
includes: Cu+ + Ga3+ ↔ 2Zn2+ (Wei et al., 2018; Li et al., 2022b; Yang 
et al., 2022b). The possible substitution ways for In in sphalerite are as 
follows: 2In3+ + Sn4+ + 2□ ↔ 5Zn2+ (Li et al., 2020), In3+ + Sn3+ + □ 
↔ 3Zn2+ (Wei et al., 2018; Yuan et al., 2018), Cu+ + In3+ ↔ 2Zn2+

(George et al., 2016; Xu et al., 2021a, b). Cu+ + (Ga, In)3+ + Sn4+ ↔ 
4Zn2+ (Torró et al., 2023). Cu+ and Snn+ are the main coupling ions of 
In. 

Both Ag+ and Cu+ are monovalent ions. Some studies have also 
suggested that Ag can serve as a coupling element for Ge (Li et al., 2020, 

2022b). To understand the incorporation mechanism, we investigate the 
correlation between Cu and Ge, as well as Cu + Ag and Ge in sphalerite 
from Zn-Pb deposits in the SYG region. The similar correlation co-
efficients between Cu and Ge, and between Cu + Ag and Ge (Fig. 3a, b), 
indicate that Ag+ has minor impact on the Ge substitution in sphalerite. 
The majority of deposits in the SYG region, including Maoping, 
Daliangzi, Maliping, Huize, Maozu, Fule, and Yadu (Fig. 3c), plot above 
or near the line of (Cu/Ge)mol = 2:1, which may be dominated by Ge4+ +

2Cu+ ↔ 3Zn2+. The Huodehong, Shaojiwan, Shanshulin, and Qingshan 
deposits are obviously below the line of (Cu/Ge)mol = 2:1 (Fig. 3d), 
which suggests other occurrences of Ge in sphalerite from these deposits. 
In the Huodehong, Shaojiwan, and Qingshan deposits, Ge shows a pos-
itive correlation with Pb, Ag, or Mn (Fig. 4a-d). The correlation between 
Ge, Pb, and Ag is consistent with the composition of the new discovered 
ruizhongite in the Wusihe deposit of the SYG region. Therefore, Ge- 
bearing minerals or nanoclusters may also exist in other Zn-Pb de-
posits in the SYG region. For Ga and In, nearly all Zn-Pb deposits in the 
SYG region plot above the lines of (Cu/Ga)mol = 1 (Fig. 4e) and (Cu/ 
In)mol = 1 (Fig. 4f), consistent with the substitution mechanism of (In, 
Ga)3+ + Cu+ ↔ 2Zn2+. 

In addition to the different substitution mechanism of Ge, Ga, and In 

Fig. 3. The correlation diagrams of Ge versus Cu (a, c, d) and Ge versus Cu + Ag (b) in sphalerite of Zn-Pb deposits. Sphalerite samples with (Cu/Ge)mol = 2 are 
plotted in c, whereas those deviated from the line of (Cu/Ge)mol = 2 are plotted in d. Data sources: Maoping (MP), Yadu (YD), Tianqiao (TQ), Shaojiwan (SJW), 
Shanshulin (SSL) and Qingshan (QS) (Yang et al., 2022); Maozu (MZ) (Li et al., 2020); Maliping (MLP) (Hu et al., 2019); Huize (HZ) (Ye et al., 2011); Huodehong 
(HDH) (Luo et al., 2022); Fule (FL) (Ren et al., 2019); Daliangzi (DLZ) (Li et al., 2022b). 
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in sphalerite on deposit scale, substitution mechanism of these elements 
also varies on single sphalerite grain scale. In the zoned sphalerite from 
the Nayongzhi Zn-Pb deposit, the brown core has higher Ge, whereas the 
yellow and pale rims have higher Ga and In (Wei et al., 2021c). The 
brown cores show positive correlation between Ge and Cu with (Cu/ 
Ge)mol ratios less than 2 (Fig. 5a). But the correlation between Cu and Ge 
is not obvious for yellow and pale rims (Fig. 5a). Germanium shows a 
positive correlation with Fe for both brown cores and yellow and pale 
rims, but the latter shows higher correlation (Fig. 5b). The positive 
correlation between Ga and Cu is only observed for yellow and light rims 
with (Cu/Ga)mol ratios close to 1 (Fig. 5c). The brown cores lack cor-
relation between Ga and Cu and have higher (Cu/Ga)mol ratios than 
yellow and light rims (Fig. 5c). No obvious correlation between Ga and 
Sb for both cores and rims (Fig. 5d), but the cores have lower Ga and Sb 
contents than rims. Previous study shows that changes in temperature, 
oxygen fugacity and fluid composition between cores and rims of 
sphalerite are possibly the key factors controlling the distribution of Ge, 

Ga, and other trace elements (Wei et al., 2021c). Therefore, the physi-
cochemical condition of ore-forming fluids may have a stronger influ-
ence on the substitution mechanism of Ge, Ga and In at the mineral grain 
scale. 

4.2.3. Nature minerals of Ge, Ga and in 
Germanium also forms numerous independent minerals in Zn-Pb-Cu 

deposits. These include argyrodite (Ag8GeS6), germanite 
(Cu13Fe2Ge2S16), renierite ((Cu, Zn)11(Ge, As)2Fe4S16), and briartite 
(Cu2(Fe, Zn)GeS4) (Schulz et al., 2017). Recently, a new independent Ge 
mineral, ruizhongite, (Ag2□)Pb3Ge2S8, was discovered in the Wusihe 
Zn-Pb deposit in the SYG region (Meng et al., 2023b). The structure 
comprises a non-centrosymmetric arrangement of [GeS4]4− tetrahedra 
(Meng et al., 2023b). Germanium-rich minerals, mainly composed of Ge 
and Al (GeO2 39.84 % and Al2O3 49.96 %), were also reported in the 
Huize Zn-Pb deposit (Zhang et al., 2008), but the chemical formula was 
not given. Independent Ga-containing minerals were rarely reported in 

Fig. 4. (a-d) Binary correlation between Ge and Pb, Ag, and Mn of sphalerite in Huodehong (HDH), Qingshan (QS), and Shaojiwan (SJW) Zn-Pb deposits in the SYG 
region. (e-f) The correlation of Cu versus Ga and In in sphalerite of Zn-Pb deposits in the SYG region. The data source is the same as Fig. 3. 
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Fig. 5. The correlation of Ge with Cu (a) and Fe (b), and the correlation of Ga with Cu (c) and Sb (d) in different layers in zoned texture of sphalerite from the 
Nayongzhi deposit (Data are from Wei et al., 2021c). 

Fig. 6. The contents of Ge and Ga in sphalerite with colloform and normal textures. Data sources: Huodehong (HDH) (Luo et al., 2022b); Zhulingou (ZLG) (Luo et al., 
2022a); Jinding (JD) (Mu, 2021). 
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global Zn-Pb deposits. These include Gallite (CuGaS2), Gallobeudantite 
(PbGa3[(AsO4), (SO4)]2(OH)6), Sohngeite (Ga (OH)3), and Tsumgallite 
(GaO(OH)), found in Tsumeb Mine in Namibia (Cu-Zn-Pb) (Schulz et al., 
2017). There are 15 named independent minerals containing In as a 

main component, such as dzhalindite (In (OH)3), indite (Fe2+In2S4), and 
Zn1.5Fe0.5CuInS4 from Dulong deposit, of which roquesite (CuInS2) is the 
most widespread (Schulz et al., 2017; Xu et al., 2021a). However, In- 
bearing and Ga-bearing minerals were not reported in the SYG region 
until now. 

The smooth time profile curves of Ge, Ga, and In during LA-ICP-MS 
analysis was commonly use to indicate no contaminated micro in-
clusions (Wei et al., 2019, 2021b, c; Li et al., 2020; Hu et al., 2021). 
However, nano-particles/inclusions are still possibly present, which 
represents another occurrence of independent minerals of Ge, Ga, and 
In. For example, Ge oxide (GeO2) nanoparticles (<500 nm) are present 
in sphalerite from the world-class MVT deposit in the central and eastern 
mining areas of Tennessee, United States (Bonnet et al., 2017). In 
addition, Ge also occurs as briartite nano inclusions in sphalerite from 
the Arre deposit (Fougerouse et al., 2023), which was considered to be 
due to the dissolution of Cu and Ge at temperatures below 400 ◦C. In the 
SYG region, transmission electron microscopy was used to analyze the 
occurrence of Ge, Ga, and In in zoned sphalerite from the Nayongzhi Zn- 
Pb deposit, but no nano inclusions were found (Wei et al., 2021c). 

5. Controlling factors for differential enrichment of Ge, Ga, and 
in 

5.1. Crystal structure 

Zinc sulfide (ZnS) has a close-packed structure, which can be clas-
sified into the cubic sphalerite and the hexagonal wurtzite (Chen and 
Chen, 2010; Yang et al., 2022c). The crystal structure of minerals was 
affected by external physical and chemical conditions. For example, 
experiments have shown that higher temperature and supersaturation 
can cause pyrite to transform from a cube to an octahedron to a pyr-
itohedron (Murowchick and Barnes, 1987). The conversion from 
sphalerite to wurtzite is more common under high-temperature condi-
tions. Under low temperature conditions, such a conversion may require 
a strict condition of sulfur fugacity and redox environment (Allen et al., 
1912; Scott and Barnes, 1972; Leleu et al., 1975). 

The crystal structure of zinc sulfide significantly influences the dis-
tribution of trace elements. Both sphalerite and wurtzite and its derived 
minerals show significant enrichment of Ge (Bernstein, 1985; Höll et al., 
2007; Bonnet et al., 2016; Pring et al., 2020; Voudouris et al., 2022). In 
the MVT Zn-Pb deposits in Tennessee, the enrichment of Ge and Cu is 
associated with the wurtzite structure, while the enrichment of Fe and 
Cd is related to the sphalerite structure (Bonnet et al., 2016). The 
intensive interaction between the cations in the wurtzite structure, 
resulting in better accommodation of large cations such as Ge, Ga, and 
In, may explain the enrichment of these elements in the wurtzite 
structure (O’Keeffe and Hyde, 1978). However, contrary to these find-
ings, Pring et al. (2020) reports higher concentrations of Ga and In in 
sphalerite than wurtzite. This disparity may be due to various degrees of 
effects by hydrothermal fluid conditions during crystallization, M:S ra-
tios, and coexisting minerals (Pring et al., 2020; Kisi and Elcombe, 
1989). 

A study on the Saint-Martin-la-Sauvete District deposit revealed 
preferential enrichment of In in sphalerite within the (111) growth 
zone, whereas Cd mainly occurs in the (110) growth zone (Johan, 
1988). The sphalerite exhibits rhythmic banding and sector zoning 
textures aligned with the (110) and (111) crystal planes. Rhythmic 
banding exhibits higher In concentration, whereas sector zoning shows 
higher Cu, Ge, Ag, and Ga concentration (Belissont et al., 2014). Sector 
zoning in sphalerite is commonly influenced by imbalanced kinetic 
control factors, such as the atomic arrangement of the growth plane and 
crystal growth under constrained conditions (Di Benedetto et al., 2005). 
It was found that Ge and Cu in sphalerite from the MVT deposit of 
Tennessee are enriched along the growth direction of [010], which 
corresponds to (110) crystal plane (Bonnet et al., 2016). In addition to 
the (110) crystal plane, Ge is also enriched in the (111) crystal plane 

Fig. 7. The contents of Ge (a), Ga (b), and In (c) in basement rocks and com-
mon ore-hosting strata with different ages in the SYG region. Data sources: Du 
et al., 2019; Mo et al., 2013. 
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which is also easily observed in the external crystal morphology 
(Belissont et al., 2014). A study on the Saint-Martin-la-Sauvete District 
deposit by (Johan, 1988) revealed preferential concentration of In in 
sphalerite within the (111) growth zone. Studies have demonstrated 
that the (110) crystal plane of sphalerite has the lowest surface energy 
and stability. However, for Zn-poor surface stoichiometries, the (111) 
surface becomes the most stable, indicating that the change in Zn con-
tent may cause the conversion between the two crystal planes (Wright 
et al., 1998). At present, there is a lack of research on the crystal 
structure of sulfides in the SYG region. The above research progress 
provide ideas for the future study of crystal orientation effect on the 
enrichment of Ge, Ga, and In in the SYG region. 

5.2. Mineral textures 

5.2.1. Colloform textures 
Colloform textures are commonly observed in early sphalerite and 

have been extensively studied in Ireland-type deposits. These textures 
are often associated with fluid supersaturation and primarily result from 

the mixing of hydrothermal fluids rich in metal and bacterial sulfur. 
Colloform sphalerite displays a complex growth history characterized by 
fluctuations in color and particle size, trace element and isotope 
composition caused by multiple pulses of fluids (Barrie et al., 2009; 
Gagnevin et al., 2012; Gagnevin et al., 2014). 

Some studies have shown that colloform sphalerite promotes the 
enrichment of Ge. For example, colloform sphalerite from the Bleiberg 
deposit in Austria has higher average Ge content (1500 ppm) than 
sphalerite with normal texture (160–550 ppm) (Möller and Dulski, 
1993). Similarly, colloform sphalerite from the Cave de predil Zn-Pb 
deposit in Italy contains 500 ppm Ge, whereas normal sphalerite has 
Ge content below 200 ppm (Möller and Dulski, 1993). Likewise, collo-
form sphalerite from the Huodehong and Nayongzhi deposits has higher 
Ge content than normal sphalerite (Fig. 6a). A similar pattern is 
observed in the Zhulingou deposit in eastern Guizhou and the Jinding 
Pb-Zn deposit in the Sanjiang region (Fig. 6a). However, there is no 
similar trends of Ga contents between sphalerite with colloform and 
normal textures. The colloform sphalerite has similar (e.g., Huoden-
ghong), higher (e.g., Zhulingou), or lower (e.g., Jinding) Ga contents 

Fig. 8. Plots of 207Pb/204Pb vs. 206Pb/204Pb of sulfides from Zn-Pb deposits in the SYG region showing the deposits with predominant sources of basement rocks (a) 
and deposits with a mixed source (b). The fields of late Permian Emeishan basalts, late Ediacaran sedimentary rocks, Cambrian-middle Permian sedimentary rocks, 
and Proterozoic metamorphic rocks are referred to Zhou et al., (2018a).Data sources: Maliping (Luo et al., 2019); Nayongzhi (Zhou et al., 2018b; Wei et al., 2023); 
Shaojiwan (Zhou et al., 2013b); Wusihe (Luo et al., 2020); Fule (Zhou et al., 2018a); Fuli (Liang et al., 2023); Huize (Zhang et al., 2023); Tianbaoshan (Tan et al., 
2019b); Daliangzi (Wang et al., 2018a); Maoping (Tan et al., 2019a; Wu et al., 2021); Maozu (Wang et al., 2018b); Huodehong (Jin et al., 2016; Wu et al., 2016); 
Lehong (Zhao et al., 2021); Tianqiao (Zhou et al., 2014b); Shanshulin (Zhou et al., 2014a); Qingshan (Zhou et al., 2013c); Yadu (He et al., 2021); Jinshachang (Zhou 
et al., 2015). 
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than sphalerite with normal texture (Fig. 6b). 

5.2.2. Zoned textures 
The zoned textures can be divided into rhythmic banding and normal 

zoned textures. Rhythmic banding were found in Saint-Salvy deposit 
(Belissont et al., 2014). Normal zoned textures have been observed in 
Zn-Pb deposits in the SYG region, including the Wusihe, Huize, Lehong, 
Nayongzhi, and Tianqiao deposits (Wei et al., 2019, 2021b; Liu et al., 
2022a; Yang et al., 2022b). Although rhythmic banding and normal 
zoned textures exhibit similar morphology, they differ in terms of color, 
element partition, and geochemical behaviors (Belissont et al., 2014; 
Wei et al., 2019, 2021b; Liu et al., 2022a; Fougerouse et al., 2023). 

Rhythmic bands are usually associated with sector zoning. In the 
Saint-Salvy deposit, elements Cu, Ag, Ge, and Ga are preferentially 
enriched in the sector zoning, whereas Fe, In, and Sn are enriched in the 
rhythmic banding (Belissont et al., 2014). Sector zoning exhibits more 
pronounced variations in color and element contents compared to 
rhythmic banding. However, there is negligible element partition 
observed in the rhythmic banding, suggesting that there are no Ge, Ga, 
and In partitions in the rhythmic banding (Belissont et al., 2014). In 

normal zoned textures, brown domain of zoned sphalerite from the 
Nayongzhi deposit has higher Ge and lower Ga and In contents than the 
light domain (Wei et al., 2021c). This trend is similar to the observation 
of the Wusihe deposit (Luo et al., 2021). Germanium is more enriched in 
dark domain than light domain of sphalerite from the Huize deposit (Liu 
et al., 2022a). Germanium is also relatively enriched in Fe-rich zone 
(dark sphalerite) in the Tres Marias MVT Zn deposit in Mexico (Cook 
et al., 2015). Therefore, Ge is predominantly enriched in the dark 
sphalerite compared to light sphalerite in normal zoned textures. The 
two textures correspond to the influence of internal (Holten et al., 1997; 
Di Benedetto et al., 2005) and external (Wei et al., 2021c) mechanisms, 
so there is no change in Ge, Ga and In in the rhythmic banding, whereas 
the change in the normal zoned textures is obvious. 

5.3. Source of ore-forming materials 

5.3.1. Background of Ge, Ga, and in 
The Ge, Ga, and In contents of sedimentary strata (Mesozoic, 

Cambrian, Devonian, Paleozoic and Permian) and underlying basement 
rocks in the SYG region are illustrated in Fig. 7. The basement rocks have 
higher Ge and In contents than sedimentary strata in all ages (Fig. 7a, c). 
It is likely that the basement rocks represent an important source of Ge 
and In. However, the basement rocks have similar Ga contents to the 
Cambrian, Devonian and Permian carbonate strata (Fig. 7b). Therefore, 
both basement rocks and carbonate strata can serve as potential sources 
for Ga. 

5.3.2. Various degree of involvement of basement rocks 
Lead and Zn isotopes are crucial tools to constrain the source of ore- 

forming materials in Zn-Pb deposits (Leach et al., 2010; Xiong et al., 
2022). Based on published Pb isotope data, four possible sources of ore- 
forming materials are defined (Zhou et al., 2010, 2012, 2013c): 1) the 
Proterozoic Kunyang metamorphic rocks representing basement rocks 
endmember, 2) Late Ediacaran and 3) Cambrian-middle Permian sedi-
mentary rocks representing carbonate strata endmember, and 4) Late 
Permian Emeishan basalts representing main magmatic rocks end-
member (Fig. 8). Sulfides from the Maliping, Nayongzhi, Shaojiwan, 
Wusihe, Fule, and Fuli deposits have Pb isotope compositions similar to 
the Proterozoic Kunyang metamorphic basement rocks (Fig. 8a), 
whereas sulfides from other deposits plot in the overlapping field be-
tween carbonate strata and basement rocks (Fig. 8b). Sphalerite from the 
Nayongzhi, Shaojiwan, Wusihe, Fule, and Fuli deposits have a basement 
source and higher average Ge, and Ga contents of 111.15–556.73 ppm, 
and 22.35–120.76 ppm, respectively (Fig. 2a). The Maliping Zn-Pb de-
posit is the most In-rich deposit in the SYG region (Fig. 2a), with Pb 
isotope compositions indicating a basement source. This indicates that 
basement rocks have played important role in the enrichment of Pb and 
associated Ge, Ga and In. 

In addition to Pb isotopes, Zn isotopes of sulfides of basement rocks 
and carbonate rock strata can also be distinguished in terms of main 
compositional ranges (Fig. 9). It was shown that sulfides from deposits 
with relatively low Ge content (<~100 ppm) have Zn isotope compo-
sition between those of basement rocks and carbonate rock strata 
(Fig. 9a). Sulfides from those Zn-Pb deposits with relatively high Ge 
content (>~100 ppm) have Zn isotope composition similar to those of 
basement rocks (Fig. 9a). This indicates that involvement of basement 
rocks in the ore formation is beneficial for the enrichment of Ge. This 
conclusion is similar to the result of Pb isotopes. The same observation is 
for Ga (Fig. 9b). In addition, sulfides with high In content of Yadu de-
posit are commonly have Zn isotope composition similar to basement 
rocks (Fig. 9a, b). Therefore, Zn isotope composition indicates that 
basement rocks play important role in the enrichment of Zn and asso-
ciated Ge, Ga, and In. 

Fig. 9. The plots of average Ge and Ga contents in sphalerite versus Zn isotopic 
composition. Data sources of Zn isotopes: Wusihe (WSH) (Zhang et al., 2019a); 
Jinshachang (JSC), Maozu (MZ), Daliangzi (DLZ) and Fule (FL); Tianbaoshan 
(TBS) (He et al., 2016; Xu et al., 2020; Zhang et al., 2019b); Huize (Zhang et al., 
2022); Maoping (Wu et al., 2021); Tianqiao (TQ) (Zhou et al., 2014b); Yadu 
(YD) (He et al., 2021); Shanshulin (SSL) (Zhou et al., 2014a); Liangyan (Wu 
et al., 2023). 
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5.4. Ore-forming process 

The contents of Ge, Ga, and In in sphalerite formed in different stages 
and with different colors are affected by the physical and chemical 
condition of ore-forming fluids (Barrie et al., 2009; Belissont et al., 2014; 
Wei et al., 2021c), and crystal self-organization processes (Di Benedetto 
et al., 2005; Belissont et al., 2014). Numerous studies of Zn-Pb deposits 
in the SYG region have considered that dark sphalerite corresponds to 
the early stage of mineralization, whereas light sphalerite corresponds to 

the late stage of mineralization (Zhou et al., 2014b; Wei et al., 2019; Li 
et al., 2022b; Luo et al., 2022b; Yu et al., 2022). The temperature of 
GGIMFis also supports the interpretation that the transition from dark to 
light sphalerite corresponds to a cooling process (Appendix A Table 4). 
There is a correlation between the color and stages of sphalerite and the 
contents of Ge. For most deposits such as the Daliangzi, Tianbaoshan, 
Huize, Nayongzhi, Fule, Fuli, Wusihe, and Maoping deposits, the early 
or dark sphalerite has higher Ge content than the late or light sphalerite 
(Fig. 10a). The variation patterns of Ga and Ge with sphalerite color or 

Fig. 10. The contents of Ge (a), Ga (b) and In (c) in sphalerite of different colors or stages in Zn-Pb deposits in SYG region. D, M and L represent dark, middle and 
light sphalerite, whereas I-III represent three stages of sphalerite. Data sources: Daliangzi (DLZ) (Li et al., 2022b); Nayongzhi (NYZ) (Wei et al., 2021c); Fule (Ren 
et al., 2019); Fuli (Liang et al., 2023); Maoping (MP) (Wang et al., 2023a); Yadu (YD), Tianqiao (TQ), Shaojiwan (SJW), Shanshulin (SSL) (Yang et al., 2022b); 
Tianbaoshan (TBS) (Yu et al., 2022); Huize (HZ) (Oyebamiji et al., 2020). 
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stage in the Daliangzi, Nayongzhi, Maoping, Shaojiwan, and Wusihe Zn- 
Pb deposits are opposite (Fig. 10a-b). This indicates that the controlling 
factors for the distribution of Ge and Ga may be different. There is no 
obvious correlation between the content of In and color or stage due to 
the relatively low content in sphalerite (Fig. 10c). 

In the process of fluid precipitation, the physical and chemical con-
ditions changes. Some studies suggest that Ge and Ga are conducive to 
enrichment in low-temperature Pb-Zn deposits, and In tends to be 
enriched in high-temperature Pb-Zn deposits (Cook et al., 2009; Ye et al., 
2011). Germanium and Ga in the sphalerite of the Freiberg district also 
tend to be enriched in low-temperature fluids, whereas In tends to be 
enriched in high-temperature fluids (Bauer et al., 2019). Because the 
contents of Ge and Ga are related with the colors and stages of sphal-
erite, the precipitation of these two elements may be related to tem-
perature to some degree during Zn-Pb mineralization. However, there is 
no correlation between In content and different colors and stages of 
sphalerite, which may be attributed to a In-depleted source of fluids as 
the first-order of control on metal enrichment. 

6. Conclusion 

Nearly twenty Zn-Pb deposits in the SYG region rich in critical metals 
such as Ge, Ga, and In are investigated for the deposit geology, trace 
element and isotope compositions of sulfide minerals. The data set are 
used to discuss the distribution, occurrence, and the enrichment mech-
anism of Ge, Ga, and In. The conclusions are summarized as follows. 
Sphalerite is the main host mineral of Ge, Ga, and In in the SYG region, 
locally pyrite is also rich in Ge. Germanium, Ga, and In mainly appear in 
the form of isomorphism in sphalerite, and independent mineral of Ge, 
ruizhongite, is only found in the Wusihe Zn-Pb deposit. Copper is the 
main coupling ions for substitution of Ge, Ga, and In in sphalerite. The 
substitution mechanisms vary both on deposit and mineral grain scales. 
Compared to sphalerite with normal texture, colloform sphalerite is 
beneficial for the enrichment of Ge. For zoned sphalerite, dark domain is 
more enriched in Ge and Ga than light domain. The involvement of 
basement rocks may have a significant effect on the budget of Ge, Ga, 
and In in the ore-forming fluids. During the Zn-Pb mineralization, Ge is 
usually richer in dark or early sphalerite, which may be related to 
variation in temperature. No correlation between Ga or In and the color 
or stage of sphalerite indicates that these two elements behave differ-
ently from Ge. 
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