
1. Introduction
The Earth's core is mainly composed of an Fe-rich alloy with a small amount (∼5%–10%) of light elements 
(e.g., Si, O, S, C, and H) being required to explain its seismic and geophysical observations (Hirose et al., 2021; 
Poirier, 1994). Hydrogen has been considered one of the most important light elements in the Earth's core since it 
has the highest abundance in the solar system (Lodders, 2003), high solubility in iron metal under high pressures 
(Fukai, 1984; Ohtani et al., 2005; Okuchi, 1997) as well as possessing a siderophile nature at core conditions 
(Iizuka-Oku et al., 2017; Li et al., 2020; Shibazaki et al., 2009; Tagawa et al., 2021). Determining the structures 
and properties of FeHx iron hydride is essential for understanding the chemical and physical properties of the 
core. However, studies aimed at determining the Fe-H phase diagram and crystal structures for geophysical appli-
cations are scarce and still controversial (Hirose et al., 2021).

Isaev et al. (2007) conducted static free energy calculations and proposed that FeH undergoes a phase transi-
tion from a double hexagonal close-packed (dhcp) to a hexagonal close-packed (hcp) structure at 37 GPa, and 
then a second transition from an hcp to face-centered cubic (fcc) structure was observed at 83 GPa. Further 
compressional experiments suggested that dhcp FeH can be stable up to 136 GPa at ambient temperature (Pépin 
et al., 2014). A phase transition from dhcp to fcc in FeH induced by temperature has been observed up to 20 GPa 
in a multi-anvil apparatus (Ikuta et al., 2019; Sakamaki et al., 2009). The hcp structure of FeH has also been 
found to be stable under higher P-T conditions (Oka et al., 2022; Yuan et al., 2018). Alternatively, some experi-
ments found that FeHx (x ∼1) adopts a stable fcc structure at a wide range of high P-T conditions (∼3.8–142 GPa, 
750–3660 K) (Hikosaka et al., 2022; Ikuta et al., 2019; Kato et al., 2020; Narygina et al., 2011; Pépin et al., 2014; 
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Tagawa et al., 2022a; Thompson et al., 2018), which suggest that fcc FeH is a likely candidate component of the 
Earth's core. However, all of these predictions are based on extrapolations of observations at temperatures and 
pressures much lower than those of the inner core and therefore, the real structure of FeH in the Earth's inner 
core is still under debate and needs to be investigated. At high temperatures various FeHx structures have shown 
superionic H behavior (He et al., 2022a; Wang et al., 2021; Yang et al., 2022a), which means low-temperature 
calculations and experiments are unlikely to capture the correct phase of Fe-H complexes at high temperatures. 
More recently, Yang et al. (2022a) proposed that fcc structure FeH could be stable at inner core conditions based 
on iron hydride (FexHy) structural prediction and thermodynamic property calculations. The relative stability 
between fcc and hcp structure FeH at inner core P-T conditions is still vaguely known, however.

Additionally, the seismic properties of FeH at high P-T conditions have only been sparsely reported. Isaev 
et al. (2007) calculated Debye sound velocities of fcc FeH up to ∼80 GPa. Thompson et al. (2018) measured the 
seismic properties of fcc FeHx (x ∼1) in Nuclear Resonant Inelastic X-Ray Scattering experiments up to ∼82 GPa. 
Wakamatsu et  al.  (2022) determined the compressional wave velocities of fcc FeH with picosecond acoustic 
measurements in laser-heated diamond anvil cells (LHDAC) at pressures up to 100 GPa. All of these studies, 
however, were conducted at ambient temperatures but the effect of temperature is likely to be critical in Fe-H 
systems. This can be demonstrated through consideration of the seismicity of hcp Fe-H alloys. Caracas (2015a) 
performed static first-principle (i.e., T = 0 K) calculations on the seismic properties of the hcp Fe-H system, 
and proposed that H is not a vital light element in the Earth's core from a geophysical sense as both the elastic 
modulus and sound wave velocities of hcp Fe increased by incorporation of H, which is against the geophysical 
requirements for light elements in the inner core. When considering the seismic properties of the same system at 
high temperatures with superionic H (He et al., 2022a; Wang et al., 2021) opposite conclusions were reached—
the effect of H is now to soften the shear modulus of hcp Fe which is geophysically plausible. Therefore, it is 
urgent to study the elastic properties of FeH under inner core conditions to better understand the behavior of H 
in the Earth's inner core.

In this study, to investigate the crystal structure and seismic properties of FeH in the Earth's inner core, we have 
performed ab initio molecular dynamics (AIMD) simulations to calculate the free energy and elastic properties of 
FeH at inner core P-T conditions. We report that hcp phase FeHx is favored by low H concentrations or elevated 
temperatures and that superionic H in FeH could explain inner core seismology which supports that H is a vital 
light element in the Earth's core.

2. Computational Details
Density functional theory (Hohenberg & Kohn,  1964; Kohn & Sham,  1965) calculations were performed 
within the generalized gradient approximation (Perdew et al., 1996) and the projector-augmented wave method 
(Blöchl, 1994). The calculations were implemented in the Vienna Ab initio Simulation Package code (Kresse 
& Furthmüller,  1996). Fe-3p 63d 74s 1 and H-1s 1 were treated as valence states. Single-particle orbitals were 
populated according to Fermi-Dirac statistics (Mermin, 1965). A plane wave cutoff energy of 500 eV and the 
Monkhorst-Pack scheme (Monkhorst, 1976) with a k-point grid of 2π × 0.05 Å −1 was found to give excellent 
stress tensors and structural energy convergence for the Fe-H system.

A supercell (2 × 2 × 2 for fcc FeH and 2 × 2 × 4 for hcp FeH) of 64 atoms was modeled. The lattice and ion 
positions of FeHx structures were fully relaxed at 100, 150, 200, 300, 330, and 360 GPa using the energy and 
force convergence criteria 1 × 10 −7 eV and 1 × 10 −4 eV/Å, respectively. H atoms are always positioned on the (0 
0 0) octahedral site to preserve the fcc and hcp symmetry of the overall structure. At pressures below 200 GPa, all 
relaxations allow Fe spin polarization since the magnetism disappears at pressures above ∼40 GPa for fcc Fe-H 
(Tagawa et al., 2022a; Yang et al., 2023) and ∼190 GPa for hcp Fe-H (Figure S1 in Supporting Information S1). 
For the different octahedral sites of H atoms in FeHx, we also examined the energies of different configurations 
and found that the energy difference between them was less than 3 meV/atom, which is negligible.

AIMD calculations were performed to verify the FeH crystal structure and calculate its properties. Electronic 
structure calculations were performed with a plane-wave set corresponding to a 500 eV energy cutoff and iter-
ation convergence criterion of 1  ×  10 −5  eV. A 2  ×  2  ×  2 Monkhorst-Pack (Monkhorst,  1976) k-point mesh 
sampling was adopted, which is sufficient to converge the pressure to within 0.3 GPa and the total energy within 
3 meV/atom. To obtain the initial lattice parameters of FeH at the target temperatures and pressure (360 GPa), 
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we ran NPT simulations in the isothermal-isobaric ensemble for 10 picoseconds (ps) to relax the supercell using 
a Langevin thermostat (Schneider & Stoll, 1978). We then performed NVT simulations with the Nosé thermostat 
(Nosé, 1984) for 10 ps using the lattice parameters from NPT simulations at the target temperatures to ensure the 
pressure was maintained at 360 GPa and the structure remained under hydrostatic conditions within 0.5 GPa by 
manually fine-tuning the supercell parameters. A time step of 1 femtosecond (fs) was used and the time-averaged 
electronic free energy was converged with an accuracy of ∼1 meV/atom. Uncertainties in temperature and pres-
sure computed using the blocking method (Flyvbjerg & Petersen, 1989) are less than 7 K and 0.1 GPa, respec-
tively. We retrieved the mean-square displacements to ensure that we were computing solid phases with results 
shown in Figure S2 in Supporting Information S1.

The entropy and free energy of FeH phases were derived from molecular dynamics simulations based on the 
two-phase thermodynamic (2PT) method (Desjarlais, 2013; Lai et al., 2012; Lin et al., 2003) which divides the 
vibrational spectrum into a solid-like and gas-like part. For exact methodology details we refer to Wilson and 
Stixrude (2021) as we implemented their formulation of this method. To verify the results obtained from the 
2PT method, we further calculated the free energies of FeH phases at 2000 K using thermodynamics integration 
described in Text S1 in Supporting Information S1. Then, the Gibbs free energies at other temperatures were then 
obtained by employing the Gibbs–Helmholtz equation 𝐴𝐴

[(

𝜕𝜕

𝜕𝜕𝜕𝜕

(

𝐺𝐺

𝜕𝜕

))

𝑃𝑃

= −
𝐻𝐻

𝜕𝜕 2

]

 , and the used enthalpies at different 
temperatures are listed in Table S1 in Supporting Information S1.

The strain-stress method was used to calculate the isothermal elastic constants. We applied four different strains 
(±0.01 and ±0.02) to the equilibrium supercells from the NPT-NVT simulations and performed the NVT simu-
lations with the Nosé thermostat to obtain the stresses. The NVT simulations on the strained boxes were run 
for 10 ps and the stresses were averaged from the last 8 ps of the simulations. The results of strain-stress value 
were then fitted to second-order polynomials and calculated the slopes at zero strain to obtain the isothermal 
elastic constants (Karki et al., 2001). The adiabatic elastic constants were derived from the isothermal elastic 
constants. The Voigt average (Simmons & Wang, 1971) was used to calculate the adiabatic bulk modulus (Ks) and 
shear modulus (G), and these were then propagated to the seismic wave velocities. The thermoelasticity calcula-
tions were implemented in the toolkit developed by Li, Vočadlo, and Brodholt (2022). The errors on the elastic 
constants were derived from the statistical errors of stresses and listed in Table S2 in Supporting Information S1, 
which is less than 2% for temperatures from 2000 to 5000 K. The convergence tests confirmed that a larger super-
cell and longer simulation time do not change our results for the elastic properties and the free energies (Tables 
S3 and S4, Figures S3 and S4 in Supporting Information S1). More methodological details are given in Text S1 
in Supporting Information S1.

3. Results and Discussion
3.1. FeHx Structure at High P-T Conditions

Data on the crystal structure and thermodynamic stability of FeH at core P-T conditions are scarce but currently, 
the most discussed structures are the fcc and hcp phases (Gomi et  al.,  2018; Hikosaka et  al.,  2022; Hirose 
et al., 2019; Ikuta et al., 2019; Kato et al., 2020; Tagawa et al., 2022a, 2022b; Thompson et al., 2018; Yang 
et al., 2022a, 2023). We first calculated the enthalpy differences between fcc and hcp phase FeHx (x ≤ 1) as a 
function of H concentration to determine how the H concentration influences the phase stability at static (i.e., 
T = 0 K) conditions.

As shown in Figure 1a, with low H concentrations the hcp structure is favored but, increasing the H concentra-
tion leads to a favoring of the fcc structure, and above an H concentration of ∼1.43 wt% (FeHx with x > 0.8) an 
fcc structure is favored throughout the whole pressure range of the Earth's core. This is supported by the Fe-H 
binary phase diagram determined by Tagawa et  al.  (2022b) in their X-ray diffraction (XRD) measurements, 
where FeHx with x > 0.75 adopts an fcc structure and likely changes little with increasing pressure. Our result is 
also supported by a LHDAC experiment on the liquidus and subsolidus phase relations in the Fe-O-H and Fe-H 
systems conducted by Oka et al. (2022), which proposed that FeH0.2 forms with the hcp structure while the stoi-
chiometric FeH forms with the fcc structure. The enthalpy difference between fcc and hcp FeHx phases increases 
as the pressure increases, which leads to a greater stability gap of the phases.

It is important to note that we only considered the fcc and hcp phases of FeHx in the current study. We did not 
consider the dhcp phase as this has been proven to transition to fcc at high temperatures (Ikuta et  al., 2019; 
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Figure 1. The energy difference between hexagonal close-packed (hcp) and face-centered cubic (fcc) FeHx (x ≤ 1) at high 
P-T conditions. (a) Enthalpy difference as a function of H concentration at 0 K and 100–360 GPa. (b) Free energy difference 
between hcp- and fcc-FeH as a function of temperature at 360 GPa. Free energy difference between pure hcp- and fcc-Fe 
(Vočadlo et al., 2008) is also presented. The black dashed line is the fitting results of two-phase thermodynamic (2PT), 
while the solid green line represents the fitting results of thermodynamics integration (TI). Within uncertainties, the energy 
difference results obtained by these two methods are consistent. Error bars are from the statistical error of the molecular 
dynamics.
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Kato et al., 2020; Sakamaki et al., 2009) and high pressures (Isaev et al., 2007). There is also the possibility 
of a body-centered cubic (bcc) FeH phase. Bcc Fe has been proposed to be stable at temperatures over 7000 K 
(Belonoshko et al., 2017, 2022) but we found, with the incorporation of H, bcc Fe is dynamically unstable and 
collapses into a tetragonal structure of FeH at our simulated Earth's inner core P-T conditions. This dynamic 
instability with the addition of H might be the reason that a bcc phase FeH has not been reported experimentally 
under high P-T conditions. Therefore, bcc FeH was also not included in the current study.

High temperatures are an important part of the inner core and can significantly affect the phase stability in the 
Fe-H system (Ikuta et al., 2019; Sakamaki et al., 2009). In Figure 1b, we calculated the effect of temperature 
on the relative stability of fcc and hcp FeH phases. The results show that as temperature increases the hcp FeH 
phase is increasingly favored. This is important because it means that experiments done at lower temperatures 
may not capture the phase structure present in the core. For example, we predict that at 2000 K fcc FeH is 
stable (Figure 1b) as seen by XRD experiments conducted by Kato et al. (2020) but that it becomes unstable at 
more core-like temperatures. However, the energy difference between these two phases at core temperatures is 
predicted to be very small (on the order of 10 s meV/atom), which is not massively different and could be trivial 
compared to the free energy differences induced by changing temperatures and compositions in the real Earth's 
core (Côté et al., 2008; Vočadlo et al., 2003, 2008), and thus there is a possibility of the coexistence of H-bearing 
hcp and fcc phases in the inner core. This supports the experimental results of Oka et al. (2022).

At temperatures above 4000 K, the diffusion coefficient of H in FeH is predicted to be as high as 10 −8 m 2/s (Table 
S5 in Supporting Information S1), indicating that FeH has transformed into a liquid-like superionic state. The 
superionic transition temperature for H in the Fe fcc lattice is ∼500 K higher than the same transition in the hcp 
lattice (He et al., 2022a; Yang et al., 2022a), which means that the superionic state of the hcp phase occurs earlier 
than that of fcc. This may account for the faster diffusion of superionic H in the hcp lattice than in the fcc lattice 
at relevant P-T conditions. The incorporation of superionic H into hcp Fe would induce a larger total entropy than 
that in fcc Fe due to the earlier (lower temperature) creation of a liquid-like state (Ye et al., 2021). Therefore, 
although H can stabilize fcc Fe up to 3000 K, hcp FeH is more energetically favorable at high temperatures when 
a superionic transformation has been undergone. We can also conclude that at the Earth's inner core conditions 
where H concentrations are low and temperatures are high hcp FeHx (x < 1) phases can generally be preferred, as 
we observed in static conditions.

3.2. Equation of State of fcc FeHx

In the following sections, we present the equation of state (EOS) and elastic properties of fcc-FeH in comparison 
with those of pure Fe and hcp-FeH. Coexistence of fcc-FeHx and hcp-FeHx is possible based on our thermody-
namic calculations and thus establishing their seismic properties and their differences is essential to distinguish 
if these are different phases in the core.

We used the Birch-Murnaghan third-order EOS to fit the static P-V data for fcc H-bearing Fe alloys as follows:

𝑃𝑃 (𝑉𝑉 ) =
3𝐾𝐾0

2

[

(

𝑉𝑉0

𝑉𝑉

)

7

3
−

(

𝑉𝑉0

𝑉𝑉

)

5

3

]{

1 +
3

4

(

𝐾𝐾
′
− 4

)

[

(

𝑉𝑉0

𝑉𝑉

)

2

3
− 1

]}

 (1)

where P is the pressure, V is the volume, V0 is the initial volume, K0 and Kʹ are the bulk modulus at ambient pres-
sure and its pressure derivative. The effect of H on the density of Fe thus can be evaluated. The results are shown 
in Table S6 in Supporting Information S1 and Figure 2, where the values from the literature are also plotted as 
references.

As shown in Figure 2, the initial volume V0 increases as the H concentration increases while the bulk modulus 
K0 and its pressure derivative Kʹ decrease with increasing H concentration though the compressional behavior of 
H-bearing Fe is similar to that of pure Fe. This is consistent with the previous study (Caracas, 2015a) based on 
an hcp H-bearing Fe alloy.

The calculated equations of state were then used to match the core density deficit with H. We first used the same 
thermal expansion of 1.0 × 10 −5 K −1 (Vočadlo, 2007; Vočadlo et al., 2003) for both pure Fe and H-bearing Fe 
alloys. The temperature of the inner core boundary (ICB) and the center is assumed to be ∼5500 and 6500 K, 
respectively (Anderson, 2003), which was linearly interpolated as the geotherm of the Earth's inner core. To 
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match the density of the inner core with an fcc FeHx alloy, a maximum H content of ∼0.3–0.4 wt % is required as 
shown in Figure 3a. In order to more accurately estimate this H content, we further used the thermal expansion 
(1.3 × 10 −5 K −1) of solid FeH (1.77 wt% H) directly calculated from our MD calculations to re-constrain the inner 
core H content (Figure 3b) with the assumption that the thermal expansion of H-bearing Fe alloys is linear with 
H concentration. We ultimately estimate that the H content of the inner core to be ∼0.26–0.34 wt%. This result 
is consistent with the recent estimate of ∼0.2–0.3 wt% based on fcc H-bearing Fe alloy's equations of state by 
Thompson et al. (2018) and such an H content is also consistent with the ICB density jump (Li, Guo, et al., 2022).

3.3. Elasticity of H-Bearing Fe Alloys at Inner Core Conditions

Although studies on fcc FeH in the Earth's core are gaining momentum (Hikosaka et al., 2022; Ikuta et al., 2019; 
Kato et al., 2020; Tagawa et al., 2022a, 2022b; Thompson et al., 2018; Yang et al., 2022a, 2023), there are few 
reports on its elastic properties, especially its elastic properties under the extreme temperature and pressure 
conditions of the Earth's inner core. In addition, the elastic properties of the hcp Fe-H system at core conditions 
have been reported by previous studies (Caracas, 2015a; He et al., 2022a; Wang et al., 2021) but these studies 
reached different conclusions about the elastic properties of H on hcp Fe and so further examination is necessary. 
Here, we performed AIMD simulations to calculate the elastic properties of FeH as a function of temperature at 
360 GPa. The calculated elastic constants Cij, density ρ, adiabatic bulk modulus Ks, shear modulus G, compres-
sional wave velocities Vp, shear wave velocities Vs, Debye sound velocities Vd, and Poisson's ratio ν are shown in 
Table S7 in Supporting Information S1 and Figure 4.

As shown in Table S7 in Supporting Information S1, all the elastic constants of Fe-H alloys show an almost linear 
variation with temperature. For fcc-FeH, C11, C12, and C44 decrease with increasing temperature; with the incor-
poration of H, C11 and C12 decrease but C44 increases when H vibrates around lattice sites and decreases when 
it becomes superionic in comparison with the pure hcp Fe. For hcp-FeH, C11, C12, C33, and C44 exhibit similar 
behavior to pure hcp Fe by decreasing with temperature, while C13 displays the opposite behavior by increasing 
with temperature. Besides, C11, C12, C33, and C44 of hcp Fe decrease with the presence of H but increase in C13.

When considering the effect of H on seismic properties we compared it to a pure Fe hcp structure. We find that if 
FeH is in the hcp structure then the shear modulus G and shear wave velocities Vs decrease by ∼51% and ∼26%, 

Figure 2. Compression curves of face-centered cubic (fcc) FeHx (x ≤ 1) at static conditions: (a) for FeH0.125, FeH0.375, 
FeH0.625, and FeH0.875; (b) for FeH0.25, FeH0.50, FeH0.75, FeH, and other data from the literature. Theoretical data with an 
asterisk (*) for hexagonal close-packed (hcp) FeH at 0 K from Caracas (2015a), plus (+) for hcp and fcc Fe at 0 K from Yang 
et al. (2022a). Experimental data points with a circle (°) for fcc FeH at 300 K from Tagawa et al. (2022a); minus (−) for fcc 
Fe and multiply (×) for hcp Fe at 300 K calculated from Tsujino et al. (2013) and Dewaele et al. (2006), respectively. Note 
that the two-unit cell volumes of hcp Fe and FeH are plotted here for comparison.
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respectively at a temperature of 5000 K. If FeH is in the fcc structure, these 
decreases in G and Vs are ∼35% and ∼19%, respectively (Figure 4 and Table 
S7 in Supporting Information S1). Such behavior is useful for explaining the 
core which has softer seismic velocities than pure Fe. This softening only 
exists at high temperatures. Under static conditions, we predict that H hard-
ens Fe, with a Vp and a Vs that are ∼5% and ∼7% higher respectively in fcc 
FeH than in pure Fe. This difference is likely due to the superionic nature of 
H at high temperatures and explains the discrepancy in the literature where 
low-temperature studies predict H to harden the core (Caracas, 2015a).

Compared with our MD calculated results, the experimental data extrapo-
lated from ambient temperature by Wakamatsu et al. (2022) overvalued the 
density and underestimated the compressional wave velocity Vp of fcc FeH at 
inner core conditions (Figure 4). The Debye sound velocities Vd of fcc FeH 
are always higher than those of hcp FeH even at high temperatures of 5000 K 
(Figure S5 and Table S7 in Supporting Information S1). This is in contrast 
to the predictions of Isaev et al. (2007) where fcc FeH had lower Vd than hcp 
FeH. These were based on low pressures and temperatures, however, and thus 
likely do not consider the superionic nature of H.

Thus we clarify the different conclusions about the elastic properties of H 
on solid Fe, where we show that a lattice H (by which we mean H vibrates 
around a singular point of the crystal lattice) hardens wave velocities of 
Fe while superionic H softens it (Caracas, 2015a; He et  al.,  2022a; Wang 
et al., 2021). 1 wt% of H would decrease the density of pure Fe by ∼1.13 g/
cm 3, the Vp by ∼0.31 km/s, and the Vs by ∼1.01 km/s at the high P-T condi-
tions of the inner core (360 GPa, 5000–6000 K). The Poisson's ratio of pure 
Fe increases with the incorporation of H at high temperatures, which is 
consistent with the early studies (He et al., 2022a; Wang et al., 2021). Both 
fcc- and hcp-FeH could explain the wave velocities (Vp and Vs) of the inner 
core although the concurrent density is still lower than the geophysical obser-
vations (Figure 4). Additionally, FeH can match the Debye sound velocities 
as well as the Poisson's ratio of the Earth's inner core (Figures S5 and S6 in 
Supporting Information S1). The FeH phase, as an end-member of the FeHx 
(x ≤ 1) system, is expected to be stable at the P-T conditions of the Earth's 
core. This work holds a key promise for superionic H to explain the seismic 
characteristics of the Earth's core, supporting the hypothesis that H is a vital 
light element in the core.

3.4. Implications for FeH and H in Earth's Inner Core

Both recent experiments and theoretical calculations have given strong 
evidence that the Earth's core is a potentially huge water reservoir with several 

oceans of water being brought into the Earth's interior during its formation (Hikosaka et al., 2022; Iizuka-Oku 
et al., 2017; Li et al., 2020; Nomura et al., 2014; Tagawa et al., 2021). These studies all support that H is a vital 
light element in the Earth's core, and therefore, the phase diagram of Fe-H at high P-T conditions is important 
for understanding the behavior as well as the process of H and/or water evolution in the early Earth. The phase 
diagram of the Fe-H system at high P-T conditions is similar to that of pure Fe (Sakamaki et al., 2009; Shen 
et al., 1998), the difference between them is that the hcp phase in pure Fe systems is substituted by the dhcp- or 
fcc-FeH in Fe-H systems (Kato et al., 2020; Pépin et al., 2014). It should be noted that the temperature and pres-
sure of the two triple points (bcc-fcc-dhcp and fcc-dhcp-melt) of the Fe-H system are lower than those of the pure 
Fe system (Sakamaki et al., 2009). The phase boundary between dhcp and fcc in the Fe-H system is still contro-
versial. Kato et al. (2020) observed that fcc FeHx (x ∼1) formed from dhcp at a pressure range of 57–137 GPa 
and 1000 K and that there was a negatively correlated slope of dT/dP at the phase boundary of dhcp-fcc. Their 
experiments also showed that hcp FeHx with x ∼1 was not stable at these relatively low P-T conditions. Our results 

Figure 3. The H content required to reproduce the density of the Earth's 
inner core based on face-centered cubic (fcc) H-bearing Fe alloys. (a) 
Constrained inner core H content based on the thermal expansion of pure Fe. 
(b) Re-constrained inner core H content based on the thermal expansion of 
H-bearing Fe calculated from our MD calculations. The theoretical density 
of solid hexagonal close-packed (hcp) Fe64H4 with 0.11 wt % H (Wang 
et al., 2021) is also plotted for comparison.
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demonstrate the formation of H-poor hcp and H-rich fcc phases FeHx at core pressure conditions, while high 
temperatures are likely to favor the hcp phase in the Earth's inner core (Figure 1b). These results are important to 
understand the H behavior under core conditions and also put an anchor in the experimental and theoretical study 
of the Fe-H phase diagram.

Although we predict that the hcp-FeH is favored at high temperatures of the Earth's inner core, the discussion and 
further study of fcc-FeH is still necessary. We predict a small difference between the energy of the two phases (on the 
order of 10 s meV/atom) which is smaller than kBT at these temperatures. This implies that small changes to compo-
sition (e.g., varying H concentration or possibly the effect of other elements such as Ni and Si) or temperature could 
induce phase changes in the core meaning both phases are thermodynamically or kinetically possible. Both the fcc 
and hcp phase FeH can explain the geophysical requirements for light elements in the inner core to soften the shear 
modulus, decrease the sound wave velocities, and increase the Poisson's ratio of Fe at inner core conditions. The supe-
rionic H in Fe hcp lattice has a stronger softening in G and Vs compared with that in Fe fcc lattice, which suggests that 
to match the Vs of the inner core an hcp FeHx may require a lower temperature or a less H concentration. Based on the 
density, the H content in the inner core can be constrained to ∼0.26–0.34 wt% assuming H as the only light element.

4. Conclusions
Calculations of the energy differences between fcc and hcp FeHx phases suggest that hcp is favored in H-poor and 
fcc in H-rich conditions and that increasing temperature favors the hcp phase. The free energy difference between 
these two phases at inner core conditions is predicted, however, to be very small (on the order of 10 s meV/atom) 
and thus there is a possibility of the coexistence of H-bearing hcp- and fcc-Fe in the inner core. At high temper-
atures of the Earth's inner core, H is predicted to be superionic and this has the effect of softening the elasticity 
of Fe, an effect which will not be observed in low-temperature measurements. Finally, we clarify that lattice H 
hardens the wave velocities of Fe while temperature-induced superionic H softens it. Both fcc- and hcp-FeH could 
explain inner-core wave velocities and Poisson's ratio. We conclude H could play an important role in the real core.

Data Availability Statement
Supporting Information S1 is included in seven figures and seven tables. The source code (VASP) used in this 
study is available at https://www.vasp.at/. According to AGU data policy, raw data are available at https://doi.
org/10.6084/m9.figshare.24047208.v2. Additional data for Figure  1 was sourced from Vočadlo et  al.  (2008). 

Figure 4. Density (a), elastic properties (b), and sound velocities (c) of H-bearing Fe alloys as a function of temperature at 360 GPa comparison with the PREM model 
(Dziewonski & Anderson, 1981). The theoretical data of pure hexagonal close-packed (hcp) Fe are from Li et al. (2018); hcp FeH0.5 from Caracas (2015a); hcp FeH0.25 
from Caracas (2015a) and He et al. (2022a); and hcp FeH0.625 from Wang et al. (2021). The extrapolated experimental data for face-centered cubic (fcc) FeH are from 
Wakamatsu et al. (2022). The data of fcc FeH under 6000 K are fitted from data at 0, 2000, 4000, and 5000 K. The red dashed line region represents the superionic state 
transition temperature for hcp Fe-H (∼3000 K) (He et al., 2022a) and fcc Fe-H (∼3500 K) (Yang et al., 2022a).
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Data for Figure  2 was sourced from Caracas  (2015b), Dewaele et  al.  (2006), Tagawa et  al.  (2022c), Tsujino 
et al. (2013), and Yang et al. (2022b). Data for Figure 3 was sourced from Dziewonski and Anderson (1981) and 
Wang et al. (2021). Data for Figure 4 was sourced from Caracas (2015b), Dziewonski and Anderson (1981), He 
et al. (2022b), Li et al. (2018), Wakamatsu et al. (2022), and Wang et al. (2021). Note that other citation data that 
do not provide Datasets are taken directly from the text or the supplementary material of the references.
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