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1  |  INTRODUC TION

The active fault system, along with its associated fractures at the 
block boundary, plays a fundamental role in serving as the preferred 
pathway for the propagation of deep gas (Caracausi & Sulli,  2019; 
Sano et al., 2017; Xu et al., 2017; Zheng et al., 2017). Through rock 
loading experiments, it has been determined that amplified radon 
(Rn) emissions from broken rocks can be attributed to the increased 
presence of fractures (Chen et al., 2019; Toutain et al., 1992; Tuccimei 
et  al.,  2010). Field measurements and monitoring have further 

demonstrated that the spatial and temporal variations of soil gas Rn 
concentrations and fluxes in active fault zones are closely linked to 
fault activity (Fu et al., 2017; Wang et al., 2014; Yang et al., 2018). 
Notably, Rn gas anomalies have been observed prior to numerous 
seismic events, indicating their potential as precursors (e.g., Igarashi 
et al., 1995; Martinelli, 2020; Ülküm et al., 2018; Zhou et al., 2016).

The tectonic and seismic activities in the study area have gar-
nered significant attention due to the presence of large-scale faults 
and intense seismic events. From 1125 to 1954, the area experi-
enced 8 earthquakes of MS ≥ 7.0 and 2 earthquakes with MS ≥ 8.0 
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Abstract
Soil gas radon (Rn) serves as an effective indicator for assessing fault activity in fault 
zones. Measurement of Rn degassing at the active faults was conducted twice in 
2017 and 2018 to assess fault activity in the western margin of the Ordos block. The 
concentration and flux values of Rn ranged from 0.41 to 40.93 kBq m−3 and 5.17 to 
140.33 mBq m−2 s−1, respectively. The compression of the Tibetan Plateau has led to 
higher Rn concentration and flux in the southern part compared with the northern 
part. The fault activity is evaluated by the index of IRn calculated from Rn concentra-
tions. The Haiyuan arcuate tectonic region exhibited the most intensive fault activity, 
followed by the Yinchuan Basin and Jilantai-Linhe Basin. These findings enhance our 
understanding of the relationship between fault activity and Rn emission and provide 
a significant geochemical reference for the fault activity.
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2  |    LIU et al.

(Wesnousky et al., 1984). Geophysical investigations have indicated 
that the area is a critical area of potential seismic risk (Liu et al., 2016; 
The Research Group on “Active Fault System around Ordos Massif”, 
State Seismological Bureau (SSB),  1988). Furthermore, analysis of 
GPS velocity fields spanning from 1999 to 2015 in North China has 
revealed an increasing migration rate (Gao et al., 2016). Additionally, 
it has been suggested that the 2008 Wenchuan Ms 8.0 earthquake 
may have enhanced the seismicity around the Ordos block (Gao 
et al., 2016; Zhu et al., 2010).

The soil gas geochemistry in the study area has been investi-
gated by several researchers (Cui et al., 2019; Meng et al., 1997; Sun 
et al., 2016). Cui et al. (2019) have demonstrated a significant relation-
ship between tectonic activity and soil gas CH4 and CO2 emissions 
from the boundary of the blocks in the study area. Meng et al. (1997) 
conducted measurements of soil gas Rn and Hg in the Haiyuan arcu-
ate tectonic region and identified a clear positive correlation between 
soil gas concentrations and fault activity. Sun et al. (2016) observed 
higher concentrations of soil gas Rn near the epicentre of the 1920 
MS 8.5 Haiyuan earthquake compared to other areas, as well as a 
significant contribution of mantle-sourced helium from nearby hot 
springs. However, most of these studies have focused on specific 
regions, leading to limited understanding in large areas with diverse 
active faults. This study comprehensively analyses the correlation 
between Rn emissions and regional tectonic activity in the west-
ern margin of the Ordos block. Through Rn concentration and flux 
measurements, we investigate the complex relationship between Rn 
emissions and various factors. Our findings enhance our understand-
ing of Rn degassing, fault properties and slip rates. Additionally, our 
research contributes to seismic risk assessment and the development 
of effective earthquake prediction and mitigation strategies.

2  |  GEOLOGIC AL SET TINGS

The western margin of the Ordos block is situated in northern 
Central China (Figure 1). The collision between the Indian plate and 
the Eurasian plate has resulted in the convergence of the Tibetan 
Plateau and the North China craton in the southwestern part of 
the Ordos block (The Research Group on “Active Fault System 
around Ordos Massif”, State Seismological Bureau (SSB), 1988; Yin 
& Harrison,  2000). This collision has given rise to distinct move-
ment patterns among the blocks in the study area. Specifically, 
the Lanzhou block and Haiyuan block exhibit clockwise rotation at 
rates of 17.17 nanostrain·a−1 and 4.69 nanostrain·a−1, respectively. 
Conversely, the Ordos block and Minqin block display counterclock-
wise rotation at rates of 9.07 nanostrain·a−1 and 2.89 nanostrain·a−1, 
respectively. In terms of movement rates, the Lanzhou block dem-
onstrates a higher rate of 8.4 mm·a−1, followed by the Haiyuan block 
with a medium rate of 5.0 mm·a−1. The Ordos and Minqin blocks ex-
hibit lower rates of 2.8 mm·a−1 and 2.2 mm·a−1, respectively (Wang 
et al., 2017). The different movement patterns of these blocks re-
sulted in the formation of 11 major active faults, with Holocene slip 
rates ranging from 0.14 to 5.29 mm·a−1 (Table S1).

Due to differences in movement directions, rates of block 
movements, and stress status, the western margin of the Ordos 
Block has been divided into three regions (Geological Bureau of 
Ningxia (GBN), 1976; The Research Group on “Active Fault System 
around Ordos Massif”, State Seismological Bureau (SSB),  1988; 
Wang et  al.,  2017; Yin & Harrison,  2000). The Haiyuan arcuate 
tectonic region (HATR) is characterized by compression, while the 
Yinchuan Basin (YB) and Jilantai-Linhe Basin (JLB) exhibit exten-
sional tectonics (Ningxia Bureau of Geology and Mineral Resources 
(NBGMR),  1989; The Research Group on “Active Fault System 
around Ordos Massif”, State Seismological Bureau (SSB),  1988; 
Zhang et al., 2019). The HATR is characterized by the presence of 
four strike-slip and thrust faults (GF, XTF, YF and LNF). These faults 
are formed due to the obstruction of the northeast-trending move-
ment of the Tibetan Plateau by the stable Alxa and Ordos blocks 
(The Research Group on “Active Fault System around Ordos Massif”, 
State Seismological Bureau (SSB), 1988). In YB, an active Cenozoic 
graben, under the influence of NW–SE extensional stress, a dex-
tral strike-slip and thrust fault (HWF) and a series of NE-trending 
normal active faults (e.g., YRF and HEF) have developed (Ningxia 
Bureau of Geology and Mineral Resources (NBGMR),  1989). The 
JLB, composed of the Jilantai basin and Linhe basin, is a Cenozoic 
extensional graben where four normal faults (BFF, ZWF, LFF, and 
SFF) have formed (Geological Bureau of Ningxia (GBN), 1976; The 
Research Group on “Active Fault System around Ordos Massif”, 
State Seismological Bureau (SSB),  1988). These unique tectonic 
settings have given rise to significant seismic events, including the 
MS 8.5 Haiyuan earthquake (16 December 1920), which is the larg-
est recorded inland earthquake. Additionally, six earthquakes with 
magnitudes of 6.0 ≤ MS ≤ 6.9 and two earthquakes with magnitudes 
MS ≥ 7.0 have occurred in the vicinity.

Significance Statement

Radon (Rn) is a radioactive gas that originates from the nat-
ural decay of other radioactive elements present in rocks 
in Earth's crust. In fault zones, soil gas Rn serves as an ef-
fective indicator for assessing fault activity. In this study, 
we examined the spatial distribution of Rn concentration 
and flux in the compression and tension zones between 
the Tibetan Plateau and the Ordos block for the first time 
and used Rn concentration to assess activity levels of 11 
faults. Our findings indicate that Rn concentration and flux 
are higher in the southern part of the study area due to 
the accumulation of strain, which favours the formation 
of fractures and enhances Rn migration. Fault activity is 
evaluated using an index of IRn, calculated from Rn concen-
tration. There is a positive correlation between IRn and the 
Holocene slip rate of the fault. Compression of the Tibetan 
Plateau results in higher IRn in the southern part of the 
study area than in the northern part.
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    |  3LIU et al.

3  |  RESULTS

In this study, a total of 701 concentration sampling points and 96 
flux sampling points were measured twice in 16 profiles across 
11 active faults in the western margin of the Ordos block in 2017 
and 2018. For detailed information regarding the measurement 
methods and statistical analysis, please refer to Data S1. The Rn 
concentration and flux in the study area exhibit a wide range of 
variation (Table  S2). The Rn concentrations range from 0.41 to 
40.93 kBq·m−3; the fault-origin Rn concentrations (HRn) range from 
2.26 to 35.37 kBq·m−3; and the background values (LRn) range 
from 1.69 to 13.01 kBq·m−3. The values of IRn, calculated as HRn 
divided by LRn (Chen et  al.,  2018), range from 1.27 to 3.62. The 
Rn fluxes range from 5.17 to 140.33 mBq·m−2 s−1, with the highest 
Rn flux values above 100 mBq·m−2 s−1 in profiles No. 1 and No. 5. 
The correlation coefficients (Pearson's r) for Rn concentration be-
tween the two surveys is 0.94, while the correlation coefficients 
(Pearson's r) for Rn flux is 0.88. This means of Rn concentration/
flux from the 16 profiles in 2 years are similar.

A total of 16 soil samples were collected from each profile, and 
the contents of radioactive materials (U, Th and Ra) from soil sam-
ples have been analysed (Table S3). The highest values of U content 
and Ra content were observed in profile No. 3, which are 43.7 and 
37.9 Bq·kg−1, respectively. The highest value of Th content was ob-
served in profile No. 14, which is 52.7 Bq·kg−1.

4  |  DISCUSSION

4.1  |  Spatial distribution characteristics and 
influencing factors

The spatial distribution of Rn concentrations and fluxes (Figure 2a,b) 
reveals that high levels are predominantly found in HATR and YB. 
Additionally, the southern part of the study area exhibits higher Rn 
emissions compared to the northern part. Various factors such as 
fault activity, rock types, radioactive material contents (U, Th and 
Ra), vegetation and meteorological conditions are likely to influence 

F I G U R E  1  (a) The location of the study area in China. (b) The tectonic map of the study area (modified from Wang et al., 2017). The 
yellow sector symbol denotes the rotation rate of the block, with a quarter sector indicates a rate of 5 nanorod·y−1. The rotation direction of 
the sector denotes the rotation direction of the block. The pink arrow denotes the direction of the block movement, with the length of the 
arrow indicating the speed of plate movement. The abbreviations are as follows: BFF, Bayanwulashan frontal fault; GF, Guanguanling fault; 
HATR, the Haiyuan arcuate tectonic region; HEF, Helanshan East-piedmont fault; HWF, Helanshan West-piedmont fault; JLB, the Jilantai-
Linhe Basin; LFF, Langshan frontal fault; LNF, Luoshan–Niushoushan fault; SFF, Sertengshan frontal fault; XTF, Xiangshan–Tianjingshan 
fault; YB, the Yinchuan Basin; YF, Yantongshan fault; YRF, Yellow River fault; ZWF, Zhuozishan West-piedmont fault. Earthquake data were 
recorded between 16 December 1920 and 31 December 2018 (https://​data.​earth​quake.​cn/​). Fault data are sourced from Deng et al. (2003). 
Geological map modified from Ma et al. (2002). The DEM data set is provided by the Geospatial Data Cloud site, Computer Network 
Information Center, Chinese Academy of Sciences (http://​www.​gsclo​ud.​cn). 
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Rn emissions in the fault zones (Han et al., 2014; Papp et al., 2008; 
Winkler et al., 2001).

The study area is a transition zone with arid and semiarid conti-
nental climates (The Research Group on “Active Fault System around 
Ordos Massif”, State Seismological Bureau (SSB), 1988). It consists 
mostly of gobi and desert landscapes with limited rainfall and vege-
tation (Figure 2c). No rainfall events were recorded during the mea-
surement period. The Pearson correlation analysis was conducted 
to examine the relationship between meteorological conditions and 
the mean values of Rn concentration and flux of each profile in two 
surveys. The results indicate a weak correlation between meteoro-
logical conditions, including atmospheric pressure, air temperature, 
soil temperature and temperature difference, and Rn concentration 
and flux (Table 1). The Pearson's r values range from −0.57 to 0.39 
(Figures S3 and S4). Therefore, meteorological conditions and vege-
tation are not expected to exert considerable influence on the emis-
sion of soil gas Rn in this study.

Rn emissions are typically high in granite, followed by shale, lime-
stone and sandstone (Baixeras et al., 2001; El-Arabi et al., 2006). In 
Figure 2d, it can be observed that granites are extensively exposed 
in the northwest margin of the JLB, particularly near profiles No. 11 
to No. 16. However, high concentrations and fluxes of Rn are only 
observed in profile No. 11, with elevated Rn concentrations also 
observed in profile No. 14. Interestingly, most of the high concen-
trations and fluxes occur in profiles No. 1 to No. 9, where there are 
no granite outcrops. This observation suggests that there is no cor-
relation between rock types and Rn emissions within the study area.

Furthermore, the correlation between the contents of radio-
active materials (U, Th and Ra) and soil gas Rn was also analysed 
(Table 1). The correlation coefficients (Pearson's r) between the con-
tents of radioactive materials and Rn fluxes ranged from 0.11 to 0.32 
(Figures S3 and S4), indicating a weak correlation. The content of Ra 
and Th showed exhibited a positive correlation with Rn concentra-
tion, with correlation coefficients ranging from 0.47 to 0.54. This 
suggests that the Rn background is influenced to some extent by the 
content of Ra and Th in the local soil. In other words, the source of 
soil gas Rn comes partly from soil.

The Rn concentration along the profiles tends to be higher near 
the fault planes. This trend is observed in most of the 16 profiles 
(excluding profiles 6, 13, 14 and 16) (Figure S5). These variations in 
Rn concentration can be attributed to changes in permeability re-
sulting from fault activity (Faulkner et al., 2010; Yang et al., 2018). It 
is speculated that the release of Rn from the fault zones originates 
from underground sources. Increased fault activity can result in the 
formation of new fractures or the opening of preexisting fractures, 
providing pathways for the release of Rn and subsequently leading 
to a significant increase in Rn emission rates (Mollo et  al.,  2011; 
Nicolas et al., 2015; Roeloffs, 1999). This study verifies a clear posi-
tive correlation between the fault-origin Rn concentration (HRn) and 
the Holocene slip rate of the faults, with correlation coefficients of 
0.51 and 0.66 in the two surveys (Figure 3a). These findings suggest 
that fault activity plays a significant role in influencing the emission 
of Rn in the study area.

A previous study conducted by our research group has shown 
that the concentrations of CH4 and CO2 increased as the strike-slip 
rate across the faults increased, with significantly higher concen-
trations observed in the southern part of the western margin of 
the Ordos Block compared to the northern part (Cui et al., 2019). 
Considering the similarities in the spatial distribution of Rn concen-
tration, it is reasonable to speculate that CH4 and CO2 may be the 
carrier gases for the upward migration of Rn.

The HATR serves as a transitional zone between the Tibetan 
Plateau and the Ordos block. The presence of abnormally high-shear 
strain rate (Figure 2b), crustal horizontal strain rate (Figure 2c), and 
the steepest gradient of GPS horizontal velocity (Figure  2d) indi-
cates the intense deformation of the crust in HATR. This deforma-
tion is primarily attributed to the northeastward extrusion pressure 
exerted by the Tibetan Plateau and the resistance offered by the 
Ordos block. Consequently, a series of earthquakes occurred within 
the HATR, leading to the formation of numerous seismic rupture 
zones in the southern part of the study area (Figure 2a). The high 
permeability of the rupture zones in the southern part also con-
tributes to higher concentrations and fluxes of Rn compared to 
the northern part. The influence of compression from the Tibetan 
Plateau gradually diminishes in the YB and JLB. The GPS horizontal 
velocity field indicates that the Ordos block, Alxa block and Minqin 
block exhibit relative stability. This stability is the main reason for 
the lower Rn concentration and flux observed in the YB and JLB 
(profiles No. 10 to No. 16). However, profiles No. 8 and No. 9, lo-
cated in the YB, still exhibit high-Rn concentrations. These profiles 
are situated along the YRF, where the Pingluo M8 earthquake oc-
curred (Lei, 2016). In seismic rupture zones, the convective velocity 
of Rn has been estimated to range from 5.2 to 28.0 m·d−1, disregard-
ing carrier gas and diffusion effects (Miklyaev et al., 2020). The YRF 
has exhibited frequent seismic activity in recent years, which has 
likely promoted the migration of Rn (Figure  4). In conclusion, the 
movement of blocks and seismic activity are the main factors con-
tributing to the higher Rn emissions in the southern part compared 
to the southern part.

4.2  |  Fault activity assessment

In this study, the index of IRn, calculated as the ratio of fault-origin 
Rn concentration (HRn) to background value (LRn), has been used to 
evaluate fault activity (Table  S2). Although the Rn concentration/
flux in the two surveys were similar, there were still some differ-
ences between them. Both measurements were conducted in the 
same season, minimizing the influence of meteorological factors. 
Moreover, no significant large seismic event was recorded before 
and after the surveys. Yuce et al. (2017) attributed the differences 
in soil gases between the two surveys in 2013 and 2014 to changes 
in permeability resulting from crustal deformation. The difference 
between the two surveys in this study may also be due to crustal 
deformation. To ensure accuracy, the average IRn in two surveys is 
used for fault activity assessment.

 13653121, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ter.12695 by C

A
S - C

hengdu L
ibrary, W

iley O
nline L

ibrary on [25/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  5LIU et al.

F I G U R E  2  (a) Distribution of Rn concentration and locations of earthquakes. Earthquakes were recorded in the period of 16 December 
1920 ~ 31 December 2018 (https://​data.​earth​quake.​cn/​). Locations of seismic rupture zone modified from Working Group of M7 (2012). (b) 
Distribution of Rn flux and shear strain rate (Li, Li, & Zhou, 2018). (c) Distribution of IRn and crustal horizontal strain rate (Li, Liu, et al., 2018); 
Geographical location of the desert (modified from Ma et al., 2002). (d) The GPS horizontal velocity field around the Ordos block with 
respect to the stable Eurasian reference frame, and the error ellipses represent 95% confidence (Zhao et al., 2017). The geological map was 
modified from Ma et al. (2002). Abbreviations are shown in Figure 1. Fault data are quoted from Deng et al. (2003). The DEM data set is 
provided by the Geospatial Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences. (http://​www.​gsclo​ud.​cn). 
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The positive relationship between IRn and the Holocene slip rate 
of the faults in 2017 and 2018, with a correlation coefficient of 0.56 
and 0.43, respectively (Figure 3b), confirms the reliability of using IRn 
for assessing fault activity in the study area. The Q–Q plots of aver-
age IRn in 2 years exhibit three linear segments (Figure 3c), and the 
two intersections determine the boundaries of IRn. Consequently, the 
IRn values for all profiles are divided into three groups representing 
different levels of Rn activity: high (IRn > 1.9), medium (1.9 > IRn > 1.5) 
and low (IRn < 1.5) Rn activity (Figure 3d).

The spatial distribution of shear strain rate, determined using 
GPS and precise levelling data, demonstrates a gradual decrease 
from the southern part to the northern part (Li, Liu, et al., 2018). This 
trend is also observed in the distribution of IRn (Figures 2b and 5). 
The highest level of fault activity is observed in the HATR, followed 
by the YB, and then the JLB. Except for profile No. 4, most of the 
profiles on the thrust faults exhibit higher IRn than the normal faults. 
This observation suggests that the fault activity in the compres-
sional zone of the study area is stronger than in the extensional zone. 

TA B L E  1  The correlation coefficients (Pearson's r) between Rn 
concentration and flux, the content of radioactive materials (U, Th 
and Ra) from soil samples and meteorological conditions.

Pearson's r

Rn concentration 
(kBq m−3) Rn flux (mBq m−2 s−1)

Aug. 2017 Aug. 2018
Aug. 
2017 Aug. 2018

PAtm. (Pa) −0.17 −0.29 −0.57 −0.55

Tair (°C) 0.14 0.05 −0.24 −0.09

Tsoil (°C) −0.42 −0.32 −0.33 −0.24

ΔT (°C) 0.39 0.27 −0.05 0.07

CU (Bq·kg−1) 0.25 0.27 0.16 0.11

CTh (Bq·kg−1) 0.52 0.47 0.15 0.18

CRa (Bq·kg−1) 0.47 0.54 0.22 0.32

Note: PAtm. is the atmospheric pressure; Tair is the air temperature; Tsoil is 
the soil temperature; ΔT is the difference between air temperature and 
soil temperature (ΔT = Tair − Tsoil).

F I G U R E  3  (a) The correlation coefficients between the Holocene slip rate of fault and fault-origin Rn concentration (HRn) in two surveys. 
(b) The correlation coefficients between the Holocene slip rate of the fault and IRn in two surveys. (c) Quantile-quantile plots (Q-Q plots) of 
IRn. (d) IRn of the fault zones in the western margin of the Ordos block. Abbreviations are shown in Figure 1. The profiles from thrust faults 
are marked in blue, and the profiles from normal faults are marked in black. 
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These findings provide further evidence of the dominant influence 
of tectonic stress on Rn emissions.

The most active faults in the study area are identified as GF (No. 
1), XTF (No. 2), LNF (No. 5), YRF (No. 8) and BFF (No. 11) (Figure 2d). 
Among these, the highest IRn value (up to 3.62) is observed in LNF, 
which is comparable to the IRn value of the Tangshan fault, the seis-
mogenic fault of the 1976 Tangshan MS 7.8 earthquake (3.90, Chen 
et al., 2018). The GF, XTF and LNF are located in the HATR, which 
serves as a transitional zone between the Tibetan Plateau and the 
Ordos block (Figure 1). A gradual decrease in crustal thickness from 
south to north can be observed in Figure 5. Additionally, the VS of 
the crust in HATR is significantly lower compared to YB and JLB. This 
can be attributed to the expansion of the northeastern margin of the 
Tibetan Plateau since the Cenozoic era, resulting in the fragmenta-
tion of the upper crust (Zheng et al., 2018). This region experiences 

ongoing tectonic compression and intense seismic activity, including 
the Haiyuan MS 8.5 earthquake and three earthquakes with mag-
nitudes above 7.0 (Gao et  al.,  2016). Therefore, block movements 
and seismic activity are responsible for the strong fault activity and 
high-Rn concentration and flux in the area. The YRF is the seismo-
genic fault responsible for one MS 8.0 earthquake and two MS 6.5 
earthquakes (Huang et  al.,  2016; The Research Group on “Active 
Fault System around Ordos Massif”, State Seismological Bureau 
(SSB),  1988). Seismic activity is a visual manifestation of tectonic 
movement, and the frequent seismic activity near the YRF indicates 
strong fault activity (Figure  4). And high-Rn concentrations and 
fluxes are also observed in the YRF. BFF is situated at the junction 
of the Alxa block and Minqin block. The differential movement be-
tween these blocks may contribute to the high IRn observed in profile 
No. 11.

F I G U R E  4  Geological map of the YB. Earthquakes were recorded in the period of 16 Decemeber 1920 ~ 31 December 2018 (https://​
data.​earth​quake.​cn/​). Abbreviations are shown in Figure 1. Fault data are quoted from Deng et al. (2003). Geological map modified from Ma 
et al. (2002). 
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5  |  CONCLUSION

This study provides valuable insights into the dominant influence of 
fault activity on Rn emission in the western margin of the Ordos 
block. Through the analysis of 701 concentration sampling points 
and 96 flux sampling points, it was observed that the concentra-
tion and flux of Rn varied across different profiles and regions, 
with higher emissions observed in the southern part of the study 
area. It was also found that rock type and meteorological condi-
tion had limited effects on Rn emission. The index of Rn concen-
trations (IRn) was used to evaluate fault activity, revealing that the 
faults in the Haiyuan arcuate tectonic region exhibited the most 
intensive activity, followed by those in the Yinchuan Basin and the 
Jilintai-Linhe Basin. This pattern of fault activity aligns well with 
the shear strain rates. Notably, the Guanguanling fault, Xiangshan–
Tianjingshan fault, Luoshan–Niushoushan fault, Yellow River fault 
and Bayanwulashan frontal fault were identified as the most active 
faults in the study area. The study's results provide a valuable geo-
chemical reference for assessing fault activity and have significant 
implications for seismic hazard assessment and earthquake predic-
tion in the region. Additionally, this study deepens our understand-
ing of the relationship between fault activity and Rn emission. These 

findings can be applied to improve seismic hazard models and aid in 
mitigating earthquake-related disasters.
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