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A B S T R A C T   

The Bowen ratio (β), which is the ratio of sensible heat (H) to latent heat (LE), reflects the energy balance and 
partitioning processes among soil, vegetation, and the atmosphere. Although the spatial patterns of β have been 
clearly delineated, the importance of vegetation in the spatial variation of β is frequently underestimated. 
Revealing the spatial patterns of β would improve the understanding of the variation in energy partitioning in 
terrestrial ecosystems and its reciprocal relationship with environmental change. Here, we calculated β by 
integrating H and LE flux values from 80 flux observation sites based on the eddy-covariance method in Chi-
naFLUX to analyze the spatial pattern and mechanism of β in China. Terrestrial ecosystems in China had an 
average β of 0.64 ± 0.47. β varied significantly among ecosystem types. Deserts had the highest β (2.08 ± 0.17), 
while wetlands had the lowest β (0.37 ± 0.11). The β values of terrestrial ecosystems exhibited a significant 
latitudinal pattern, increasing linearly with latitude. This pattern also existed in forest and cropland ecosystems. 
The spatial pattern of β was dominated by climate-shaped vegetation factors, including leaf area index (LAI) and 
fractional vegetation cover (FVC). Nevertheless, as water and thermal conditions decline, the contribution of 
vegetation factors gradually wanes. These findings demonstrated the spatial variations and driving mechanisms 
of terrestrial ecosystem β and provided insights into the mitigation of future climate change by vegetation.   

1. Introduction 

Since the onset of the Industrial Revolution, the escalating emissions 
of greenhouse gases have significantly contributed to the intensification 
of the greenhouse effect and, consequently, the persistent increase in 
land surface temperatures. Terrestrial ecosystems feed back to climate 
change through biophysical and biochemical ways, leading to varied 
regional effects, including both warming and cooling (Bonan, 2008; 
Chapin et al., 2011; Peñuelas et al., 2009; Wu et al., 2015; Popkin, 
2019). However, it is noteworthy that biophysical feedback mechanisms 
have received limited attention in previous studies (Alkama and Ces-
catti, 2016). Even in internationally significant climate agreements such 
as the Kyoto Protocol and the Paris Agreement, there is no mention of 
the extent to which vegetation influences climate through biophysical 
processes. This introduces significant uncertainty into the development 
of future strategies aimed at mitigating climate change. The Bowen ratio 
(β), which is the ratio of sensible heat flux (H) to latent heat flux (LE), 
has been acknowledged as a crucial parameter in elucidating the bio-
physical processes through which ecosystems feed back to climate 
change (Bowen, 1926; Bonan, 2008; Lee et al., 2011). 

The Bowen ratio serves as a reliable indicator of the equilibrium 
between H and LE. H and LE play pivotal roles as they link the land 
surface and the atmosphere through the transfer of water and heat 
(Wilson et al., 2002b; Zeng and Zhang, 2020). The equilibrium between 
these two components directly influences the partitioning of energy 
within ecosystems (Arora, 2002; Takle, 2015; Ning et al., 2019; Lian 
et al., 2022), which have direct and indirect effect on local climates and, 
in some cases, can even interact with large-scale circulation systems, 
culminating in temperature effects on regional and global scales 
(Beringer et al., 2011; Burakowski et al., 2018; Moon et al., 2020; Lian 
et al., 2022; Shen et al., 2022; Du et al., 2022). Therefore, the study of β 
contributes to a more comprehensive understanding of the biophysical 
processes within ecosystems and provides a valuable perspective for 
assessing biophysical effects on climate change. 

As one of the vital parameters influencing regional climate change, β 
has been widely used for the estimation of evapotranspiration (Perez 
et al., 1999; Pauwels and Samson, 2006; Zhang et al., 2008). Never-
theless, our understanding of its spatial patterns at national, regional, 
and even global scales remains limited, primarily due to the inherent 

challenges in obtaining accurate sensible heat flux values. Leveraging 
the eddy covariance method, ChinaFLUX has amassed over two decades 
of sensible and latent heat flux observations, yielding a wealth of 
long-term, site observational data. Simultaneously, China’s extensive 
latitudinal range, spanning from north and south, encompasses a 
multitude of climate types and a diverse array of ecosystems (Yu et al., 
2006, 2016). This provides both a data foundation and a platform for 
analyzing the spatial pattern of β. 

In recent years, numerous studies have focused on the factors 
influencing β on temporal scales or at small spatial scales. The results 
have shown that β is influenced by climate factors such as near-surface 
air temperature (Cho et al., 2012), ground temperature difference and 
vapor pressure deficit (Ren et al., 2022), precipitation (Tang et al., 2014; 
Gong et al., 2015), and soil factors such as soil water content (Jongen 
et al., 2011; Shang et al., 2015; Jiang et al., 2022; Alves et al., 2022). 
Many studies have also reported the relationship between β and LAI 
(Launiainen et al., 2016; Forzieri et al., 2020; Zhao et al., 2021; Chen 
et al., 2022). However, most studies regarding the influence of vegeta-
tion factors on β has been concentrated on temporal variations (Lau-
niainen et al., 2016; Forzieri et al., 2020; Chen et al., 2022; Ping et al., 
2018; Zhao et al., 2021), which limits our understanding of the domi-
nant factors contributing to the β spatial variation. Previous studies, 
such as that by Huang et al. (2021), constructed a valuable dataset for β 
in China by collecting β from literature. They pointed out that the spatial 
variation of β in China is primarily influenced by mean annual precipi-
tation (MAP), with no direct impact from leaf area index (LAI). How-
ever, vegetation, serving as a crucial link between the land surface and 
the atmosphere, controls the exchange of carbon, water, momentum and 
energy between them (Bonan et al., 1992; Bonan, 2008). Therefore, 
vegetation should have a strong direct control over β, but this is not 
confirmed by their study. Indicating that solely using LAI may not be 
sufficient to represent the vegetation characteristics of ecosystems. 
Additionally, as the key factors affecting vegetation variation, climate 
factors may indirectly affect β by affecting vegetation. 

Therefore, to investigate the role of vegetation factors in the spatial 
variation of β and provide a scientific understanding of ecosystem 
feedback to regional climate, this study incorporated more vegetation 
factors to reflect vegetation characteristics, and analyzed the dominant 
factors and formation mechanism of the spatial patterns of β in 
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terrestrial ecosystems in China based on the cascade effects among 
vegetation, soil, and climate factors by integrating sensible heat flux and 
latent heat flux data from 80 ChinaFLUX sites. 

2. Materials and methods 

2.1. Observation sites 

In this study, the sensible and latent heat data observed by the eddy 
covariance method from ChinaFLUX 2020 datasets were used to calcu-
late β, and the dataset contained 80 sites and 390 site-years, covering 
five ecosystem types: forest, grassland, wetland, cropland and desert 
(Fig. 1a, Table A1). The open-path eddy covariance (OPEC) system was 
used to measure sensible and latent heat fluxes at ChinaFLUX sites. The 
OPEC system consisted of a 3D ultrasonic anemometer (Model CAST3, 
Campbell Scientific Inc., USA) to measure three-dimensional wind speed 
and temperature fluctuations and an infrared gas analyzer (Model Li- 
7500, Li Cor Inc., USA) to measure CO2 and water vapor densities. All 
signals were sampled at a frequency of 10 Hz, and the H and LE fluxes 
were calculated and recorded at 30-min intervals by a CR5000 data-
logger (Model CR5000, Campbell Scientific Inc., USA). The meteoro-
logical variables, including solar radiation, air temperature, 
precipitation, soil temperature, and soil water content, were measured 
simultaneously at each site, and they were sampled at a frequency of 0.5 
Hz and recorded at 30-min intervals (Yu et al., 2006). 

2.2. Data collection and processing 

2.2.1. The calculation of β 
The fluxes and climate data were processed by the standard process 

of ChinaFLUX. Two-dimensional coordinate rotation was used to 
remove the influence of terrain. Then, WPL correction and stored item 
calculation of the storage terms were performed. For the nighttime flux 
data, the critical u* value was determined to eliminate the flux data 
under low turbulent flux. The minimum u* threshold is usually 0.1 m/s 
in forests and 0.01 m/s in low vegetation (Papale et al., 2006), and the 
u* threshold is usually between 0.1 m/s and 0.4 m/s (Reichstein et al., 
2005). The missing data were interpolated by the nonlinear fitting 
method. See Yu et al. (2006) for the detailed data processing procedure. 

In this study, β was calculated by the average annual H and LE ob-
tained after treatment by a standard process: 

β = H/LE (1) 

See appendices for calculations of sensible and latent heat fluxes. 

2.2.2. Climatic, soil, and vegetation data 
The observation of meteorological elements was synchronized with 

the observation of energy flux, and their original sampling frequency 
was 10 Hz, which was collected by the data harvesters (CR10X and 
CR23X, Campbell Scientific Inc., Logan, Utah, USA) and calculated and 
output 30-min statistics. The annual total downward shortwave radia-
tion (DSR), total net radiation (Rn), total photosynthetically active ra-
diation (PAR), and mean annual precipitation (MAP) of each ecosystem 
were obtained by the accumulation of 30 min of data during the 
observation period, and the annual values were obtained as multiyear 
averages. For sites that lacked meteorological data, we used the daily 
global weather dataset from the National Climatic Data Center (National 
Climate Data Center) (ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-lite/ 
, accessed using FileZilla) to obtain the surface of the Earth observation 
data. 

To provide a more comprehensive representation of vegetation 
characteristics in ecosystems, we chose both Leaf area index (LAI) to 
represent vegetation greenness and Fraction of vegetation cover (FVC) 
to represent the extent of vegetation cover. The LAI and FVC used in this 
study were based on the annual latitude and longitude information of 
390 site-years and were corresponding extracted by the Global Land 
Surface Satellite (GLASS) with a temporal resolution of 8 days and a 
spatial resolution of 500 m from 2002 to 2020. The average annual LAI 
and FVC values of each ecosystem were calculated. 

For comparing the differences in β between terrestrial ecosystems in 
China and those in other regions of the world, we calculated sensible 
heat and latent heat fluxes using the FLUXNET 2015 dataset to calculate 
β. After screening, we selected 104 sites in Europe, North America, and 
Oceania with observation times longer than 3 years and annual effective 
observation data greater than 75 %, which included 56 forest sites, 28 
grassland sites, 8 wetland sites, and 12 cropland sites. 

2.2.3. Energy closure analysis 
The energy balance ratio (EBR) is an important index used to eval-

uate data quality, which can be affected by many factors, such as rain-
fall, water vapor pressure deficit, and terrain (Wilson et al., 2002a; Cui 
and Chui, 2019), and directly affects the accuracy of data. In this study, 
the EBRs of the selected sites were evaluated using net radiation (Rn), 
sensible heat flux (H), latent heat flux (LE), and soil heat flux (G) data 
with a time scale of 30 min after screening. See Li et al. (2005) for the 
detailed screening procedure. The EBR was calculated by the following 
formula: 

EBR =
[∑

(LE+H)
]/[∑

(Rn − G)
]

(2) 

Fig. 1. Distribution (a) and climate distribution (b) of observation sites used in this study. TRO: Tropical monsoon rainforest; SUT: Subtropical evergreen broad- 
leaved forest; QTB- Qinghai-Tibet Plateau alpine meadow; WTM- Warm temperate deciduous broadleaved forest; TMD- Temperate desert; TMG-Temperate grass-
land; TEM-Temperate deciduous broad-leaved forest; CTM- Cold temperate deciduous coniferous forest. 
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The results showed that the EBR ranged from 0.54 to 1.07, with an 
average value of 0.81 ± 0.13 (Fig. A1). This result was consistent with 
the evaluation results of Li et al. (2005) on the energy closure of different 
sites in ChinaFLUX, indicating that the observation data had high 
quality. 

2.3. Statistical analysis 

In this study, linear regression was used to analyze the correlation 
between the Bowen ratio and geographical factors (latitude, longitude, 
and altitude), climate factors (net radiation, total downward shortwave 
radiation, mean annual temperature, mean annual precipitation, and 
water vapor pressure deficit), soil factors (soil temperature, soil water 
content) and vegetation factors (gross primary productivity and leaf 
area index). One-way analysis of variance (ANOVA) was used to test the 
significance of the β difference between different ecosystems in China. 
Two-way analysis of variance (ANOVA) was used to test the significance 
of the β difference among ecosystems and regions. The significance level 
was α< 0.05. Fisher’s LSD post hoc test was used for post hoc multiple 
comparisons. The canonical analysis method based on hierarchical 
segmentation theory applied in the R package rdaccp.hp was used in 
attribution analysis (Lai et al., 2022). This method established a math-
ematical connection between hierarchical segmentation and variational 
decomposition to evaluate the relative importance of explanatory vari-
ables in canonical analysis. To minimize the influence of multi-
collinearity among factors on the attribution analysis results, the mean 
annual soil temperature (MATs) was not considered in the attribution 
analysis due to the extremely high correlation coefficient between MAT 
and MATs (Table A2). 

Based on the attribution results, structural equation models were 
performed in IBM SPSS Amos 23 to evaluate the direct and indirect ef-
fects of climate, soil, and vegetation on β. Prior to constructing the 
structural equation model (SEM), we employed Principal component 
analysis (PCA) to reduce dimensionality for factors of the same type, 
such as climate and vegetation factors, and the first component after 
dimension reduction was used to represent each factor category and 
included as a variable in the structural equation model (Wang et al., 
2018). The chi-square value, P value, and GFI (goodness-of-fit index) 
value were selected to assess the goodness of fit of the model. 

3. Results 

3.1. Statistical characteristics of the Bowen ratio of terrestrial ecosystems 
in China 

The Bowen ratio (β) of terrestrial ecosystems in China ranged from 
0.06 to 2.37, with an average of 0.64 ± 0.47 (Fig. 2), and more energy 
was partitioned into latent heat than sensible heat. The β showed sig-
nificant variation among the five types of ecosystems (desert>-
grassland>forest>cropland>wetland). The β of the desert ecosystem 
was the highest (2.08 ± 0.17), which was significantly higher than that 
of the other ecosystems (P < 0.05, F4,76=44.16), and the energy parti-
tioned into sensible heat was twice as much as that into latent heat. The 
β for grassland ecosystems was 0.86 ± 0.37, which was significantly 
higher than that for forest, cropland, and wetland ecosystems. The β 
values for desert and grassland ecosystems were higher than those of 
terrestrial ecosystems in China. There was no significant difference in 
the β values among forest (0.44 ± 0.21), cropland (0.40 ± 0.25), and 
wetland (0.37 ± 0.11) (P > 0.05, F2,49=17.22), which all had lower 
values than the mean β of terrestrial ecosystems in China. 

The β significantly varied among continents due to the variation in 
global climate conditions and vegetation types. The variation of region 
and type has significant interaction effect on β (P = 0.047, F9,165=1.95) 
(Fig. 3). In general, the β values of all ecosystems in China (0.64 ± 0.47) 
were significantly lower than that of typical ecosystems in Europe (0.80 
± 0.45), North America (0.81 ± 0.50) and Oceania (1.63 ± 0.76) (P <

0.05, F3,165=6.78). The β values of forest (0.44 ± 0.22), wetland (0.37 
± 0.12) and cropland (0.40 ± 0.26) in China were significantly lower 
than those in Europe, while the values in grassland were not signifi-
cantly different from that in Europe (P > 0.05, F1,32=0.003), which 
reduced the total β. Similarly, the β in China was significantly lower than 
that in North America (P < 0.05, F1,105=2.85) because of the lower β of 
forest and cropland in China than that in North America, while there was 
no significant difference in grassland (P > 0.05, F1,35=1.53) and wetland 
(P > 0.05, F1,5 = 2.21) between the two regions. The β of Oceania forest 
(1.58 ± 0.93) (P < 0.05, F1,22=41.95) and grassland (1.66 ± 0.71) (P <
0.05, F1,29=11.88) was significantly higher than that of China, making 
the β of all ecosystems significantly higher than that of China. 

3.2. Spatial pattern of β of terrestrial ecosystems in China 

The β of terrestrial ecosystems in China exhibited significant lat-
itudinal patterns (Fig. 4a), β increased significantly with increasing 
latitude (P < 0.001, F1,78=11.13, R2 = 0.12), and that latitudinal pattern 
was observed in all types of ecosystems and was particularly pronounced 
in forests (P < 0.01, F1,20=10.52, R2 = 0.34) and croplands (P = 0.04, 
F1,22=4.72, R2 = 0.18). A 1◦ increment in latitude led to a 0.022 increase 
in β. The β of terrestrial ecosystems in China decreased with increasing 
longitude, but the β of forest and grassland showed the opposite pattern 
(Fig. 4b). The β increased with elevation, but the β values of grassland 
and desert showed the opposite altitudinal pattern; only cropland 
increased significantly with elevation (P = 0.04, F1,22=4.66, R2 = 0.17) 
(Fig. 4c). 

3.3. β across biomes and vegetation types over China 

Fig. 5 shows the distribution of the sites used in this study in 8 typical 
biomes (Fig. 5e), the β statistics of each region (Fig. 5f), and the β sta-
tistics of forest, grassland, wetland, and cropland ecosystems in different 
biomes (Fig. 5a, b, c, d). The β values of terrestrial ecosystems in China 
varied significantly among biomes due to the variation in vegetation 
types and climatic conditions. The highest β exhibited in TMG (1.05 ±
0.59) was significantly higher than that in other biomes except QTB 
(0.75 ± 0.21) and CTM (0.92) (P < 0.05, F7,72=4.941) (Fig. 5f). The 
lowest β was exhibited in TRO (0.28 ± 0.08). 

The β of each ecosystem type also varied significantly among biomes 
(Fig. 5a). The forest ecosystem sites were widely distributed in tropical 
to cold temperate zones, and β also showed significant variation among 

Fig. 2. Statistical characteristics of the Bowen ratio (β) in terrestrial ecosystems 
of China. The box represents the interquartile range (IQR), which spans from 
the 25th percentile to the 75th percentile of the data distribution. The line 
inside the box represents the median (50th percentile) of the data. The letters a, 
b, and c represent significant differences, with different letters indicating sta-
tistically significant differences (P < 0.05). SD stands for standard deviation. 
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zones. The β of the forest ecosystem was the highest in CTM (0.92) and 
significantly higher than that in TEM (0.47 ± 0.049), SUT (0.36 ± 0.19), 
and TRO (0.28 ± 0.11) (P < 0.05, F5,16=4.325), but there was no sig-
nificant difference between TMD, TEM, WTM, and SUT (P > 0.05, 
F3,46=2.94). 

Grassland ecosystem sites were mainly distributed in the QTB and 
TMG (Fig. 5e), and β decreased from the TMG to the SUT, but there was 
no significant difference between zones (P > 0.05, F4,20=0.77) (Fig. 5b). 
Wetland ecosystem sites were distributed in the TMD, QTB and SUT 
(Fig. 5e), and β was the highest in the QTB (0.46 ± 0.11), followed by 
the TMD (0.34 ± 0.11) and SUT (0.25). There was no significant vari-
ation in β among bimoes (P > 0.05, F2,2 = 1.44) (Fig. 5c). 

Cropland ecosystem sites were distributed in the TMD, TMG, QTB, 
WTM, and SUT and were more concentrated in the WTM, and β was the 
highest in the QTB (0.74) (Fig. 5d), which was significantly higher than 
that in the SUT (0.17 ± 0.093) (P < 0.05, F4,19=1.836). There was no 
significant difference in the β between TMG (0.50 ± 0.40), TMD (0.44 ±

0.056) and WTM (0.42 ± 0.25) (P > 0.05, F2,15=0.13). 

3.4. The correlation between β and climate, soil and vegetation factors 

Fig. 6 shows the correlation between β and the major climatic factors, 
soil factors and vegetation factors. Although there was no statistical 
significance between β and Rn, a highly statistically significant positive 
correlation was found between β and the downward shortwave radiation 
(DSR) (P < 0.001, F1,78=21.39, R2 = 0.22), that trend was significant in 
croplands (P = 0.017, F1,22=6.64, R2 = 0.2). 

The β of terrestrial ecosystems presented a highly statistically sig-
nificant negative correlation with mean annual temperature (MAT) (P <
0.001, F1,78=11.86, R2 = 0.12) and mean annual precipitation (MAP) (P 
< 0.001, F1,78=14.72, R2 = 0.14) (Fig. 6c, d). β decreased with increases 
in MAT and MAP. β showed a statistically significant correlation with 
MAT in forest (P < 0.001, F1,20=16.79, R2 = 0.42)and cropland (P <
0.001, F1,22=16.41, R2 = 0.4) ecosystems and with MAP in grassland (P 

Fig. 3. Statistical characteristics of the Bowen ratio (β) in typical ecosystems in different countries and regions. The error bar represents the standard deviation.  

Fig. 4. Spatial pattern of β of terrestrial ecosystems in China. NS is the abbreviation of no significance, meaning that P > 0.05.  
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< 0.001, F1,23=6.56, R2 = 0.15) and desert ecosystems (P = 0.027, F1,2 
= 34.91, R2 = 0.92). There was a statistically significant positive cor-
relation between the β of the terrestrial ecosystem and the vapor pres-
sure deficit (VPD) (P < 0.001, F1,78=12.46, R2 = 0.13) (Fig. 6f). 

The β of terrestrial ecosystems showed a statistically significant 
negative correlation with soil water content (SWC) (P < 0.001, 
F1,78=24.28, R2 = 0.23) and mean annual soil temperature (MATs) (P <
0.01, F1,78=11.08, R2 = 0.13) (Fig. 6f, g). With a 0.1 increase in SWC and 
a 1 ◦C increase in MATs, β decreased by 0.214 and 0.026, respectively. 
There was a positive correlation between β and SWC in forest and 
wetland ecosystems under long-term humid conditions. The β values of 
cropland ecosystems was significant negatively correlated with SWC (P 
= 0.016, F1,22=6.69, R2 = 0.23), the slope of the cropland ecosystem 
was the highest. Similar to the relationship between β and MAT, the 
correlation between β and MATs was statistically significantly negative 

in forest (P < 0.001, F1,20=15.39, R2 = 0.44) and cropland (P < 0.001, 
F1,22=20.55, R2 = 0.48) ecosystems. 

As the leaf area index (LAI) (P < 0.001, F1,78=18.92, R2 = 0.18) and 
the fractional vegetation cover (FVC) (P < 0.001, F1,78=25.71, R2 =

0.36) increased, the β had a statistically significant linear decreasing 
trend. β of forest ecosystems had a statistically significant linear 
decreasing trend with LAI (P = 0.015, F1,20=7.06, R2 = 0.26) and FVC (P 
= 0.012, F1,20=7.56, R2 = 0.27). β had a statistically significantly 
negative correlation with LAI (P = 0.04, F1,22=4.54, R2 = 0.17) and FVC 
(P = 0.035, F1,22=5.04, R2 = 0.19) in cropland ecosystems. According to 
the correlation between the β and LAI or FVC in different types of eco-
systems, we found that the β of the desert ecosystem with the lowest LAI 
and FVC was the most sensitive to LAI and FVC changes because it had 
the absolute value of the highest slope. 

Fig. 5. Statistical characteristics of the Bowen ratio (β) of forest (a), grassland (b), wetland (c) and cropland (d) in China in different biomes, the Chinese vegetation 
map (Vegetation Map of the People’s Republic of China (1:1,000,000)) and site distribution used in this study (e), statistical characteristics of β of different biomes (f). 
The colors of the columns in the bar chart correspond to the colors of the partitions in panel e. TRO: Tropical monsoon rainforest; SUT: Subtropical evergreen broad- 
leaved forest; QTB- Qinghai-Tibet Plateau alpine meadow; WTM- Warm temperate deciduous broadleaved forest; TMD- Temperate desert; TMG-Temperate grassland; 
TEM-Temperate deciduous broad-leaved forest; CTM- Cold temperate deciduous coniferous forest. 
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3.5. Impact of climate, soil and vegetation factors on the spatial patterns 
of β 

Attribution analysis showed that the contribution of SWC to the 
spatial variation in β was the highest (26.95 %), followed by FVC (22.61 
%), and the contribution of MAT was the lowest (4.99 %). Adding up the 
contributions of different types of factors separately, we found that 
climate factors had the highest total relative contribution (37.34 %), 
followed by vegetation factors (35.72 %), and soil factors had the lowest 
relative contribution (26.95 %). Climate, soil, and vegetation factors 
jointly explained 53 % of the spatial variation in β (Fig. 7a). 

The dominant factors of the spatial variation in β varied among 
ecosystem types. MAT dominated the spatial variation in β in forest and 
cropland ecosystems, contributing 39.74 % and 32.58 %, respectively. 
In grassland ecosystems, the spatial variation in β was dominated by 
MAP, which contributed 40.85 % (Fig. 7b). Vegetation factors played a 
dominant role in temperate grassland and subtropical evergreen broad- 

leaved forest zones. However, in regions characterized by limited 
moisture or temperature conditions, such as temperate desert areas and 
the Tibetan Plateau, soil moisture content plays a predominant role in 
the spatial variation in β, surpassing the influence of vegetation factors 
(Fig. 7c). 

Fig. 7d shows the structural equation model of influencing factors of 
the spatial variation in β constructed with the results of importance 
ranking as a reference, and the explanatory skill of the model reached 
0.46. We found that climate factors composed of MAT, MAP, and VPD 
increased significantly with decreasing DSR. The increase in climate 
factors led to a significant increase in SWC due to the complementary 
effect of MAP on SWC. Under the combined influence of climate factors 
and SWC, the FVC and LAI of terrestrial ecosystems were significantly 
promoted. With the increase in vegetation factors and soil water content, 
the β decreased significantly. Vegetation factors (LAI and FVC) exhibited 
the highest direct effects (− 0.42) on β, while climate factors (MAT, MAP, 
and VPD) had the highest indirect effects (− 0.43). Soil water content 

Fig. 6. Linear relationship between the β values of terrestrial ecosystems and climatic, soil and vegetation factors in China.  
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(SWC) showed the highest total effects (Fig. 7e). 

4. Discussion 

4.1. Statistical characteristics of β in terrestrial ecosystems in China 

In this study, the significant differences in β between different 
ecosystem types and regions revealed the influence of climate, soil, and 
vegetation factors on β. We found that the β values of wetland, forest and 
cropland ecosystems with higher SWC, LAI and FVC were significantly 
lower than those of grassland and desert ecosystems (Fig. 2, Fig. A2a, b). 
This pattern may be attributed to the fact that ecosystems with high LAI 
and FVC favored vegetation consumption of energy through transpira-
tion, and evapotranspiration had a large demand for water, which could 
be compensated for by high SWC, leading to increases in the partitioning 
of latent heat (Guo et al., 2020; Xu et al., 2020). Moreover, the increase 
in SWC promoted evaporation and thus increased the partitioning of 
latent heat, ultimately leading to a decrease in β. This also indicated the 
crucial role of vegetation and soil water content in regulating the par-
titioning of energy. 

The variations in β among typical ecosystems in different regions 
highlight the indirect regulatory influence of climatic factors on β. The β 
values in Chinese forest ecosystems, which are widely distributed in 
tropical, subtropical, and warm-temperate regions at lower latitudes, 
were significantly lower than those in Europe, North America, and 
Oceania (Fig. 3, Fig. A3). Because of the elevated temperature and hu-
midity, vegetation experiences longer growing seasons (Lian et al., 
2022) and greater transpiration capabilities (Chen et al., 2019; Jin et al., 
2020), enabling vegetation to allocate more energy toward latent heat. 
Although the vast majority of Oceania is in tropical and subtropical 

regions, the partitioning of latent heat of the ecosystems was still limited 
because more than half of the land was arid and the overall annual 
precipitation was low. More energy was partitioned into sensible heat, 
so the β of typical ecosystems in Oceania was significantly higher than 
that of China. Furthermore, the uneven spatial distribution of the sites 
used in this study influenced the differences in β values among different 
regions and introduced uncertainty. Collecting more β data from liter-
ature reports or combining site and satellite observations may reduce 
uncertainty. 

4.2. Spatial variation in β of terrestrial ecosystems in China 

Chinese terrestrial ecosystems exhibited an increasing trend in β with 
increasing latitude, a geographical distribution pattern that was previ-
ously observed in earlier studies (Huang et al., 2021). Previous research 
on the primary factors contributing to this latitudinal pattern has often 
emphasized the role of climate factors, such as precipitation, air tem-
perature and vapor pressure deficit (Cho et al., 2012; Zhang et al., 2014; 
Huang et al., 2021). However, this study revealed that while climate 
factors did contribute to the β spatial variation to some extent, the 
majority of their impact was indirect, mediated through their influence 
on vegetation and soil factors. Climate and vegetation distribution are 
closely intertwined. Along latitudinal gradients, variations in tempera-
ture, uneven rainfall patterns, and changes in atmospheric aridity 
determine vegetation types. Simultaneously, changes in soil water 
content further influence vegetation structure and activity (Woodward 
and Williams, 1987; Peñuelas et al., 2009; Ge et al., 2021; Lian et al., 
2022). Consequently, the latitudinal variation in vegetation and soil 
moisture conditions leads to shifts in ecosystem types along latitudinal 
gradients. Simultaneously, ecosystem evapotranspiration, which serves 

Fig. 7. The importance of factors affecting the Bowen ratio of terrestrial ecosystems in China (a) and their importance in different ecosystem types (b) and vegetation 
zones (c). The structural equation of β spatial variation (d) and the effects of each factor (e). In panel d, single-headed arrows indicate the hypothesized direction of 
causation. The arrow width is proportional to the strength of the relationship. Bidirectional arrows indicate the correlation between variables. The vertical arrow to 
the right of each variable indicates its correlation with β. Red and green arrows indicate positive and negative relationships, respectively. The numbers adjacent to 
arrows are standardized path coefficients, and the number in the upper right corner of each variable in the model represents the degree of explanation for each 
variable. Double-layer rectangles of Climate represent the first component from the PCA conducted for MAT, MAP and VPD. Double-layer rectangles of Vegetation 
represent the first component from the PCA conducted for FVC and LAI. *P < 0.05, **P < 0.01, ***P < 0.001. 
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as a key regulator of surface energy partitioning processes, undergoes 
significant changes. With increasing latitude, there is a substantial 
reduction in ecosystem evapotranspiration (Zheng et al., 2016; Fan 
et al., 2022; Du et al., 2022). This reduction in latent heat allocation 
results in an increase in β. 

In addition to the regulatory role of climate factors, changes in 
vegetation types along latitudinal gradients are a significant factor 
contributing to the latitudinal pattern of β. The transition in vegetation 
zones and site distributions from low to high latitudes revealed a gradual 
shift from more forested and farmland sites to an increasing number of 
grassland sites (Fig. 5f), resulting in a significant change in β values. 

4.3. Vegetation dominates the direct effects to the spatial variation in the 
β of terrestrial ecosystems in China 

Both climate and vegetation factors play an undeniable role in the 
spatial variation of β (Fig.7a, e). However, climate factors such as tem-
perature, precipitation, and atmospheric aridity are closely coupled. In 
this relationship, climate factors exerted an indirect influence on β 
through vegetation and soil, as also evident in Fig. 7b. When vegetation 
types were consistent, the contributions of vegetation and soil factors 
decreased, while climate factors such as temperature and precipitation 
exhibited higher contributions (Fig. 7b). This implies that the vegetation 
characteristics of the ecosystem (LAI and FVC) play a crucial role in the 
surface energy partition. This is because the carbon, water, and energy 
balance processes of terrestrial ecosystems are highly interrelated, with 
plant leaves being a key mediator closely associated with these processes 
(Yu et al., 2013a; Yu et al., 2014). Therefore, with higher coverage and 
greenness, vegetation transpiration capacity increases, leading to higher 
latent heat partition (Forzieri et al., 2020; Yuan et al., 2021), resulting in 
lower β. Additionally, the impact of LAI and FVC on energy partition is 
also reflected in their influence on surface albedo. Higher LAI and FVC 
increased absorption of net shortwave radiation at the surface, leading 
to higher surface temperatures within the ecosystem and ultimately 
increasing latent heat partition, resulting in lower β (Bonan, 2008; Zeng 
et al., 2017; Piao et al., 2019). 

This mechanism of climate-shaped vegetation affecting surface en-
ergy partition can also be found in Fig. 5f. Different biomes represent 
typical vegetation types formed under different climate and humidity 
conditions, and β exhibits significant variations among biomes. 

This study highlights the critical role of vegetation in surface energy 
partitioning and the significance of the Bowen ratio within this context. 
However, there are still topics worthy of further investigation. For 
example, this study identified the crucial roles of FVC and LAI in surface 
energy partition, but the control exerted by stomata on energy distri-
bution was not characterized. Further studies could delve into the 
impact of vegetation on surface energy partition by considering factors 
such as stomatal characteristics and even biomass variations. Further-
more, the impact of energy non-closure on β was not considered in this 
study. Although previous research has suggested its relatively small ef-
fect on β (Huang et al., 2021), the accurate correction of sensible and 
latent heat fluxes and the reduction of uncertainty in β still merit further 
investigation, thereby providing a more comprehensive understanding 
of surface energy balance processes. 

5. Conclusions 

Based on the long-term observation data of latent and sensible heat 
flux at 80 ChinaFLUX sites, this study calculated the β and analyzed the 
differences and dominant factors of the spatial variation in β. The results 
indicated that the β value for Chinese terrestrial ecosystems was 0.64 ±
0.47, which was significantly lower than that of typical ecosystems in 
Europe, North America, and Oceania. The β showed a significant lat-
itudinal pattern and increased linearly with increasing latitude, and the 
rate of increase was different among different ecosystems. The spatial 
variation in β was directly determined by vegetation and soil factors and 

was dominated by climate-shaped vegetation factors, while climate 
factors indirectly affected the spatial variation in β by regulating vege-
tation and soil factors. The contribution of vegetation factors varied with 
the variation in climate and soil conditions, which showed that it 
gradually decreased from the hot and humid subtropical evergreen 
broad-leaved forest region to the low-temperature arid temperate desert 
region, while the contribution of SWC increased and even became the 
dominant factor affecting the spatial variation in β over the temperate 
desert zone and Qinghai-Tibet Plateau. 

The results of this study advanced the understanding of the ecolog-
ical meaning of the Bowen ratio, discovered the controlling role of 
vegetation in the process of surface energy partitioning, and revealed 
the law and mechanism of spatial variation in the energy balance and 
distribution over terrestrial ecosystems. In addition, this study empha-
sized the importance of the Bowen ratio as a key parameter to charac-
terize the biophysical feedback effects of ecosystems on regional climate 
in the context of global climate change. 
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