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Abstract: The mountainous region of southwest China has the largest karst geomorphology in
China and in the world. Quantifying the forest aboveground biomass in this karst region is of great
significance for the investigation of carbon storage and carbon cycling in terrestrial ecosystems. In this
study, the actual measured aboveground biomass was calculated based on the allometric functions
of 106 quadrats from 2012 to 2015. A backpropagation artificial neural network (BPANN) inversion
model was constructed by combining very high-resolution satellite imagery, field inventory data, and
land use/land cover data to estimate the forest aboveground biomass in the Banzhai watershed, a
typical peak–cluster karst basin in southern Guizhou Province. We used 70% of the actual measured
aboveground biomass for training the BPANN model, 20% for accuracy verification, and 10% to
prevent overtraining. The results show that the absolute root mean square error of the BPANN model
was 11.80 t/ha, which accounted for 9.92% of the mean value of aboveground biomass. Based on the
BPANN inversion model, the average value of the forests’ aboveground biomass was 135.63 t/ha.
The results showed that our study presented a quick, easy, and relatively high-precision method for
estimating forest aboveground biomass in the Banzhai watershed. This indicates that the Pléiades
image-based BPANN model displayed satisfactory results for estimating the forests’ aboveground
biomass in a typical peak–cluster karst basin. This method can be applied to the estimation of forest
AGB in the karst mountainous areas of southwest China.

Keywords: backpropagation artificial neural network; forest aboveground biomass; karst landform

1. Introduction

Forests absorb most of the atmospheric carbon and have a considerable impact on the
amount of carbon dioxide in the atmosphere and its year-to-year variation [1,2]. However,
due to continued forest loss and climate change, it could soon also be a source of carbon [3,4].
The aboveground biomass (AGB) is the largest carbon pool and changes most rapidly after
disturbance. The AGB is important for characterizing the Earth’s climate system and is
therefore considered an important climate variable [5]. Quantifying forest AGB for the
investigation of carbon storage and carbon cycling in terrestrial ecosystems is required for
fighting climate change [6,7].

Forests 2023, 14, 1760. https://doi.org/10.3390/f14091760 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f14091760
https://doi.org/10.3390/f14091760
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0003-4222-3117
https://orcid.org/0000-0001-5411-7050
https://doi.org/10.3390/f14091760
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f14091760?type=check_update&version=1


Forests 2023, 14, 1760 2 of 15

Traditional field measurements and remote sensing technology are two commonly
used methods in forest AGB estimation [8,9]. Traditional methods cannot be applied to
large areas because they are time-consuming and laborious [10–12]. By comparison, remote
sensing technology can effectively estimate the forest AGB in a non-destructive way at
multiple temporal and spatial scales [4,13]. Low- or middle-resolution remote sensing
images are widely used among them [14–16]. Radar and SAR are used to predict forest
AGB [17–19]. However, they are affected by terrain, surface moisture, and speckle noise
and are difficult to map accurately in densely forested areas [4,20].

Lidar works well for estimating forest AGB because it can obtain more accurate forest
height information [21,22]. Meanwhile, lidar data sets are only available in discontinuous
footprints and sparsely along strips when using satellite sources of lidar [4]. In addition,
the high cost also limits its application in large areas [13,23]. Numerous studies have
demonstrated that hyperspectral imagery [24,25], multiangular remote sensing data [26,27],
and very high-resolution satellite imagery (Pléiades, QuickBird, IKONOS, WorldView,
GeoEye, etc.) combined with field inventory data have been successfully applied to
estimate forest AGB, even for forest ecosystems with complex structures [28–30]. Currently,
unmanned aerial systems (UAS) provide a tool for estimating forest AGB, which is an ideal
complement to the existing ground- and satellite-based methods [31,32]. However, terrain
models from UAS imagery of dense vegetation canopies, no matter which method, likely
contain inaccuracies that bias structural metrics [31]. Therefore, scholars began combining
multiple remote sensing data sources to provide more accurate forest AGB estimates [33–35]
and encountered significant difficulty with spatial misalignment, which can cause problems
for AGB estimation [4]. Scholars have conducted a comprehensive review of the existing
literature in order to identify the most effective method for estimating AGB. The results
show that there is no recognized best method for estimating forest AGB [4,8,27]. In addition,
research shows that backpropagation artificial neural networks (BPANN) can estimate the
forest AGB more accurately than the common methods of the multifactor parametric model
and the single-factor parametric model [27,36,37].

The karst landscape of southwestern China is one of the most typical landscapes devel-
oped on carbonate bedrock in the world [38], especially in Guizhou Province, where large
areas of karst landscapes are continuously and broadly distributed. Therefore, quantifying
the spatial pattern of forest AGB, detecting changes occurring, and understanding their key
drivers in the Karst Mountains is of great significance to improving the accuracy of forest
AGB estimation and understanding the importance of karst ecosystems to the carbon cycle
of terrestrial ecosystems [16,39]. However, most of the studies on forest AGB in the Karst
Mountains have relied on limited methodologies. These include small area quadrats, a
small number of forest quadrats [40,41], the National Forest Continuous Inventory (NFCI)
data [42–44], and low- or middle-resolution satellite images [45,46], which were unable to
estimate forest AGB precisely in karst regions [4]. Only a few studies focused on forest
AGB based on high-resolution satellite images in the Karst Mountains area. Qian et al. [42]
estimated the forest AGB by combining Sentinel-1A, Landsat 8 OLI, and NFCI data in
Guizhou Province. They pointed out that although the problems of underestimation and
overestimation have been partially solved, there were problems when the biomass was
greater than 150 t/ha and less than 10 t/ha. Guo et al. [47] estimated the forest AGB in
a typical plateau karst basin by combining Pléiades satellite imagery and field inventory
data in Central Guizhou Province. According to that research, the BPANN inversion model
exhibited satisfactory results for predicting forest AGB in typical plateau karst regions.
However, previous studies have shown that the spatial distribution pattern of forest AGB in
karst mountainous areas of Guizhou has strong variability, and the coefficient of variation
reaches 163% [48].

Therefore, the accuracy of forest AGB predictions for carbon and environmental
monitoring in the other karst landforms (e.g., peak–cluster karst landform, trough valley
karst landform, canyon karst landform) should be enhanced. In this study, a BPANN model
was constructed by combining very high-resolution satellite imagery and field inventory
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data for forest AGB mapping in the Banzhai watershed. This study aims to (1) analyze
the spatial distribution pattern of forest AGB in typical peak–cluster karst regions and
(2) explore a suitable model that can be used for estimating forest AGB in karst landscape
areas of southwest China.

2. Materials and Methods
2.1. Study Area and Field Sampling

This study was conducted in the Maolan National Natural Reserve (25◦09′–25◦21′ N,
107◦52′–108◦05′ E) [49], located in Libo County, southern Guizhou Province, southwestern
China (Figure 1a). The reserve is a typical peak–cluster karst depression landscape in a
mountainous area covered by dolomite and limestone. It has an altitude ranging from
430 to 1082 m and is the largest and most well-preserved native karst forest ecosystem
surviving in the world, where the exposed rocks can be found widely. The black limestone
soils are shallow and discontinuous, but they are nutrient- and calcium-rich. However,
soil moisture can easily leak through rock voids, causing specific droughts if there is not
enough rainfall [50].
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Figure 1. (a) Location and field quadrat sites; (b) elevation; (c) physiognomy; and (d) vegetation
structure of the Banzhai watershed.

The annual average temperature is 15.3 ◦C. The average annual precipitation is
1750 mm, and rainfall is mainly concentrated from April to October. The average annual
sunshine time is only 1272 h. The karst topography, with its humid and warm monsoon
climate and specific edaphic and rocky microhabitats, makes the vegetation in this area
different from other subtropical regions.

Evergreen trees mixed with a certain proportion of deciduous trees in the canopy
and sub-canopy constitute a typical karst forest, which is a non-zonal soil climax widely
distributed in the subtropical regions of southwest China. The dominant tree species of the
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forests include Platycarya strobilacea, Pistacia chinensis, Celtis tetrandra, Acer cinnamomifolium,
Clausena dunniana, Cyclobalanopsis glauca, Pittosporum glabratum, and Symplocos adenophylla.
Abundant biodiversity and rich, rare species (Paphiopedilum micranthum, Paphiopedilum barbi-
gerum, Paphiopedilum emersonii, Taxus chinensis, Handeliodendron bodinieri, Manis pentadactyla,
Syrmaticus ellioti, Ursus thibetanus, Panthera pardus, Moschus berezovskii, Macaca thibetana,
etc.) can be found in this karst forest [51]. The Banzhai watershed is a typical basin in the
peak–cluster karst landform area. While the study area was about 8443 hectares in this
research, the average elevation is 827 m (Figure 1b). The physiognomy and vegetation
structure of the Banzhai watershed are shown in Figure 1, encompassing parts c and d.

2.2. Processing of Pléiades Images

The Pléiades-1 satellite captures high-resolution remote sensing images. The Pléiades-
1 satellite was successfully launched on 17 December 2011. Pléiades-1 has a panchromatic
(pan) band (0.5 m resolution) and four multispectral bands (2 m resolution): near-infrared,
blue, green, and red. We obtained the high-resolution Pléiades-1 satellite imagery on
28 May 2014 under clear weather conditions. The digital elevation model (DEM) data were
derived from SPOT-5 images (10 m resolution).

The preprocessing of the Pléiades-1 satellite imagery includes image cropping, ra-
diation calibration, geometric correction, atmospheric correction, and image fusion. All
of the preprocessing was performed using ENVI 5.3 software. For details about image
preprocessing, refer to previous studies [47,51].

2.3. Vegetation Indices Derived from Pléiades-1 Images

The vegetation index (VI) has been widely used for estimating forest AGB [28]. Firstly,
various VIs, such as ARVI (atmospherically resistant vegetation index), NDVI (normal-
ized difference vegetation index), SAVI (soil-adjusted vegetation index), GNDVI (green
normalized difference vegetation index), EVI (enhanced vegetation index), DVI (difference
vegetation index), RVI (ratio vegetation index), etc., were derived from the Pléiades-1
imagery. The geomorphological variables (elevation, slope, aspect, etc.) were derived from
the DEM using ENVI 5.3 software. Then, only the variables significantly associated with
forest AGB were considered for further analysis. Finally, a total of 11 variables (NDVI,
GNDVI, ARVI, SAVI, EVI, DVI, RVI, LULC, slope, red band, and blue band) were used as
input variables to construct the BPANN inversion model in this research. The VI formulas
were reported in the previous study [47].

2.4. Interpretation of Pléiades-1

In this study, we mainly focused on the estimation of the forest’s AGB. The inter-
pretation of Pléiades-1 satellite imagery was based on 352 field inventory data and GPS
coordinates. Half of the samples (176) were used to construct the classification models,
while the other half (176) were used to validate them using the confusion matrix. The
pan-sharpening method was used to fuse the panchromatic and multispectral bands of
the Pléiades-1 images. Then, the multi-resolution segmentation algorithm was used to
generate image objects in the eCognition Developer 9.0 software package.

In our study, the average values of the VIs (NDVI, EVI, SAVI), geomorphological
attributes (DEM, elevation, slope), spectral bands of Pléiades-1, and textural features (shape
index, width, length/width, contrast, homogeneity, correlation, etc.) were selected as
the input parameters. According to the input characteristics and measured samples, the
classifier was trained and built using a random forest algorithm. Finally, six categories
of land use/land cover (LULC) (Figure 2) were classified according to the classification
system of GlobeLand30 [52], including forests, shrubland, tussock, farmland, construction
land, and water.

The confusion matrix was used for evaluating the interpretation accuracy of LULC
based on the field inventory data and GPS coordinates. The accuracy assessment showed
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that the total accuracy was 0.91 and the kappa value was 0.91. The result indicated that our
interpretation and classification were acceptable.
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2.5. Field Forest AGB Collection

A total of 106 field quadrats from 2012 to 2015 (Figure 1a) were collected in the Banzhai
watershed [38,53,54]. There were 70 forest quadrats (20 m× 30 m or 30 m× 30 m), 20 shrub-
land quadrats (10 m × 10 m or 10 m × 20 m), and 16 tussock quadrats (10 m × 10 m).

The AGB of each plant in all of the field quadrats was calculated using allometric
equations, which were developed using the standard tree method in this study region
or surrounding areas [53,55]. In this study, the forest aboveground carbon storage was
estimated using the average carbon concentration (48.05%) of wood and leaves in the karst
landscape region of Guizhou [54].

2.6. BPANN Model Building

Studies have shown that artificial neural networks can deal with non-linear relation-
ships effectively [56]. Among them, the BPANN has been widely used because a learning
approach based on the least mean square error was used to overcome XOR (exclusive or)
and other problems, including correlation among the input data [57]. In this study, the
BPANN model was constructed based on eleven variables (NDVI, ARVI, GNDVI, EVI,
SAVI, DVI, RVI, LULC, slope, red band, and blue band) as the input and the AGB as the
output. A total of 70% of the AGB samples were used for training the BPANN model, 20%
were applied to accuracy verification, and 10% were applied to prevent overtraining. The
BPANN model training and validation were carried out using the MATLAB 2016a Neural
Network Toolbox.

By comparing the root mean square error of the simulated and measured AGB, the
main tuning parameters of the BPANN were continuously tuned to determine the optimal
inversion model. The parameter settings have been introduced in detail [51]. Finally, the
BPANN inversion model was used for estimating the overall AGB based on the 11 selected
variables in the Banzhai watershed, and spatial mapping of the AGB in the Banzhai
watershed was carried out.

3. Results
3.1. Performance of BPANN Model

The BPANN inversion model exhibited high simulation accuracy. The results showed
that the average training R was 0.97, the average validation R was 0.89, the average test R
was 0.92, and the average R in the whole dataset was 0.95 (Figure 3). The calculated root
mean square error based on the measured and simulated AGB was 11.80 t/ha, which is
only 9.92% of the average AGB. The correlation analyses of the actual measured AGB and
simulated AGB are shown in Figure 4. All of the results indicate that the BPANN model
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designed in our study exhibited high precision and was suitable for predicting the forest
AGB well in the Banzhai watershed.
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3.2. VIs and Actual Measured AGB

The values of VIs, slope, red band, blue band, and the actual measured AGB are shown
in Table 1. It is obvious that there was a positive correlation between VIs and the AGB,
but there was a negative correlation between spectral bands (red and blue) and the AGB.
The highest values of the seven VIs and actual measured AGB were focused on the forests,
while the lowest values were mainly detected in the tussock.

The seven VI maps of the Banzhai watershed (Figure 5a–g) were derived from the
Pléiades-1 image. As shown in Figures 2b and 5a–g, the seven VIs maps followed the same
trends: the majority of high values of the seven VIs were focused on the southeast and east,
and most of the low values appeared in construction land. Meanwhile, a small number of
intermediate values can be found almost throughout the study area. These spatial patterns
were highly related to the distribution of LULC types in the study area.
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Table 1. Input variables and the actual measured AGB (mean ± standard error) of the field quadrats.

Variable Forests Shrubland Tussock

ARVI 0.65 ± 0.05 0.56 ± 0.10 0.53 ± 0.10
DVI 0.23 ± 0.05 0.19 ± 0.03 0.18 ± 0.03
EVI 0.50 ± 0.10 0.41 ± 0.07 0.39 ± 0.07

GNDVI 0.56 ± 0.05 0.51 ± 0.04 0.49 ± 0.05
NDVI 0.63 ± 0.05 0.56 ± 0.07 0.53 ± 0.07
RVI 4.50 ± 0.70 3.63 ± 0.62 3.47 ± 0.65

SAVI 0.40 ± 0.06 0.33 ± 0.05 0.32 ± 0.06
Slope angle 33.35 ± 10.89 36.54 ± 13.72 24.37 ± 16.44
Red band 649.66 ± 111.57 725.01 ± 125.36 797.92 ± 131.27
Blue band 716.19 ± 33.22 727.35 ± 45.39 765.22 ± 49.56

Average AGB (t/ha) 139.63 ± 49.69 38.29 ± 12.85 18.71 ± 6.72
AGB range (t/ha) 60.92–261.15 21.98–58.26 4.93–27.00

Note: ARVI (atmospherically resistant vegetation index); DVI (difference vegetation index); EVI (enhanced
vegetation index); GNDVI (green normalized difference vegetation index); NDVI (normalized difference veg-
etation index); RVI (ratio vegetation index); SAVI (soil-adjusted vegetation index). The red band and blue
band represent the reflectance values of the red band and blue band of Pléiades imagery, respectively. AGB
(aboveground biomass).
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3.3. Spatial Pattern of Simulated AGB

The simulated AGB map of the Banzhai watershed was carried out based on the
BPANN inversion model (Figure 5h). As shown in Figure 5h, the simulated AGB showed a
similar spatial pattern to the vegetation index, especially at high altitudes (Figure 1b). The
spatial distribution patterns of these simulated AGBs are also related to the LULC type
(Figure 2).

The simulated AGB maps of different vegetation types are shown in Figure 6a–d. As
shown in Figure 6, the simulated AGB exhibited the following spatial patterns: Most of
the high values of the simulated AGB were mainly concentrated in forests (Figure 6a),
and the medium values were mainly distributed in shrubland (Figure 6b). In contrast,
the low values appeared in tussock (Figure 6c) and farmland (Figure 6d). As shown in
Figures 1 and 6, it is obvious that the patterns of the simulated AGB were almost consistent
with the distributions of elevation in the Banzhai watershed.

The details of the simulated AGB and the area ratio of different vegetation types are
shown in Table 2.

Table 2. Simulated AGB of different vegetation types in the Banzhai watershed.

Vegetation Types Forests Shrubland Tussock Farmland

Average AGB (t/ha) 135.63 39.80 10.93 11.08
AGB range (t/ha) 59.00–238.00 11.00–57.00 2.00–15.00 0.00–30.00

Total AGB (t) 86,8746.70 41,500.85 3471.88 7051.47
Area (ha) 6405.21 1042.73 317.74 636.46

Area ratio (%) 75.86 12.35 3.76 7.54
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3.4. Spatial Pattern of AGB in Different Slopes

The simulated AGB maps of different slope gradients are shown in Figure 7a–f. As
shown in Figure 7, high simulated AGB values were mainly exhibited at high slope angles
(slope III, slope IV, slope V, and slope VI) on hilltops, with a simulated AGB average value
of 213.05± 37.50 t/ha in the slope angle range from 16◦ to 35◦ (Figure 7c,d). The forests and
shrubs in this study area were also mainly distributed here. Moreover, there were still some
high AGB values (average 235.73 ± 33.02 tons/ha) on the steep slope at the mountain crest
(above 36◦) (Figure 7e,f), where the forests were also relatively well protected. Meanwhile,
the low values (with an average of 99.27 ± 29.17 t/ha) mainly appeared in the low slope
angle range from 0 to 15◦ (slope I and slope II) (Figure 7a,b), where construction land or
farmland was widely distributed. It is obvious that elevation and slope were the decisive
factors for the spatial distribution pattern of land use.

The total AGB was 0.921 Tg based on the BPANN model in the Banzhai watershed,
with an area of 8443 ha. Among them, the forests’ AGB was 0.869 Tg, which accounted for
94.35% of the total AGB in the basin.
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4. Discussion

The mountainous region of southwest China is the largest karst geomorphology in
China and even in the world [38], especially in Guizhou Province, where the most typical
and complex karst landforms are widely distributed. Therefore, quantitative research and
analysis on the spatial pattern of its forest’s AGB and detecting changes occurring in the
Karst Mountains of Guizhou are of great significance to understanding the importance of
karst ecosystems to the carbon cycle of terrestrial ecosystems [15,30].
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Many scholars have used various data and methods to estimate the forest AGB in
Guizhou Province. Zheng et al. [58] constructed an AGB inversion model using the ETM+
(30 m resolution), field forest inventory data, and LULC in the southeast of Guizhou.
According to that research, the range of the forest AGB was 40–200 t/ha. Zhang et al. [46]
analyzed the carbon storage based on the ETM+ (30 m resolution) and Landsat TM in
southwestern Guizhou. Additionally, the mean value of the forests’ AGB was 133.31 t/ha
in 2009. This is higher than that calculated by Fan et al. [59] (87.62 ± 30.11 t/ha) based on
the field measurements. Gao et al. [60] analyzed the carbon storage based on the Landsat
ETM/TM imagery (30 m resolution) in Guizhou. The article states that the mean value of
the forests’ AGB was 126.3 t/ha in 2010. However, the aforementioned research studies
were based on low- or middle-resolution remote sensing imagery, which suggested it was
unsuitable for estimating the AGB in complex forest areas due to its inability to solve the
mixed pixel problem and its inability to successfully match on-site survey data [26,61,62].

Therefore, a BPANN model was constructed that combined very high-resolution
satellite imagery, field inventory data, and LULC types for AGB mapping in the Banzhai
watershed in this study. The mean value of the simulated forest AGB was 135.63 t/ha
based on the BPANN inversion model. It was lower than the forest AGB (168.02 t/ha)
calculated by Zhu et al. [55] using the field quadrat survey method in Maolan National
Natural Reserve. Meanwhile, it is higher than the forest AGB (76.19 t/ha) predicted by
Deng et al. [63] in Maolan National Natural Reserve. It is also higher than that calculated
by Zhang et al. [48] (70.47 t/ha) in the adjacent Mulun National Natural Reserve in the
Guangxi Provinces. These results can be attributed to the forest AGB in this study, which
includes various forest types within the basin, while Zhu’s study was based on 30 sample
trees with larger diameters at breast height in the climatic climax. Deng’s study was
based on 18 small quadrats (each at 300 m2), and Zhang’s study was based on a 2 ha plot.
Moreover, individual woody plants with a DBH < 1 were not tagged, and the different
study areas and scales could also have caused differences.

The average value of the forest AGB in this study was higher than the value of the
secondary forest AGB (88.70 t/ha) calculated on the basis of the field quadrats (20 m× 30 m)
in the Houzhai River watershed [53]. It is also higher than the value of the secondary forest
AGB (120.57 t/ha) simulated by Guo et al. [47] combining Pléiades satellite image and field
inventory data in the Houzhai River watershed and also higher than that calculated by
Liu et al. [41] (122.81 t/ha) using a direct harvest method in the Houzhai River watershed.
Those variations were mainly due to the differences in the calculation of the on-site sample
area. In this study, the horizontal projection method was used to calculate the field quadrat
area. Meanwhile, Liu et al. [53] and Liu et al. [41] still used the small field quadrat area
of the sloping hill. Moreover, Liu et al. [53] only estimated the AGB in the tree and shrub
layers. Furthermore, our study region is located in Maolan National Natural Reserve,
which is the largest and most well-preserved native karst forest ecosystem surviving in
the world, while deforestation caused serious damage to the ecological environment in the
Houzhai River watershed at the end of the 1950s [50]. All of the aforementioned reasons
resulted in lower forest AGB estimates in the Houzhai River basin.

Meanwhile, it is noteworthy that the average value of forest AGB (135.63 t/ha) in this
study was lower than that calculated by Liu et al. [40] (137.7 t/ha), based on field inventory
quadrat data in the Houzhai River basin. It is mainly attributed to the sample plot being
located on the mountaintop with less human disturbance, and the tree height, diameter
at breast height, and forest coverage rate were higher than those in its surrounding areas.
Therefore, the simulated AGB in this study was lower than that evaluated based on the
2 ha quadrat.

However, the mean value of the forest AGB in our study was higher than that ob-
tained by Zhong et al. [64] (99.35 t/ha, northern Guizhou) and Fan et al. [59] (87.62 t/ha,
southwestern Guizhou) using field measurements. This is mainly caused by differences in
forest growth age. This was mainly caused by the difference in forest growth age. In this
study, the trees were at their climatic climax, with a larger diameter at breast height, and
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the growth ages of the forest were more than 100 years. Meanwhile, the forests in the latter
two study regions were only about 50 years old and had smaller diameters at the breast
height of the trees.

Some other studies were conducted based on the NFCI data in Guizhou Province.
The forest AGB in karst areas of Guizhou Province was estimated by Qian et al. [42] using
Sentinel-1A, Landsat 8 OLI, and NFCI data. It was reported that the forest AGB was
54.95 t/ha in 2015. Qian et al. [65] analyzed the changes in forest AGB and its driving
factors based on NFCI data (from 1984 to 2015) in Guizhou Province. According to that
research, the forests’ AGB showed a trend of decreasing first and then increasing, which
was 55.46 t/ha in 2015. Additionally, based on NFCI, DEM, and meteorological data from
Guizhou Province in 2015, Zhang et al. [66] analyzed the spatial heterogeneity of forests’
AGB in Guizhou and discussed its influencing factors. It was reported that the nature forest
AGB was 51.78 t/ha in 2015. It is worth noting that the average value of the forest AGB
in our study was higher than that estimated by Qian et al. [42,65] and Zhang et al. [66].
Those variations should be attributed to differences in the land classification system in the
NFCI data, which was only divided into two categories: forest land (including the shrub
forest, bamboo forest, etc.) and non-forest land. The simulated forest AGB in our study was
slightly higher than that estimated by Zhang et al. [67] (125.93 ± 70.99 t/ha) using 318 field
measurements (62 sites were field survey data, 256 sites were NFCI data) in southwest
China (Yunnan, Guangxi, and Guizhou). This variation was mainly due to the fact that
there were all forest types in the tropical and subtropical regions in Zhang’s study.

In summary, the results of this study agree well with those of previous research. The
BPANN model designed in our study presented a quick, easy, and relatively high-precision
method of forest AGB estimation. This indicates that the BPANN inversion model displayed
satisfactory results for simulating the forest AGB in this typical peak–cluster karst basin.
This method can be applied to simulate the forest AGB in the karst mountainous areas of
southwest China. However, combining very high-resolution satellite data with LiDAR data
or UAS equipped with optical sensors will be an effective tool to simulate forest AGB [31].
Furthermore, greater collaboration in Computer Science, Statistics, Earth Science, and other
fields can greatly improve the precision of forest AGB estimation.

5. Conclusions

Based on the newly constructed BPANN model in this study, the value of the total AGB
was 0.921 Tg in the Banzhai watershed, with an area of 8443 ha. Among them, the value of
the forest’s AGB was 0.869 Tg, which accounted for 94.35% of the total AGB in the basin,
with an average value of 135.63 t/ha. The distribution range and spatial pattern of the forest
AGB simulated by the BPANN inversion model agree well with the field observations.
Overall, our study presented a quick, easy, and relatively high-precision method of forest
AGB estimation. This indicates that the BPANN inversion model displayed satisfactory
results for simulating forest AGB in the typical peak–cluster karst basin. This method can be
applied to the estimation of forest AGB in the karst mountainous areas of southwest China.
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