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Abstract The ages of hydrothermal Hg deposits are difficult to constrain because of the lack of suitable minerals for dating. The
South China low-temperature metallogenic domain hosts numerous Hg deposits, including the Jianyan Hg deposit that is
composed mainly of cinnabar and calcite. There are two stages of calcite in the deposit: syn-ore calcite (Cal-I) and post-ore/
barren calcite (Cal-II). Cal-I is mainly euhedral-subhedral and fine-grained, has homogeneous grey luminescence, and is
associated with cinnabar. Subhedral-anhedral Cal-II crosscuts Cal-I and is relatively coarse-grained. The syn-ore Cal-I has high
U contents (0.1–1.3 ppm) and U/Pb ratios (up to 4.2), and is thus suitable for U-Pb dating. Using a laser ablation-inductively
coupled plasma-mass spectrometer equipped with ion counters, we obtained a U-Pb age of 426.3±5.7 Ma (MSWD=1.5) for Cal-
I. This age is interpreted to represent the timing of Hg mineralisation at Jianyan and is similar to ages of 440–400 Ma reported for
many carbonate-hosted Pb-Zn and Ba-F deposits in South China. Based on the present results in combination with existing
geochemical and geochronological data, we infer that these deposits belong to a Paleozoic Hg-Pb-Zn-Ba-F mineralisation system
that was controlled by Caledonian tectonism.
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1. Introduction

Low-temperature mineralization (generally <200–250°C),
has occurred in South China and the midwestern United
States, is characterized by numerous epigenetic hydro-

thermal deposits (Tu et al., 2004). However, the timing of
low-temperature mineralization is difficult to constrain be-
cause of the lack of minerals suitable for dating (Leach et al.,
2001; Cline et al., 2005). In South China, low-temperature
mineral deposits are distributed over an area of
~500,000 km2, forming the South China low-temperature
metallogenic domain and accounting for >50% of global
reserves of Sb, 10% of Au, 9% of Hg, and 5% of Pb+Zn

© Science China Press 2023 earth.scichina.com link.springer.com

SCIENCE CHINA
Earth Sciences

* Corresponding author (email: zhoujiaxi@ynu.edu.cn)
† Corresponding author (email: zhoumeifu@hotmail.com)

https://doi.org/10.1007/s11430-022-1106-4
https://doi.org/10.1007/s11430-022-1106-4
https://doi.org/10.1007/s11430-022-1106-4
http://earth.scichina.com
http://link.springer.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s11430-022-1106-4&amp;domain=pdf&amp;date_stamp=2023-06-26


(Peng et al., 2003a; Hu et al., 2017). These deposits include
carbonate-hosted Hg, Pb-Zn, and Ba-F deposits; Carlin-type
Hg-Au-As-Sb deposits; and vein-type Au-Sb deposits (Fig-
ure 1; Wang et al., 2020; Zou et al., 2022). They are mostly
hosted in sedimentary rocks, controlled by folds, faults, and
lithological contacts, and generally formed during two main
periods at 230–200 and 160–130 Ma, corresponding to the
Indosinian (Triassic) and Yanshanian (Jurassic-Cretaceous),
respectively (Figure 1; Su et al., 2009; Mao et al., 2013; Hu
et al., 2017; Zhou et al., 2018). Older ages of 470–370 Ma
have been reported for several deposits, but the geological
significance of these ages is debated (Peng et al., 2003a; Hu
et al., 2007; Zhang et al., 2018).
Epigenetic carbonate-hosted Hg, Pb-Zn, and Ba-F deposits

in the south-eastern part of the Yangtze Block form a NW-
SE-trending belt (i.e., the western Hunan-eastern Guizhou
(WHEG) Hg polymetallic metallogenic belt) that is 150 km
long and 5–10 km wide. The belt contains 72 Hg, ~300 Pb-
Zn, and ~300 Ba-F deposits. Representative examples in-
clude the Wanshan Hg, Huayuan Pb-Zn, and Dazhuyuan Ba-
F deposits (Figure 1; Wang et al., 2010; Hu et al., 2017; Zou
et al., 2022). These deposits are poorly dated because of the
simple mineral paragenesis comprising sulphides associated
with calcite/dolomite, barite, fluorite, and rare quartz, and
because of the low contents of radiogenic elements (Stude-
meister, 1984; Luo et al., 2020). Reported ages include a Rb-
Sr age of 431±24 Ma for sphalerite from the Aozigang Pb-Zn
deposit (Cao et al., 2015), Sm-Nd age of 364±24 Ma for
calcite from the Luanyantang Hg deposit (Wang and Wen,
2015), and Rb-Sr age of 492±37 Ma for fluid inclusions
hosted in quartz from the Pingqiu Au deposit (Hu et al.,
2007). However, these dating methods have limited appli-
cation due to: (1) the lack of good petrographic constraints
with the presence of multiple stages of calcite and sphalerite
mineralization as well as the occurrence of secondary fluid
inclusion assemblages in quartz (Uysal et al., 2007; Su et al.,
2009; Zhu et al., 2017); (2) the large errors and variations of
ages within a single deposit (Liao et al., 2015; Yang et al.,
2016), which might reflect a narrow range of Sm/Nd ratios or
partial or total resetting of the isotopic systems by post-mi-
neralisation hydrothermal fluids (Zhu et al., 2017; Luo et al.,
2020); and (3) the presence of Rb-Sr-bearing clays in the
dated minerals (Bradley and Leach, 2003).
Carbonate minerals can be dated in situ using U-Pb iso-

topes, which constrains the timing of mineralisation and
tectono-metamorphic events associated with fluid-related U
mobility (Luo et al., 2020; Pinet et al., 2022). This approach,
employing laser ablation multi-collector inductively coupled
plasma mass spectrometry (LA-MC-ICP-MS), can identify a
wide range of U/Pb ratios at sub-millimetre scales due to its
high spatial resolution (<100 μm) and low detection limits
(~1 ppb Pb) (Nuriel et al., 2017). Previous studies have dated
carbonates from Sb deposits (Luo et al., 2020; Xu et al.,

2022), Pb-Zn deposits (Sheng et al., 2022; Xiong et al., 2022;
Giorno et al., 2022), and Carlin-type Au deposits (Jin et al.,
2021), but rarely from Hg deposits.
The Jianyan Hg deposit occurs in the WHEG carbonate-

hosted Hg polymetallic mineralisation belt in the south-
eastern Yangtze Block, and is the only Hg deposit still under
exploration. In this paper, we report the results of in situ U-
Pb dating of carbonate minerals in this deposit, and also
mineralogical, compositional and Sr isotope analyses of syn-
ore calcite. These results are compared with those from
previous studies conducted elsewhere in the South China
low-temperature metallogenic domain. Our data provide new
insights into low-temperature mineralisation events in South
China and clearly demonstrate a Paleozoic Hg mineralization
event.

2. Regional geology

The South China Block is composed of the Yangtze Block to
the northwest and the Cathaysia Block to the southeast,
which was amalgamated along the Jiangnan Orogen at ca.
830 Ma (Figure 1; Zhao et al., 2011). The basement of the
Yangtze Block includes late Archaean metamorphic rocks in
the north, and late Paleoproterozoic to Neoproterozoic
weakly metamorphosed rocks in the west and east. This
basement has been intruded by widespread Neoproterozoic
igneous rocks (Chen et al., 1991; Zhou et al., 2002; Wang et
al., 2007). The basement of the Yangtze Block is overlain by
a sedimentary succession that consists mainly of Cambrian-
Triassic marine sedimentary rocks and Jurassic, Cretaceous,
and Cenozoic continental sedimentary rocks (Yan et al.,
2003).
The south-eastern margin of the Yangtze Block, where the

carbonate-hosted Hg polymetallic deposits are located, ex-
perienced Late Proterozoic (820–635 Ma) extension and
evolved in a passive continental margin setting during the
early Cambrian (635–488 Ma; Li et al., 2003). The NE-SW-
trending Baojing-Tongren-Yuping (BTY) fault divides a
thick dolostone sequence to the west from bedded sandstone,
mudstone, limestone, and dolostone to the east (Figure 1). In
this area, an intra-continental orogeny began in the late early
Palaeozoic (488–420 Ma), resulting in uplift and thus a lack
of Late Ordovician-Jurassic sedimentary rocks (Zhang et al.,
2019). Caledonian magmatic rocks were generated as a result
of collapse of the late early Paleozoic orogen (Chu et al.,
2012). These intrusions are located mainly on the south-
eastern side of the Jiangnan Orogenic Belt (Figure 1). The
early Mesozoic intracontinental orogeny (225–215 Ma) was
likely due to the far-field effects of subduction of the Palaeo-
Pacific Plate beneath the south-eastern margin of the South
China Block (Chu et al., 2012).
NE-SW-trending faults and secondary E-W-trending folds
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in the study area record multiple phases of tectonic activity.
The NE-SW faults are the main control on the spatial dis-
tribution of Hg deposits (Figure 2). The Hg mineralisation
was also affected by bedding-parallel faults and is locally
concentrated within fold axes and hinges.

3. Ore deposit geology

In the south-eastern Yangtze Block, carbonate-hosted Hg
deposits are Hg-only deposits or related to Pb-Zn miner-
alisation, with Zn ore zones being better developed close to
mineralisation along faults, such as the Chashula, Chatian,
and Dadongla Hg-Pb-Zn deposits (Figure 1; Liu et al., 2017).
These deposits may also contain Ba-F mineralisation and are
generally hosted in Cambrian to Ordovician carbonate rocks.
The deposits with large tonnages of ore (>2000 t Hg) are
located mainly in the south-eastern parts of the Hg-Pb-Zn-
Ba-F polymetallic mineralisation belt. Those with smaller
tonnages (<500 t Hg) are located in the north (Wang et al.,
2012).
Ore bodies of the Jianyan deposit are structurally con-

trolled by the Shuiyinchang compressional NE-SW fault
zone that comprises several reverse faults that dip to the
southeast (Figure 2). Ediacaran, Cambrian, and Ordovician
strata are exposed in the area around the deposit. The Jianyan
deposit is hosted by thick, light grey to purple, micritic silty
dolostone of the Cambrian Houba Formation and by micritic
bioclastic limestone and dolostone of the Ordovician Tongzi
Formation (Figure 3). The vein mineralisation is stratiform
or infills NE-SW-trending fractures in the host dolostone and
limestone (Figure 4a). The three ore bodies are 210–500 m
long, 10–30 m thick, and have ore grades of 0.2–0.3 wt.% Hg
(500–2000 t Hg). The mineralisation is characterised by
simple mineral assemblages that include cinnabar and minor
pyrite, stibnite, and limonite. The gangue minerals are
mainly calcite (50 vol.%), dolomite (40 vol.%), and quartz
(10 vol.%). Cinnabar crystals are dark red (Figure 4b–4d)
and occur as isolated fine to coarse grains or in poly-
crystalline aggregates (Figure 4e, 4f). In the Cambrian do-
lostone, calcite-cinnabar veins are closely associated with
organic matter (Figure 4g).

4. Sampling and analytical methods

Samples with a complex mineral paragenesis were collected
from ore bodies hosted in dolostone of the Cambrian Houba
Formation. These samples were cut into smaller pieces to
expose fresh surfaces and then attached to epoxy mounts.
The mounts were carefully polished using 1000 grade emery
paper before washing with Milli-Q water in an ultrasonic
bath for 15 min.

Electron probe micro-analyses (EPMA) were carried out
using a JEOL JXA-iSP100 at the Laboratory of Marine
Element and Isotope Facilities in the Southern Marine Sci-
ence and Engineering Guangdong Laboratory, Zhuhai. Major
and minor elements were measured with an accelerating
voltage of 15 kV, probe current of 5 nA, and beam diameter
of 5 μm. The peak counting time was 10 s for major elements
(Ca, Mg, Mn) and 20 s for minor elements (Ba, Sr, Fe, Si).
Calcium concentrations were used as an internal calibration
for analyses by laser ablation-inductively coupled plasma
mass spectrometry (LA-ICP-MS).
Trace elements were determined in situ by LA-ICP-MS.

An ASI RESOlution 193 nm excimer UV ArF LA system
was employed with a dual-volume Laurin Technic ablation
cell coupled to a Thermo iCap RQ quadruple ICP-MS in-
strument at the Radiogenic Isotope Facility (RIF), University
of Queensland (UQ), Brisbane, Australia. Prior to analysis,
the mounts were thoroughly cleaned with soap before being
rinsed using MilliQ water in a sonic bath and then dried
overnight at 60°C on a hot plate. The samples were then
mounted in a sample holder and placed in the ablation cell.
The mass spectrometer was tuned by scanning a NIST612
glass reference material using laser parameters of 50 μm spot

Figure 2 Simplified geological map of the Baojing-Tongren-Yuping
(BTY) fault zone showing the distribution of the main Hg and Pb-Zn
deposits.
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size, 3 μm s−1 speed, and 10 Hz repetition rate to optimize
the sensitivity and minimize the double charge and oxidation
rate. Sample ablation was undertaken using a laser beam
energy density of 3 J cm−2, a spot size of 100 μm, and a
repetition rate of 10 Hz. The ablated aerosols were driven
into a funnel before being carried to the mass spectrometer in
a mixture of ultrapure He and Ar gases with a minor amount
of N2 used to boost transport efficiency and elemental in-
tensity. The Durango and NIST-614 glass standard was
employed for instrument tuning and quality control (Ken-
drick et al., 2020). The glass standard NIST-612 served as a
reference for calculating elemental concentrations using the
Iolite 3.6 software package (Paton et al., 2010). The CaO
content (wt.%) was obtained using EPMA.
Five powder samples were obtained from carbonate

clumps and veins in the mounted sample by micro-drilling
and were used for acid-dissolution Sr isotopic analyses.
Strontium isotope ratios were determined at RIF-UQ, Bris-
bane, Australia. Around 50 mg of calcite powder was
weighed into Teflon beakers and digested in weak acetic acid
to extract Sr from the carbonate fraction to avoid the leaching
of any radiogenic 87Sr and Rb from the non-carbonate con-
stituents. The supernatant was separated and Sr separation
was undertaken following standard cation exchange column
procedures. The Sr solution was collected and measured on a
Nu Plasma I multi-collector ICP-MS (MC-ICP-MS). The
SRM 987 standard was measured after every 5 unknowns
throughout the run and used for external calibration. Proce-
dural Sr blanks were also included and were in general <50
pg, at least four orders of magnitude lower than the con-
centrations of Sr in the unknowns (>1000 ng). Long-term
repeated analyses of the SRM 987 standard on this instru-

ment yielded a mean 87Sr/86Sr value of 0.710250±0.000032
(2σ).
In situ U-Pb isotopic analyses were undertaken at the RIF-

UQ, Brisbane, Australia, employing a Nu Plasma II MC-
ICP-MS instrument coupled to a RESolution 193nm excimer
UVArF LA system with a dual-volume Laurin Technic ab-
lation cell. Prior to U-Pb dating, calcite was screened and
subjected to laser ablation for ~5 s per spot, with U/Pb data
acquired using a Thermo iCap RQ ICP-MS. This approach
removes any surficial contamination during the first 3 s of
laser time and enables the identification of broad U/Pb do-
mains (based on data acquired during the last 2 s of ablation).
Calcite in the Jianyan Hg deposit has low U and Pb contents
(generally <1 ppm, 1 ppm=1 μg g−1), which makes it difficult
to measure these elements precisely by conventional quad-
rupole ICP-MS or MC-ICP-MS (Kylander-Clark, 2020). As
such, the highest-mass end of the collector array of the Nu
Plasma II MC-ICP-MS used an electron multiplier for the
measurement of 238U. This discrete dynode multiplier has a
sensitivity (100 μm; 3 J cm−2; 10 Hz; 238U>500,000 cps
ppm−1; 207Pb blank=10–30 cps) that is 3–10 times higher
than that achievable using a standard quadrupole ICP-MS
instrument (Luo et al., 2020). The NIST614 glass and ma-
trix-matched calcite standards were also analysed using
standard-sample bracketing throughout the analytical period,
with the resulting data used for external standardization to
monitor instrumental drift in isotope measurements and la-
ser-induced elemental fractionation. Data reduction was
undertaken using the Iolite 3.6 software package (Paton et
al., 2010). Approximate U and Pb concentrations for each
spot were then determined using the total U and Pb isotopic
counts, respectively.

Figure 3 Cross-section through the Jianyan Hg deposit showing the location of the main mineralised structures, generally stratabound. The F3 fault plane is
the major observed fault and the Cambrian shale in the hanging wall of this fault may have been a barrier to the migration of ore-forming fluids.
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Mass-bias correction of the 238U/206Pb data was undertaken
using the 3.001±0.012 Ma (2σ) calcite speleothem ASH-15D
standard that was previously dated by thermal ionization
mass spectrometry (TIMS; Mason et al., 2013; Vaks et al.,
2013; Nuriel et al., 2017) and the 209.8±1.3 Ma (weighted
mean age; n=21, MSWD=2.7) AHX-1a standard that was
previously dated by LA-MC-ICP-MS (Cheng et al., 2020).
The corrected U-Pb isotopic data for the calcite AHX-1a
standard were plotted on a 238U/206Pb vs. 207Pb/206Pb Tera-
Wasserburg diagram using IsoplotR (Vermeesch, 2018) to
obtain the measured age. The offset factor between the
measured age and the true age of this calcite standard was
used to normalize the 238U/206Pb ratios of unknowns using
the approach of Roberts et al. (2017). Following normal-
ization, the U-Pb isotopic data for unknowns were plotted on
Tera-Wasserburg diagrams. We further verified the reliability

of the ages by comparison with LA-ICP-MS U-Pb analyses
of different samples from the same vein. The methods are
presented in Appendix 2.

5. Results

5.1 Calcite mineralogy

Calcite from the Jianyan Hg deposit grew during two stages:
syn-ore Cal-I and post-ore/barren Cal-II. Cal-I occurs in
veins and is associated with cinnabar, Fe-Mn carbonate al-
teration (Figure 4a), and limonite. Cal-II is observed mainly
in narrow, white, network-like veins that cut the host do-
lostone and Cal-I.
The Cal-I veins typically occur as milky white clusters

(<10 cm) that are associated with local Fe-Mn carbonate

Figure 4 Photographs of the adit and hand specimen samples from the Jianyan Hg deposit. (a) Millimetre-sized calcite veinlets cutting Fe-Mn carbonates
and unaltered dolostone. (b)–(d) Hand specimens showing the association between calcite and cinnabar. (e), (f) Back-scattered electron (BSE) images
showing the sulphides and carbonates formed during stage I, and the relationships between calcite, dolomite (Dol), cinnabar (Cin), and pyrite (Py). (g)
Photomicrograph (transmitted light) showing calcite of both stages. The white rectangle indicates the area that was imaged under CL. OM, Organic Matter.
(h) CL image of host dolostone and Cal-I.
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alteration in the dolostone host and organic matter (Figure
4g). The Cal-I crystals are generally euhedral-subhedral and
relatively small (<100 μm), and have a rhombic cleavage
(Figure 4g). Under cathodoluminescence (CL) imaging, Cal-
I crystals are dark-orange in colour. The host dolostone ty-
pically shows brighter luminescence with red-orange colours
(Figure 4h). In most cases, Cal-I and adjacent cinnabar share
the same flat crystal face and are locally coupled to form
intergrown structures, indicating they grew together. Cubic
pyrite only occurs within Cal-I crystals (Figure 4e, 4f).
The barren stage is represented by Cal-II, with no sig-

nificant presence of dolomite, ore minerals, or organic
matter. Cal-II occurs as narrow, white network-type veins
that crosscut host dolostone and Cal-I (Figure 4a). Cal-II is
typically subhedral-anhedral, coarser (>100 μm) than Cal-I,
and displays dark-grey colour in CL images (Appendix 2).

5.2 In situ trace element data

The LA-ICP-MS trace element data for calcite from the
Jianyan Hg deposit are presented in Appendix 1. Both Cal-I
and Cal-II have uniform Fe contents of 95.4–103 ppm (mean
98.2 ppm; n=46) and 95.0–103 ppm (mean 97.5 ppm; n=20),
respectively. However, they have relatively variable Mn
contents of 16.9–32.9 ppm (mean 27.4 ppm; n=46) and
37.4–64.2 ppm (mean 52.0 ppm; n=20), respectively. The
host dolostone has higher Fe (155–6989 ppm; mean
1125 ppm; n=19) and Mn (45.1–64.8 ppm; mean 53.3 ppm;
n=19) contents than the calcite (Figure 5a). Cal-I and Cal-II
have total rare earth element contents (ΣREE=
2.48–55.8 ppm; mean 17.5 ppm) and Eu anomalies
(δEu=0.6–1.0; mean 0.7) similar to those of the host dolos-
tone. The host dolostone and Cal-I have similar La/Y ratios
(0.8–4.4; mean 1.9; n=65), different from Cal-II (0.3–1.7;
mean 0.7; n=20) (Figure 5b). The host dolostone, Cal-I, and
Cal-II have slightly different chondrite-normalised REE
patterns (Figure 6a–6c), and yield light REE/heavy REE
ratios of 12.7–15.7 (mean 14.2), 11.4–47.8 (mean 22.5), and
5.9–16.1 (mean 8.7), respectively. Cal-I has slightly higher
U/Pb ratios and a wider range of values than Cal-II. Cal-I and
Cal-II have U/Pb ratios of 1.1–17.8 (mean 3.9; n=40) and
0.1–1.2 (mean 0.6; n=84), respectively.

5.3 Strontium isotope ratios

87Sr/86Sr ratios of calcite from the Jianyan deposit range from
0.710227 to 0.710907 (2σ; Appendix 1). Cal-I yields 87Sr/
86Sr=0.710381–0.710907 (n=3), similar to Cal-II (0.710227–
0.710440; n=4) (Figure 7).

5.4 In situ calcite U-Pb ages

Cal-I associated with cinnabar from the Jianyan deposit has

238U/206Pb ratios of 1.7–4.2, making it suitable for dating.
Cal-I has U and Pb concentrations of 0.101–1.348 ppm
(mean 0.420 ppm) and 0.024–0.783 ppm (mean 0.276 ppm),
respectively (Figure 8a, 8b; Appendix 1). Twenty-eight
analyses yielded a well-defined isochron with an age of
426.3±5.7 Ma (MSWD=1.5), with low uncertainties (i.e.,
<1%; 2σ) on the U and Pb isotope ratios and a good signal
intensity. Analysis of the matrix-matched carbonate ASH-
15D standard (3.001±0.012 Ma; Mason et al., 2013; Vaks et
al., 2013; Nuriel et al., 2017) yielded an age that agrees well
with its known age (3.10±0.18 Ma; MSWD=2.0; Appendix
2), confirming that ages obtained for unknown calcite grains
are accurate.
LA-ICP-MS U-Pb analyses of different samples from the

same vein yielded an age of 416.9±39.7 Ma (MSWD=2.1;
Figure 8c, 8d). This age has a large uncertainty because of
the low U/Pb ratios, but is within uncertainty of the first age
obtained by LA-MC-ICP-MS. Therefore, the 426.3±5.7 Ma
age obtained for the syn-ore calcite in the Jianyan Hg deposit
is inferred to be geologically meaningful and constrains the
timing of Hg mineralisation in the study area.

Figure 5 Compositional variations (LA-ICP-MS) of carbonate minerals
from different stages in the Jianyan Hg deposit. (a) Fe versus Mn diagram.
Cal-I and Cal-II have similar Fe contents, but Cal-II has higher Mn con-
tents. The dolostone host rock has higher Fe-Mn contents. (b) REE versus
La/Y diagram. Cal-I and the host rocks have similar REE contents, higher
than those of Cal-II, which have lower La/Y ratios.
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6. Discussion

6.1 Differentiation of calcite of the syn-ore and barren
stages from the Jianyan Hg deposit

In the field, it is difficult to distinguish calcite that formed
during the syn-ore and barren stages in terms of texture and
colour, especially given the local occurrence of cinnabar in
the veins. However, the trace element and isotopic compo-
sitions of calcite may contain information about the ore-
forming fluids and can be used to constrain its origin
(Fusswinkel et al., 2013; Smith-Schmitz and Appold, 2018).
The two stages of hydrothermal calcite identified in the
Jianyan Hg deposit have similar Fe but variable Mn contents
(Figure 5a). Given that Mn2+ is the dominant luminescence
activator (Peyrotty et al., 2020), host dolostone with higher
Mn contents has lighter CL compared with hydrothermal
calcite. Although Fe is the main CL quencher in carbonates,
relatively low Fe contents may have little effect on the CL
images of the Jianyan carbonates (cf. Marshall, 1988). The
low Fe/Mn ratios (1.5–2.7) of Cal-II might cause a darker CL
compared with host dolostone and Cal-I.

Syn-ore Cal-I exhibits highly variable La/Y and ΣREE
values, which contrast with the more uniform compositions
of the host dolostone (Figure 5b). The compositions of Cal-I
and Cal-II contrast with those of the host dolostone, sug-
gesting that syn-ore Cal-I was not derived from these host
rocks by dissolution and re-precipitation, but instead was
derived from a deep-seated source. Cal-I has higher La/Yand
light REE/heavy REE ratios than Cal-II, suggesting different
origins of the hydrothermal fluids of the syn-ore and barren
stages (Luo et al., 2020). Cal-I can be further chemically
distinguished from barren Cal-II by U/Pb ratios, with Cal-I
having relatively high U/Pb ratios.

6.2 Geochemistry of calcite in ore deposits of South
China

The variable light REE/heavy REE ratios of calcite from the
Jianyan deposit might be due to compositionally variable
fluids with different REE contents and originating from
different type of rocks (Michard and Albarède, 1986). The
abundance of hydrothermal fluorite in the mineralisation belt

Figure 6 Chondrite-normalised REE patterns for (a) Cal-I and Cal-II and (b) the host dolostone in the Jianyan Hg deposit. (c) Comparison of chondrite-
normalised REE patterns for carbonates from the Jianyan Hg deposit with the average composition of syn-ore calcite from the adjacent Huayuan Pb-Zn
deposit (Wei et al., 2017). (d) Chondrite-normalised REE patterns for syn-ore calcite in Hg deposits in the South China low-temperature mineralisation
domain (Wang et al., 2010; Han et al., 2017; Li et al., 2020). All data are normalised to the chondritic composition of Sun and McDonough (1989). Avg
represents the average contents. The ages of mineral deposits are from Duan et al. (2014) and Wang and Wen (2015).
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indicates that the REEs are unlikely to have been mobilised
by fluoro-complexes, due to the strong affinity of Ca2+ for F–,

which would have buffered the concentration of ligands
available for complexation in solution (Bau and Dulski,
1995; Salvi and Williams-Jones, 1996). Consequently, the
REEs were likely mobilised by Cl complexation, given the
higher stability of Cl complexes compared with other mo-
bilising ligands in hydrothermal Hg-Pb-Zn mineralising
systems (Barnes, 1997). This contrasts with the preferential
mobilisation of heavy REEs in near-neutral to slightly al-
kaline fluids rich in (bi)carbonate ligands in Mesozoic hy-
drothermal Au-Sb mineralising systems of South China
(Wang et al., 2010; Tan et al., 2017). The REE patterns of
calcite from the Jianyan deposit are similar to those of calcite
in the carbonate-hosted Dadongla, Chatian, and Wanshan Hg
±(Pb±Zn) deposits (Wang et al., 2010) and in the Caledonian
Huayuan Pb-Zn ore field (Wei et al., 2017), but differ
markedly from those of calcite from the Mesozoic Jiaoli Hg
(Han et al., 2017) and Paiting Hg-Au (Xie et al., 2017) de-
posits (Figure 6d).
Calcite crystals from carbonate-hosted Hg-Pb-Zn-Ba-F

deposits in the WHEG mineralisation belt have a narrow
range of negative Eu anomalies (δEu=0.5–1.0; Figure 6d),
which contrasts with the positive Eu anomalies (δEu>1.0) of
calcite in Mesozoic ore deposits in South China (Wang et al.,
2010). Thermodynamic calculations and theoretical con-
siderations suggest that temperature is the main control on

Figure 7 87Sr/86Sr values for the hydrothermal Au, Hg, Sb, and Pb-Zn
deposits, Mesoproterozoic rocks in South China (Peng et al., 2003b), and
Phanerozoic marine carbonates (Veizer and Compston, 1974). The 87Sr/86Sr
values of the mineral deposits and references are listed in Appendix 1. The
ages of the mineral deposits are from Peng et al. (2003b), Wang et al.
(2012), Wang (2013), Duan et al. (2014), Li H et al. (2018), and Luo et al.
(2020).

Figure 8 Tera-Wasserburg concordia diagrams for syn-ore calcite in the Jianyan Hg deposit, analysed by LA-MC-ICP-MS ((a), (b)) and LA-ICP-MS ((c),
(d)). The U and Pb contents represented by red to green shading are in parts per million. Error ellipses indicate the 2σ uncertainty.
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the Eu3+/Eu2+ ratio of hydrothermal systems (Bau and Mol-
ler, 1992). For temperatures of >200°C, Eu2+ dominates over
Eu3+, with the former preferentially substituting for Ca2+ as
compared with trivalent REEs. Hydrothermal fluids that
precipitate under such conditions would form minerals with
positive Eu anomalies. Therefore, the carbonate-hosted Hg-
Pb-Zn-Ba-F deposits might have formed at relatively low
temperatures of <200°C, which is consistent with the low
homogenisation temperatures (90–170°C) of fluid inclusions
in calcite from the mineralisation belt (Wang et al., 2010).
The Sr isotope ratios (87Sr/86Sr=0.710381–0.710907) of

syn-ore calcite in the Jianyan Hg deposit are relatively uni-
form, and contrast with the highly variable Sr isotope ratios
(0.712700–0.726100) of Proterozoic basement rocks in the
study area (Figure 7; Peng and Hu, 2001; Xiao, 2014; Sun et
al., 2016; Li H et al., 2018). This indicates that metals in the
Jianyan deposit were not derived from the Proterozoic
basement rocks, which contrasts with the source of metals in
the Sb deposits (Chen et al., 2020).
In general, the high La/Y ratios (>~1.0), negative Eu

anomalies (δEu=0.5–1.0), and moderate and relatively
homogeneous 87Sr/86Sr ratios (0.710381–0.710907) of syn-
ore calcite in the Jianyan deposit are similar to other car-
bonate-hosted Hg-Pb-Zn-Ba-F deposits in the region, but are
distinct from Mesozoic ore deposits in South China.

6.3 Interpretation of age data and implications

In South China, Hg deposits occur in two mineralisation
belts, as inferred from the different metal associations and
spatial distributions: (1) the WHEG carbonate-hosted Hg-
Pb-Zn-Ba-F mineralisation belt; and (2) the Youjiang Basin
Carlin-type Hg-Au-As-Sb mineralisation belt (Su et al.,
2009; Zhou Y et al., 2015). However, it is unclear whether
the two belts were formed during the same event. Previous
studies have focused mainly on the Carlin-type Hg-rich de-
posits that are related to Mesozoic extension or directly as-
sociated with normal faults (Hu et al., 2002, 2017; Mao et al.,
2013). For the WHEG carbonate-hosted Hg-Pb-Zn-Ba-F
belt, the timing of mineralisation is still controversial, de-
spite the numerous dating methods that have been used, such
as calcite/fluorite Sm-Nd, quartz fluid inclusion Rb-Sr, and
sphalerite Rb-Sr dating. Samples from the Hg-Pb-Zn-Ba-F
mineralisation belt have yielded variable ages of 470–377
Ma (Figure 9; e.g., Duan et al., 2014; Wang and Wen, 2015).
The Hg deposits along the south-eastern margin of the

Yangtze Block are spatially associated with Pb-Zn and Ba-F
deposits. These deposits exhibit vertical zoning, with the Ba-
F deposits being hosted mainly in the Early Ordovician
carbonate rocks, and the Hg and Pb-Zn deposits in the middle
to late Cambrian carbonate rocks (Zhang et al., 2018; Fu,
2019). The barite, fluorite, and other gangue minerals are
commonly associated with or occur adjacent to Pb-Zn ore

bodies (e.g., the Qianchanggai Pb-Zn deposit and the Wei-
jiazhuang and Guihua fluorite deposits) (Zou et al., 2022).
Cinnabar is also commonly associated with sphalerite. The
Hg and Pb-Zn ore bodies are lenticular, have a similar strike,
and are controlled by the same faults and folds. Some Pb-Zn
deposits, including the Chatian and Dadongla deposits, show
lateral zoning from Hg to Zn from the centre to the periphery
of ore bodies or from near to far from fractures. In the
transition zone, mixed ores of cinnabar and sphalerite are
observed (Yang et al., 2014; Fu et al., 2017).
Given the high solubility of halogen complexes, such as

BaCl2, ( )HgCl2
0, (HgCl)+, ( )HgCl3 , ( )HgCl 4

2 , ( )PbCl 4
2 , and

( )ZnCl 4
2 , large-scale F- and Cl-rich brines might have been

important in the base metal and Ba mineralization (Barnes,
1997; Banks et al., 2002; Smith-Schmitz and Appold, 2021).
In contrast, Au chloride complexes (predominantly AuCl2–)
are soluble in high-temperature fluids (>300°C) with a low
pH and elevated salinity, whereas aqueous S complexes of
Au are dominant in medium-temperature fluids (<300°C)
that are weakly acidic and have elevated levels of dissolved
S. Hence, the nature of the ore-forming fluids in the carbo-
nate-hosted, low-temperature Hg-Pb-Zn-Ba-F deposits was
likely different from that of the Mesozoic Carlin-type de-
posits.
In this study, a calcite U-Pb age of 426.3±5.7 Ma was

obtained for the Jianyan Hg deposit, which is within un-
certainty of the ages of the Huayuan Pb-Zn (410±12 Ma;
sphalerite Rb-Sr) and Dazhuyuan Ba-F (430±13 Ma; calcite
Sm-Nd) deposits (Duan et al., 2014; Zhang et al., 2018), and
comparable to the ages of the Jiangjiaya (372.0±9.8 Ma) and
Tangbian (477±5 Ma) Pb-Zn deposits (Zhou Y et al., 2015;
Yu et al., 2017). Calcite geochemical data further suggest a
similar genesis for the Jianyan Hg and Huayuan Pb-Zn de-
posits (Figures 6 and 7). The ca. 426Ma mineralisation event
may have been related to tectonothermal events during the
Late Caledonian Orogeny (Chu et al., 2012). The Jiangnan
Orogenic Belt in South China underwent extensive early
Paleozoic granitic magmatism that formed a series of
gneissic and massive granite intrusions (Shu, 2006). These
granites have zircon U-Pb ages of 480–398 Ma, with a peak
at 456–419 Ma that is indicative of a transition between an
intracontinental orogeny and subsequent crustal extension
(Figure 10a; Faure et al., 2009; Charvet et al., 2010).
Movement on NE-SW-trending Caledonian reverse faults
caused the inversion of a range of units from the Neopro-
terozoic Banxi Group to the Early Ordovician sedimentary
rocks. Local extensional tectonism during the early Paleo-
zoic orogeny was favourable for the migration of basinal
brines along the margins of the Jiangnan Orogenic Belt,
forming Hg, Pb-Zn, and Ba-F ore bodies (Figure 10b). These
Caledonian ore bodies are carbonate-hosted and related to
low-temperature polymetallic fluids that differ from the
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Figure 9 Compiled ages for low-temperature mineralisation systems in South China, including the Jianyan deposit (this study). Data sources: 1, Lin et al.
(2010); 2, Zhou et al. (2013); 3, Zhang et al. (2014); 4, Han et al. (2007); 5, Zhou J X et al. (2015); 6, Yang et al. (2019); 7, Xiong et al. (2018); 8, Wang
(2012); 9, Xiao (2014); 10, Wang and Wen (2015); 11, Chen et al. (2015); 12, Hu et al. (2007); 13, Su et al. (1998); 14, Peng et al. (2003b); 15, Wang (2013);
16, Su et al. (2009); 17, Luo et al. (2020); 18, Pi et al. (2017); 19, Cao et al. (2015); 20, Yang et al. (2016); 21, Liao et al. (2015); 22, Zhang et al. (2018); 23,
Tan et al. (2018); 24, Duan et al. (2014); 25, Zhou Y et al. (2015); 26, Yu et al. (2017); 27, Li H et al. (2018); 28, Li et al. (2020); 29, Fu et al. (2019); 30,
Zhang et al. (2020); 31, Peng et al. (2003a); 32, Hu et al. (1996); 33, Wang et al. (2012). Abbreviations: Sp, sphalerite; Fl, fluorite; Cal, calcite; Apy,
arsenopyrite; Qz, quartz; Py, pyrite; Stb, stibnite; Zrn, zircon; Rut, rutile; Sch, scheelite.
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classical Mesozoic polymetallic mineralisation of South
China.

7. Conclusions

(1) Syn-ore calcite from the Jianyan Hg deposit can be
distinguished from calcite in Mesozoic Hg deposits in South
China by its high La/Y ratios, negative Eu anomalies, and
uniform 87Sr/86Sr ratios.
(2) The syn-ore Cal-I yields a U-Pb age of ca. 426 Ma that

constrains the timing of Hg mineralisation to the middle
Silurian. This mineralisation event was associated with the
early Paleozoic Caledonian orogeny and is distinct from the
common Mesozoic polymetallic mineralisation in South
China.
(3) The mineral chemistry and U-Pb dating of calcite have

the potential to distinguish different mineralisation events in
low-temperature ore systems.
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