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A B S T R A C T   

Nitrogen is a key element necessary for the emergence and development of life. It is one of the elements targeted 
by the landed missions on Mars in accordance with their scientific goal of investigation of habitability and search 
for traces of life. A gas chromatography mass spectrometer (GCMS) instrument on board the Mars Science 
Laboratory Curiosity rover has revealed the existence of oxidized nitrogen-bearing compounds on Martian sur
face with an equivalent nitrogen concentration up to 0.01 wt%. Although the detection with laser-induced 
breakdown spectroscopy (LIBS) also on board the Curiosity rover is desirable, the current performance of LIBS 
for nitrogen analysis does not show the capacity in terms of limit of detection (LOD) and accuracy. Research on a 
suitable method should therefore be first engaged in laboratory in order to guide further improvements of LIBS 
instrument on board Mars rover, as well as the data treatment method. Beyond the sensitivity issue, matrix effect 
also affects LIBS determination of nitrogen, especially due to its various chemical speciation in geological ma
terials. Method research should answer thus double requirements of improving the sensitivity and reinforcing the 
robustness with respect to different nitrogen-bearing compounds. An experimental configuration of double de
tections with a narrow bandwidth Czerny-Tuner (CT) spectrometer and a broad bandwidth Echelle spectrometer, 
was implemented in this work, in such way that the first ensured a sensitive detection of emission lines from 
nitrogen and the second complemented with those from major elements in the sample. The fusion of the 
simultaneously acquired spectra took into account the emission characteristics of the both two types of elements, 
necessary for an effective and robust multivariate regression based on a neural network. In addition, for a better 
treatment of different chemical speciation of nitrogen in samples, generalized spectrum was used for training of 
regression models, after an unsupervised clustering having assigned a type label to each training spectrum. The 
trained model was tested by collections of independent test samples, resulting in a limit of detection (LOD) of 
0.18 wt%, and a root mean square error of prediction (RMSEP) of 0.041 wt%, representing a step forward to 
nitrogen detection using LIBS on Mars.   

1. Introduction 

Laser-induced breakdown spectroscopy (LIBS) has been widely used 
for analysis of geological materials [1], not only on Earth but also on 
Mars for its in situ exploration [2]. After the first successive demon
stration with the Mars Science Laboratory (MSL) Curiosity rover, two 

new missions, Perseverance rover and Zhurong rover, have landed on 
Mars with a LIBS payload on board. Investigation of habitability and 
search for past and present traces of life on Mars feature as major sci
entific goals of these exploration missions [3]. Organic compounds have 
been thus actively searched with the instruments on board the rovers. 
Up to now, only one positive detection, concerning chlorobenzene and 

* Corresponding authors at: School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China. 
** Corresponding author at: Research Center for Planetary Science, College of Earth Science, Chengdu University of Technology, Chengdu, China. 

E-mail addresses: sc11297@sjtu.edu.cn (C. Sun), zhaoyuyan@cdut.edu.cn (Y.-Y.S. Zhao), jin.yu@sjtu.edu.cn (J. Yu).  

Contents lists available at ScienceDirect 

Spectrochimica Acta Part B: Atomic Spectroscopy 

journal homepage: www.elsevier.com/locate/sab 

https://doi.org/10.1016/j.sab.2023.106708 
Received 21 November 2022; Received in revised form 16 May 2023; Accepted 16 May 2023   

mailto:sc11297@sjtu.edu.cn
mailto:zhaoyuyan@cdut.edu.cn
mailto:jin.yu@sjtu.edu.cn
www.sciencedirect.com/science/journal/05848547
https://www.elsevier.com/locate/sab
https://doi.org/10.1016/j.sab.2023.106708
https://doi.org/10.1016/j.sab.2023.106708
https://doi.org/10.1016/j.sab.2023.106708
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sab.2023.106708&domain=pdf


Spectrochimica Acta Part B: Atomic Spectroscopy 206 (2023) 106708

2

C2 to C4 dichloroalkanes, has been reported using the gas chromatog
raphy mass spectrometer (GCMS) of the Sample Analysis at Mars (SAM) 
instrument on board the Curiosity rover [4]. A closely related discovery 
made using SAM concerns the evidence of oxidized nitrogen-bearing 
compounds in sedimentary and aeolian deposits [5], with an equiva
lent nitrogen concentration up to 0.01 wt%. The presence of indigenous 
nitrogen in Mars surface materials has important implications for 
habitability and, specifically, for the potential evolution of a nitrogen 
cycle at some points in Martian history [5]. In spite of the importance of 
the above discoveries, the results have not yet been repeated in other 
circumstances. This can be explained by (i) the difficulties SAM must 
overcome to access the sites to be probed, and (ii) the used thermal and 
chemical sample processing, which makes the detection of organic 
compounds difficult [6]. LIBS is expected to provide an additional 
approach to detect and quantify nitrogen on Mars, with a higher sam
pling rate and a larger space coverage, especially in rugged areas, in 
such way to bring information to guide the rover and the dedicated 
instrument, such as SAM, toward preselected samples potentially con
taining organics [6]. Such approach is up to now precluded by the in
capacity of LIBS to satisfy the requirement of in situ detection of nitrogen 
on Mars. 

Early research works on LIBS determination of nitrogen in soil on 
Earth showed the influences of nitrogen contained in the atmosphere 
and other elements contained in soil, Ti for example [7,8]. Such in
fluences were systematically studied shortly later at atmospheric and 
reduced pressures using sea sands as samples, which have a composition 
simpler than soil to minimize spectral interferences from minor and 
trace elements [8]. It was demonstrated that the influence of the at
mospheric nitrogen can be controlled by reducing the ambient pressure 
of a LIBS measurement. Performing the experiment under an ambient 
pressure of 0.04 Torr, with 1064 nm and 60 mJ laser pulses, and 
recoding the spectra using a Czerny-Turner (CT) type spectrometer 
tuned to the 740 nm region and equipped with an intensified CCD de
tector, the N I 746.83 nm line was correctly detected. Its peak intensity 
was then used to build a univariate calibration model, which allowed 
determining a limit of detection (LOD) of 0.8 wt% [8]. A more recent 
approach to fix the issue of atmospheric nitrogen consisted in blowing 
the surface of a farmland soil sample with an argon gas jet, while 
ablating it with high energy 180 mJ laser pulses [9]. A compact CCD 
spectrometer was used to detect the emissions from the plasmas with a 
large spectral range of 200–1100 nm. Relying on the characteristics of 
the N I 744.23 nm and N I 746.83 nm lines, the sensitivity of the 
detection can be estimated at 1 wt% level. More specifically for the 
purpose of detection and determination of nitrogen-bearing compounds 
with LIBS in situ on Mars, research has been conducted within a labo
ratory simulated Mars environment, and using a replica of the ChemCam 
instrument on board the Curiosity rover [6], equipped in particular with 
a pulsed Nd:KGW laser at 1067 nm, operating at 3 Hz with a pulse 
duration of 5 ns and an energy of ~10 mJ, and a detection system with 
three CCD spectrometers covering respectively 240.1–342.2 nm, 
382.1–469.3 nm and 474.0–906.5 nm, wavelength ranges [10,11]. The 
studied samples were a mixture between nontronite, a clay mineral 
representative of Mars environment, and adenine, a nitrogen-bearing 
organic material [6]. The Mars-like environment solve naturally the 
problem of ambient gas interference for nitrogen detection, and the 
absence of Ti in nontronite allowed the N II 500.5 nm line being suitable 
for a univariate regression model for N, showing a LOD of 10 wt% as a 

tracer of adenine under Martian atmospheric condition [6]. It is there
fore clear that the current performance of LIBS for nitrogen determi
nation as demonstrated in different laboratory studies, does not yet 
ensure the capacity of in situ detection and analysis of nitrogen-bearing 
materials on Mars. 

This work intends to improve the capacity of LIBS for the detection 
and analysis of nitrogen in Mars environment and for Mars surface 
materials. The experiment was performed in a Mars atmosphere simu
lation chamber, and using synthetic Mars soil as the matrix of the 
samples. Different nitrogen-containing compounds were mixed into the 
matrix powder, resulting in samples with a nitrogen concentration 
gradient from blank matrix to 2.0 wt% nitrogen. The objective was on 
one hand, to improve the sensitivity of the method, and on the other 
hand, to control the matrix effect due to different chemical speciation of 
nitrogen-containing compounds. The approach to reach such double 
objectives consists in spectrum fusion between a narrow band and sen
sitive detection of nitrogen emissions around the N I 746.8 nm line, and 
a large band detection of emission lines of other elements in the sample. 
A fused spectrum contains high quality information about nitrogen and 
its chemical environment in the sample for an effective training of a 
multivariate regression model based on neural network. In addition, 
unsupervised clustering first labels a sample with the type of the 
nitrogen-bearing compound. The label is then used as the addition 
dimension in the generalized spectrum [12], which further helps to 
correct the chemical matrix effect. Testing the trained model with in
dependent test samples results in analytical performances of the model 
with a limit of detection (LOD) of 0.18 wt% and a root mean square error 
of prediction (RMSEP) of 0.041 wt%, which are much improved with 
respect to the reported performances and get a step closer to the re
quirements of in situ detection and analysis of nitrogen on Mars. 

2. Sample preparation and experimental setup 

2.1. Samples 

A synthesized Martian soil, Jining Martian Soil Simulant (JMSS-1), 
was used as matrix to prepare the samples, in order to simulate Martian 
surface materials in terms of chemical composition, mineralogy, and 
physical properties [13]. The concentrations of the major elements of 
JMSS-1 are shown in Table 1 [13] with the contents of the corresponding 
oxides [13]. The soil was available in a powder of grain size below 50 
μm. 

Potassium nitrate (KNO3), sodium nitrate (NaNO3), and ammonium 
dihydrogen phosphate (NH4H2PO4) were purchased as analytically pure 
compounds (purity ≥ 99.7%) in the form of powders from General Re
agent. These nitrogen-bearing compounds are related to nitrate salts 
found on Mars by SAM and considered as playing an important role in 
the nitrogen cycle [5]. Potassium and sodium nitrates were further 
manually ground in an agate mortar into a powder of grain size below 
100 μm. Purchased ammonium dihydrogen phosphate powder had a 
grain size below 150 μm. Taking into account the reported nitrogen 
concentrations in Mars surface materials [5], the above pure nitrogen- 
bearing compounds were mixed with the Martian soil simulant in such 
way that series of sample powders with a gradient of nitrogen concen
tration were prepared as shown in Table 2. In the table, the mixture rate 
represents the weight percentage of pure nitrogen-bearing compound or 
unknown farmland soil in a sample powder. For example, the mixture 

Table 1 
Contents of the major oxides of JMSS-1 in wt% [13].  

Oxides SiO2 TiO2 Al2O3 Fe2O3 MnO 

Content (wt%) 49.28 ± 0.24 1.78 ± 0.01 13.64 ± 0.33 16.00 ± 0.07 0.14 ± 0.01 

Oxides MgO CaO Na2O K2O P2O5 

Content (wt%) 6.35 ± 0.08 7.56 ± 0.06 2.92 ± 0.09 1.02 ± 0.03 0.30 ± 0.01  
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rate of the sample S4–2 is 100%, meaning that it is a farmland soil 
without Martian soil simulant. These samples were used as training 
samples in the following studies of regression models. Two series of 
samples were further prepared using two kinds of farmland soil pow
ders, as nitrogen-bearing compounds to mix with the Martian soil sim
ulant, treated and characterized for their nitrogen concentration by a 
qualified analytical laboratory (Zhejiang Geology and Mineral Re
sources Research Institute) in the form of a powder of 50 μm grain size. 
The two series of additional samples were used as independent test 
samples, which simulates a real application case where the trained 
models are used to predict with LIBS spectra acquired from samples 
containing nitrogen with an unknown chemical speciation. For the 
preparation of the sample powders, the mixture powders were homog
enized in a rotary mixer for 12 h. An amount of 0.5 g of each sample 
powder was weighed and pressed into a pellet under a pressure of 12 
tons for 10 min, resulting in a pellet of 15 mm dimeter and 2 mm 
thickness. 

2.2. Experimental setup and measurement protocol 

The used experiment setup is schematically shown in Fig. 1. The inset 
shows a plasma generated on the surface of an aluminum sample and a 
soil pellet sample after a LIBS measurement with a matrix of ablation 
craters visible on the surface. A Mars atmosphere simulation chamber 
contained the sample together with its 3D displacement stage, in such 
way that the LIBS measurements took place in a Mars-like ambient gas. 
For each experiment, the chamber was first evacuated using a 

mechanical pump to its limit pressure of 10 Pa. It was then filled with a 
CO2 gas (99.9% pure grade) from a high-pressure cylindrical container 
(Air Liquide), up to a pressure of 690 Pa. During an experiment, the 
pressure inside of the chamber was kept bellow 710 Pa, ensuring a quasi- 
stable simulant of Martian atmosphere. The ablation source was a Q- 
switched Nd:YAG laser operating at 1064 nm, with a repetition rate of 
10 Hz, a pulse energy of 96 mJ, and a pulse width of 10 ns. A mechanical 
shutter was used to control the delivery of laser pulses to a sample in 
synchronization with its displacement ensured by the 3D stage. Such 
synchronization allowed to program, for a given sample, the sites on its 
surface to be ablated by laser pulses and the number of the successive 
laser pulses hitting a same site. Laser pulses propagating beyond the 
mechanical shutter were attenuated by a combination of a half-wave 
plate and a Glan prim. In the experiment, the half-wave plate was 
finely tuned to deliver pulses of 20 mJ energy to the sample. A combi
nation of a divergent (f = − 50 mm) and a convergent (f = 100 mm) 
lenses, enlarged an initial beam section of 5 mm diameter to a final beam 
section of 10 mm diameter. Laser pulses were finally focused by a quartz 
plano-convex lens of 50 mm focus length. For a given height of the 
sample, the actual position of the focus was finely adjusted by the inter- 
lens distance of the beam expander. With a focus 0.5 mm under the 
sample surface, a stable plasma was generated as shown in the inset of 
Fig. 1. In this focusing condition, the spot size of the focused laser on the 
sample surface was estimated to be 300 μm diameter, resulting in a 
fluence and irradiance of respectively 28 J/cm2 and 2.8 GW/cm2, 
delivered on the sample surface. The lens to sample distance was kept 
constant during an experiment by precisely setting the sample surface in 
the horizontal plane using a laser pointer shining on the sample surface 
with a tilted angle (not shown in Fig. 1). The spot of the laser pointer on 
the sample surface was monitored by a CCD camera aiming the sample 
surface with the help of a cold mirror installed in the main laser beam 
path and reflecting a part of visible light from the sample surface toward 
the camera. The transversal position of the laser pointer spot on the 
sample surface correlated therefore to its height. 

The emission from an induced plasma was simultaneously recorded 
by two detection systems respectively in the lateral and backward axial 
directions as shown in Fig. 1. The lateral optical collimation system was 
composed by a pair of quartz lenses of a focus length of 100 mm and an 
optical fiber of 50 μm core diameter, receiving a part of the emitted light 
collimated by the quartz lenses and connected to the entrance of a 
Czerny-Turner spectrometer (Shamrock 500i, Andor Technology), cali
brated for working with the first order of the diffraction. The spec
trometer was equipped with an intensified CMOS camera (ICMOS, iStar, 
Andor Technology). It was used with a grating of 1200 line/mm, blazed 
at 300 nm and tuned to the spectral range of 730–748 nm covering the 
intense N I lines at 742.36 nm, 744.23 nm, and 746.83 nm [8], and an 

Table 2 
Information about the preparation of sample powders by mixing nitrogen-bearing compounds with the Martian soil simulant, and their roles in this work.  

Sample Nitrogen-bearing compounds Mixture rate (wt%) Nitrogen concentration (wt%) 

Set Type ID 

Training 

Tr 1 

S1-1 

Pure N-bearing compounds 

Potassium nitrate 

2.00 0.29 
S1-2 5.00 0.69 
S1-3 7.00 0.97 
S1-4 9.00 1.25 

Tr 2 

S2-1 

Sodium nitrate 

2.00 0.33 
S2-2 5.00 0.83 
S2-3 7.00 1.15 
S2-4 10.00 1.65 

Tr 3 

S3-1 
Ammonium 
dihydrogen phosphate 

1.00 0.13 
S3-2 5.00 0.61 
S3-3 9.00 1.11 
S3-4 15.00 1.83 

Test 
Te 1 

S4-1 

Unknown farmland soils 
Soil 1 

80.00 0.43 
S4-2 100.00 0.54 

Te 2 
S5-1 

Soil 2 
80.00 0.45 

S5-2 100.00 0.57  

Fig. 1. Schematic presentation of the experiment setup.  
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entrance slit opening of 10 μm, which resulted in a spectral resolution 
power λ/Δλ = 7000. In the experiment, the gain of the amplifier was 
specifically optimized (to be a value of 3500 over a maximum of 4096) 
for the lines detected in the covered spectral range, offering a sensitive 
detection of the N I lines. In addition, since along the vertical axis of the 
plasma propagation, the plasma exhibited an obvious inhomogeneity, 
the input extremity of the fiber was adjusted laterally on the middle of 
the image of the plasma, and vertically at a height of about two fifth of 
the size of the plasma image from the sample surface, where the plasma 
emission was observed strong over the detection time interval. 

The backward optical collimation system was composed by the 
ablation laser pulse focusing lens, a dichroic mirror presenting a wide 
range of high reflectivity from 230 nm to 850 nm (reflectivity >90%, Xin 
Xiang Bai He O. E. CO. LTD), an addition focusing quartz lens of 50 mm 
focus length, and an optical fiber of 50 μm core diameter connected to an 
Echelle spectrometer (Mechelle 5000, Andor Technology). The latter 
was equipped with an intensified CCD camera (ICCD, iStar, Andor 
Technology), with a wide spectral range of 220–900 nm and resolution 
power of λ/Δλ = 5000. The input extremity of the fiber was centered on 
the image of the plasma formed by the collection optical system. The 
gain of the intensifier was adjusted to be a value of 2000 over a 
maximum of 4096 in such way that the strongest lines (in blue and near 
UV ranges) in the covered spectral range did not saturate the ICCD 
camera. It was therefore not optimized for a sensitive detection of the 
weak emission lines from nitrogen. A fast photodiode (not shown in 
Fig. 1) detecting scattered lights of laser pulses was used to trigger the 
both ICMOS and ICCD cameras. The both CT and Echelle spectrometers 
were calibrated for wavelengths with a mercury‑argon lamp. The 
Echelle spectrometer was in addition, calibrated for a relative radio
metric response with a deuterium‑tungsten halogen lamp. 

During the experiment, the delays and the gate widths of the both 
ICMOS and ICCD cameras were identically set to 50 ns and 2000 ns. For 
each sample, a matrix of 5 × 20 ablation sites was applied on the surface 
as shown in the inset of Fig. 1, resulting in 100 replicate spectra per 
sample. A distance of 0.5 mm was left between two neighbor sites to 
avoid their overlapping. Each site was sequentially fired by 20 laser 
pulses. The induced plasma emissions were accumulated on CMOS or 
CCD to provide a replicate spectrum. 

3. Results and discussions 

3.1. Univariate analysis 

Typical average replicate spectra (over 40 individual replicate 
spectra) from the sample S2–4 respectively and simultaneously recorded 
by the CT (a) and the Echelle (b) spectrometers are shown in Fig. 2. The 
spectra are presented within two specific and corresponding spectral 
ranges. In Fig. 2 (a) within the spectral range from 740 nm to 748 nm 
covered by the CT spectrometer, three emission lines from nitrogen can 
be identified using the NIST Atomic Spectra Database [14] as indicated 
in the figure for N I 742.36 nm, N I 744.23 nm, and N I 746.83 nm lines. 
Other prominent lines can be detected and numbered from 1 to 10 in 
Fig. 2 (a). Some of them severely interfere with N I lines as the case of the 
line at 746.96 nm. These lines cannot be directly identified using the 
NIST database. A check in the Echelle spectrum in Fig. 2 (b), within the 
corresponding spectral range from 370 nm to 374 nm at the half of the 
wavelengths covered by the CT spectrometer, reveals the existence of 
well detected lines with a similar structure of the relative intensities. 
These lines can be identified using the NIST database as indicated in 
Fig. 2 (b). By multiplying by a factor of two the wavelengths of these 
lines, we find the positions of the lines in the CT spectrum, except the 
nitrogen lines. Such coincidence confirms us the fact that some lines 
detected by the CT spectrometer in the spectral range from 740 nm to 
748 nm, correspond to the ghosts (order two of the diffraction) of the 
lines in the spectral range from 370 nm to 374 nm, also simultaneously 
detected by the Echelle spectrometer. We can therefore interpret the 

lines numbered from 1 to 10 in the CT spectrum by respectively the 
emission lines of Ca II, Fe I, O II, Fe I, Fe I, O II, O II, Fe I, Fe I, and Fe I/Ca 
II, as also can be seen by comparing Fig. 2 (a) and Fig. 2 (b). 

In order to assess the analytical performance of the detected nitrogen 
lines by the CT spectrometer, they were used to establish univariate 
nitrogen concentration calibration curve with baseline-corrected raw 
spectra and with baseline-corrected and normalized spectra. The base
line correction was performed using a method based on continuous 
wavelet transform-based peak detection combined with derivative peak 
width estimation and polynomial fitting of the spectral background 
[15]. The normalization was performed with the total spectral intensity. 

The performances of models were assessed in this work using usual 
calibration and prediction performance assessment parameters, 
including coefficient of determination R2, limit of detection (LOD), 
average relative error of calibration (REC), average root mean square 
error of calibration (RMSEC), and relative standard deviation of cali
bration (RSDC) for the calibration performance; average relative error of 
prediction (REP), average root mean square error of prediction 
(RMSEP), and relative standard deviation of prediction (RSDP) for the 
prediction performance. Detailed definitions of these parameters can be 
found elsewhere [12]. We recall below their mathematic expressions: 

Fig. 2. Average spectra recorded with the sample S2–4, respectively and 
simultaneously by the CT spectrometer (a), and the Echelle spectrometer (b). 
The spectra are presented within two specific and corresponding spectral 
ranges, the Echelle spectrum covers a spectral range of wavelengths which are 
the halves of the wavelengths covered by the CT spectrometer. 
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REC/P(%) =
100

K(C/P)

∑K(C/P)

k=1

1
Lk

∑Lk

l=1

⃒
⃒
⃒
⃒
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where K(C/P) are respectively the numbers of samples in the training (for 
calibration C) and test (for prediction P) sample sets, Lk is the number of 
replicate spectra of sample k, ĉkl(C/P) is the concentration predicted by a 
model for the replicate spectrum l of the sample k in the training or test 
set, ck(C/P) is the label concentration of the sample k. 
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√
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(3)  

where σk(C/P) and c̄k(C/P) =
1
Lk

∑Lk
l=1 ĉkl(C/P) are respectively the standard 

deviation and the mean of the concentrations predicted by the model for 
the replicate spectra of the sample k in the training or test set. 

LOD =
3σn

s
, (4)  

where σn is the standard deviation of the noise of the spectra, calculated 
in this work by the average value of the standard deviations of model- 
predicted concentrations respectively of the three samples with the 
smallest label concentrations in the training sample set (one for each 
type of training samples), and s is the slope of the calibration curve. 

Fig. 3 shows the behaviors of the calibration models respectively 
established with the three detected nitrogen lines (N I 742.36 nm, N I 
744.23 nm, and N I 746.83 nm lines) with baseline-corrected spectra (a, 
b, c), and with baseline-corrected and total spectral intensity- 
normalized spectra (d, e, f). Notice that before the normalization, the 
spectra were first truncated to keep only the spectral region from 400 nm 
to 900 nm. The reason is that the spectral region before 400 nm is 
dominated by the lines from the major elements of the Martian soil 
simulant, Si, Fe and Al. But the contents of these elements are not con
stant in the samples, due to the mixture with nitrogen-bearing 

Fig. 3. Behavior of the univariate models established with N I 742.36 nm (a, d), N I 744.23 nm (b, e), and N I 746.83 nm (c, f) lines, using the baseline-corrected 
spectra (a, b, c), and baseline-corrected and normalized spectra (d, e, f). Are presented for each model, the concentration-intensity data points of the three types of 
training samples, their respective linear fittings, and the linear fitting of the concatenated training data, together with their respective R2 values in brackets. For the 
models with baseline-corrected and normalized spectra (d, e, f), the concentration-intensity data points of the test samples are also presented (Te 1 and Te 2). 
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compounds at various concentrations. This leads to a notable variation 
of the intensity of the spectral range before 400 nm, from one sample to 
another, invalidating it as an internal standard [16]. For each model, are 
presented in the figure the concentration-intensity data points of the 
three types of training samples, their respective linear fitting together 
with the R2 value, the linear fitting of the concatenated three types of 
training data, and for the models with normalized spectra, the 
concentration-intensity data points of the test samples to show the 
relevance for them to be analyzed by a calibration model (established 
with one type of the training data or with the concatenated training 
data). The intensity of a data point corresponds to the average over the 
100 replicate spectra of a sample. The error bar corresponds to the 
standard deviation among the replicates (±SD). Performance assessment 
parameters of the models trained with the concatenated normalized data 
in Fig. 2 (d, e, f) are given in detail in Table 3. 

We can see in Fig. 3 (a - c) that raw spectra exhibit in general, a low 
correlation between the line intensity and the concentration of nitrogen 
for the three considered lines. A better behavior can be found for N I 
746.83 nm line, when the Tr 1 (KNO3) and Tr 2 (NaNO3) samples are 
considered. While for the Tr 3 (NH4H2PO4) samples, a global trend of 
negative correlation can be observed for the three lines, with especially a 
significantly higher intensity for the sample of the lowest N concentra
tion (S3–1). The above behaviors can be explained first by a higher 
relative intensity of N I 746.83 nm line with respect to two other lines 
[14]. The presence of alkali metals, K and Na in the Tr 1 and Tr 2 samples 
favorites absorption of ablation laser pulse, since these elements can be 
easily dissociated and then ionized, leading to an enhanced laser energy 
coupling into the sample. On the other hand, the addition of NH4H2PO4 
in a sample decreases the amount of matrix material of the used Mars 
simulant soil, which is rich in metals such as iron. The coupling effi
ciency of laser into a sample thus decreases with the presence of 
NH4H2PO4, leading to a lower plasma temperature. In order to support 
the explanations, we have calculated the plasma temperature using the 
Boltzmann plot of a set of Fe I lines shown in Table 4 with the corre
sponding spectroscopic parameters from the NIST Atomic Spectra 
Database [14], under the assumption of a plasma in local thermody
namic equilibrium (LTE). The Boltzmann plots for the 4 samples of the 
Tr 3 type are shown in Fig. 4, which allowed to extract the corre
sponding temperatures of 7310±460 K, 6240±230 K, 6160±340 K, and 
6090±200 K respectively for S3–1, S3–2, S3–3 and S3–4. In the figure, 
we can see the plot for the sample S3–1 with a clearly smaller (in ab
solute value) slope than the other plots. This corresponds to the signif
icantly higher temperature deduced for this sample as presented above. 
On the other hand, the plots corresponding to the other three samples 
appear quite similar, with a slight increase of the slop for an increasing N 
concentration. The change is however within the error bars deduced by 
taking into account the uncertainties on the experimental line in
tensities. The above observed behaviors qualitatively correspond well to 
the behaviors of lines intensities observed in Fig. 3. Another reason for 
the observed trend of a globally negative correlation between the N line 
intensity and the N concentration would be a less efficient ablation with 
an increasing maxing rate for the samples of the Tr 3 type. But we had 

not available experimental data to check this second possibility. The 
difference in molecular structure of the nitrogen-bearing compounds 
used for sample preparation leads thus to chemical matrix effect, which 
makes a clear distinction between the samples of Tr 1 and Tr 2 on one 
hand, and those of Tr 3 on the other hand, as can been seen in Fig. 3 (a - 
c). As a consequence, the linear fit of the ensemble of the data of the 
three types of training samples exhibits a very low R2 of 0.231, excluding 
such data to be valid for training of a correct calibration model. 

Normalization is known as able to mitigate the influence of matrix 
effect in quantitative analysis with LIBS [17]. In Fig. 3 (d - f), we can see 
the behavior of the calibration models trained with normalized spectra. 
A better R2 is in general observed for an individual type of training 
samples, and especially for the models trained with the ensemble of the 
three types of training data. We also plot the concentration-intensity 
data points of the two types of test samples in Fig. 3 (d - f), in order to 
observe their relevance to be taken into account by the calibration 
models based on the nitrogen lines. We can see in Fig. 3 (d - f) that 
although the models are improved, their ability to analyze a sample with 
a different nitrogen-bearing compound in a different matrix, is very 
limited. In Table 3, we present the calibration and prediction 

Table 3 
Performance assessment parameters of the univariate models trained with the 
normalized spectra of the ensemble of the three types of training samples.  

Model performance 
parameters 

Used nitrogen lines 

N I 742.36 nm N I 744.23 nm N I 746.83 nm 

Calibration 

R2 0.587 0.565 0.849 
LOD (wt%) 1.08 0.539 0.331 
RMSEC (wt%) 0.12 0.11 0.048 
REC (%) 96.9 84.6 21.6 
RSDC (%) 26.6 16.8 16.6 

Prediction 
RMSEP (wt%) 1.40 0.297 0.324 
REP (%) 537.0 114.9 125.3 
RSDP (%) 14.2 37.8 4.09  

Table 4 
Fe I lines together with the corresponding spectroscopic parameters used for the 
Boltzmann plots [14].  

Wavelength Transition 
probability 

Upper and lower level 
energies 

Degeneracy of the 
upper level 

λki (nm) Aki (s− 1) Ei (eV) - Ek (eV) gk 

349.78 3.08 × 106 0.11–3.65 2 
356.53 4.29 × 107 0.96–4.43 4 
360.67 8.29 × 107 2.69–6.13 6 
360.89 8.13 × 107 1.01–4.45 2 
361.88 7.22 × 107 0.99–4.42 3 
372.26 4.97 × 106 0.087–3.42 2 
373.49 9.01 × 107 0.86–4.18 5 
373.71 1.41 × 107 0.052–3.37 4 
374.56 1.15 × 107 0.087–3.40 3 
375.82 6.34 × 107 0.96–4.26 3 
376.38 5.44 × 107 0.99–4.28 2 
376.55 9.51 × 107 3.24–6.53 7 
381.58 1.12 × 108 1.48–4.73 3 
382.04 6.67 × 107 0.86–4.10 4 
404.58 8.62 × 107 1.48–4.55 4 
406.36 6.65 × 107 1.56–4.61 3  

Fig. 4. Boltzmann plots for the 4 samples of the type Tr 3 (S3-1, S3-2, S3-3, S3- 
4). k1, k2, k3, and k4 are respectively the absolute values the slopes of the four 
Boltzmann plots. 
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performances of the models respectively trained with the three nitrogen 
lines of the ensemble of the three types of training samples. The models 
were then tested with the data of the two types of test samples. 

3.2. Implementation of multivariate regression 

The results in the previous section clearly indicate the insufficiency 
of the univariate models, with or without normalization, to take into 
account chemical matrix effect in order to provide a suitable perfor
mance to satisfy the targeted application. In our work, a multivariate 
regression based on machine learning was studied to effectively correct 
the matrix effect, as the method has been demonstrated capable of such 
task in our previous works [12,18–21]. In particular we used the 
configuration of generalized spectrum [12], more specifically optimized 
to treatment obvious matrix effect due to a clear difference in chemical 
composition of the samples. The implementation of such method needs 
two prerequisites: a wide range spectrum including emission lines from 
the element to be determined and those from other elements contained 
in the matrix in order to provide information about the element and its 
chemical environment, which was realized by a fusion of the simulta
neously acquired spectra by the CT and the Echelle spectrometers; and a 
labelling of the spectra according to the chemical speciation of the 
nitrogen-bearing compound in the corresponding sample, which was 
realized by a clustering procedure of the spectra using principal 
component analysis (PCA). The choice of such data treatment method 
leads to the flowchart for training of the multivariate regression model 
as shown in Fig. 5. 

3.2.1. Spectrum pretreatment 
Spectrum pretreatment consisted in successive operations applied to 

the 200 raw replicate spectra of each sample, a group of 100 from the CT 
spectrometer and another group of 100 from the Echelle spectrometer. 
Notice that the spectra with the Echelle spectrometer were truncated to 
keep the spectral range from 400 nm to 900 nm, as we mentioned above. 
A spectrum was first baseline-corrected and then normalized with its 
total intensity as mentioned above. For the two groups spectra respec
tively, normalized baseline-corrected replicate spectra of a sample were 
further averaged using the moving average method, where a first 
ensemble of 40 randomly chosen replicating spectra were first averaged 
generating a mean spectrum. One of the spectra of the first ensemble was 
then replaced by a new spectrum from the rest of 60 replicate spectra, 
leading to a new mean spectrum. Such operation repeated until all the 
replicate spectra of a sample were involved in the averaging process, 
yielding a total number of 61 average normalized baseline-corrected 
replicate spectra for the two spectrum groups of each sample. In the 
following, they are called pretreated spectra. 

3.2.2. Spectrum fusion 
Spectrum fusion consisted in replacing the segment from 740 nm to 

748 nm of a pretreated Echelle spectrum by the simultaneously recorded 
corresponding CT pretreated spectrum, generating a fused pretreated 
spectrum. Such process is illustrated in Fig. 6 with pretreated spectra of 
the sample S2–4. Fused spectra were separated into two sets of training 
date with the fused spectra of the training samples, and test data with 
the fused spectra of the test samples. We can see in the figure that the 
replaced segment in the Echelle spectrum does not contain any signifi
cant lines from nitrogen distinguishable above the noise. 

Fig. 5. Flowchart for the buildup of the multivariate calibration model based on back-propagation neural network (BPNN) associated with LIBS spectrum fusion and 
generalized spectrum. 
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3.2.3. Feature selection for the training data and feature identification for 
the test data 

Feature selection was performed for the ensemble of fused spectra of 
the training samples with SelectKBest algorithm [22], which assigns a 
score value to each spectral channel according to the covariance of the 
spectral intensities of the channel over all the spectra of the considered 
training data set and the nitrogen concentrations of the corresponding 
training samples. Such score values allow a classification of the spectral 
channels from the most important ones for the determination of nitro
gen, with the highest scores, to the least important ones, with the lowest 
scores. The selected top 200 important features are shown in Fig. 7. In 
the figure, we can see that a majority (59.6%) of the selected features 
correspond to emission lines from elements or molecules. In particular, a 
part of them, with the highest scores, belongs to the three emission lines 
of nitrogen detected by the CT spectrometer in the spectral range of 740 

nm to 748 nm, as shown in the inset of Fig. 7 (a). The ghost lines in the 
same spectral range are not included in the selected features in spite of 
their higher intensities compared to the N I ones, limiting therefore their 
influence in the data processing. Notice that without spectrum fusion, 
the spectral range of the Echelle spectrum from 740 nm to 748 nm does 
not provide any important feature, which underlines the effectiveness of 
the contribution of the CT spectrum in the selected features. Beyond the 
emission lines from nitrogen, spectral channels belonging to the oxygen 
molecule emission band around 493.3 nm [23], received also high 
scores just below the nitrogen lines as shown in Fig. 7 (b). Oxygen 
molecules can be formed in a plasma through dissociation of CO2 fol
lowed by O–O recombination [24]. The detected emission band can be 
thus correlated to the excitation of the ambient gas. Its inclusion in the 
selected feature brings the information about the temperature of the 
plasma, which is dependent on the coupling efficiency of the laser pulse 
to the sample, therefore indicative of the chemical matrix effect. Emis
sion lines from other elements such as Ca, Si, Fe and Al contribute also to 
the selected features. These elements originate from the matrix (Martian 
soil simulant) [13]. Their inclusion within the selected features helps the 
model to learn from the influence of the matrix effects and thereby to 
correct them. The spectral channels selected as the important features 
for model training were used to identify the features of the fused pre
treated spectra of the test samples for the test of the models. Such feature 
identification will also be applied to the spectra of unknown samples in 
future real applications after the spectrum pretreatment and fusion 

Fig. 6. Spectrum fusion for the sample S2–4, (a) a pretreated CT spectrum, (b) 
a pretreated Echelle spectrum, (c) the fused spectrum. 

Fig. 7. Results of the feature selection. (a) The 200 selected features in red 
circles indicated in a fused spectrum of the sample S2–4 in blue (for the Echelle 
spectrum) and red (for the CT spectrum). The inset shows in detail the selected 
features for the nitrogen lines. (b) The scores of the 200 selected features with 
indications of the corresponding elements and molecule. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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processes applied to those spectra. 

3.2.4. Spectrum labelling with clustering 
Univariate models in Fig. 3 show an obvious matrix effect related to 

different nitrogen-bearing compounds mixed into Martian soil simulant 
to prepare the samples. Such strong matrix effect can be effectively 
taken into account with the approach of generalized spectrum [12], 
where the type of a sample according to its chemical specificity is 
explicitly integrated in its spectrum in the form of an additional feature 
appended to those selected in the above section, in such way that the 
model can directly learn from the sample type of a spectrum. In this 
work, the type of a sample is assigned by an unsupervised clustering 
process by looking at the structure of the data without any a priori 
knowledge. We performed therefore a PCA of the ensemble of the fused 
pretreated spectra of the training samples, and used the two first PCs to 
present the spectral data in a two-dimensional map as shown in Fig. 8. In 
the figure we can see a clear clustering of the spectra into two clusters 
that we can labeled as “a” and “b”. The cluster “a” includes the spectra of 
the Tr 1 and Tr 2 training samples, while the cluster “b” those of the Tr 3 
type of training samples. Such clustering result is consistent with the 
behaviors observed in Fig. 3 with univariate regressions. We therefore 
appended a label “a” to the features of the fused pretreated spectra of the 
training samples of types Tr 1 and Tr 2, as the additional feature in the 
generalized spectrum, while a label “b” was appended to the features of 
the fused pretreated spectra of the training samples of type Tr 3, as the 
additional feature. We notice that any other data dimensionality 
reduction algorithms, tSNE (t-distributed stochastic neighbor embed
ding) for example [25], can also be used for the clustering of the training 
data, similar results can be obtained, due to the obvious differences 
between the spectra of the different types of training samples. 

3.2.5. Model training by cross-validation and model calibration 
performance assessment 

The generalized spectra of the ensemble of training samples, with 
their 200 selected features and an additional one of sample type label “a” 
or “b”, were fed into a back-propagated neural network (BPNN) to train 
the model under the supervision of the ensemble of the reference ni
trogen concentration values of the training samples, to establish the 
mapping between generalized spectra and nitrogen concentrations [12]. 
The used neural network had 3 layers, with an input layer of 201 neu
rons receiving the 200 + 1 features of the input spectra, a hidden layer of 
5 neurons, and an output layer of one neuron providing the nitrogen 

concentration predicted by the model for the input spectrum. The 
connection weights between the neurons of the successive layers were 
optimized by gradient descent within a five-fold cross-validation loop 
performed with a dynamic separation of the training spectra into 
training and validation data sets [12,26]. Such cross-validation loop 
generated the calibration assessment parameters of the model. The 
learning rate, batch size and epoch of the BPNN training are selected as 
externally adjustable parameters to optimize the performance of model, 
which were set to 0.001, 32 and 100 respectively in this work. During 
the training, the model exhibited a fats convergence until the 50th 
epoch. Reduction of the validation error slowed down afterward. 

3.2.6. Model testing assisted by sample type labelling and model prediction 
performance assessment 

The trained model was tested with the fused pretreated spectra from 
the test samples not involved in the model training process. A sample 
type label was first assigned to each of the test spectra. Such label was 
determined by calculating the distances in the hyperspace between the 
fused pretreated spectra of the test samples and the training ones. More 
specifically, note by Ijklm, spectral intensity of mth channel of lth pre
treated spectrum of kth sample of jth type of samples, then the distance in 
the hyperspace between two spectra jkl and j′k′ l′ can be expressed by 

djkl,j′ k′ l′ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑M

m=1

(
Ijklm − Ij′ k′ l′ m

)2

√
√
√
√ , (5)  

where M is the dimension of the fused pretreated spectra. The distance in 
the hyperspace between two samples jk and j′k′can be expressed by 

djk,j′ k′ =
1

LL′

∑L

l=1

∑L′

l′ =1

djkl,j′ k′ l′ , (6)  

where L and L′ are the number of pretreated spectra in the samples jk and 
j′k′ respectively. The distance in the hyperspace between two types of 
samples j and j′ can be expressed by 

dj,j′ =
1

KK ′

∑K

k=1

∑K′

k′ =1

djk,j′ k′ , (7)  

where K and K are the number of samples in the type j and j′ respectively. 
The resulted dj,j′ are shown in Table 5, where the cases j ∕= j′ represent 
the distances between different types of samples, while that of j = j′ the 
dispersion of the data within a given type of samples. In the table, we can 
see first that the dispersion of a given type of samples is always smaller 
than the distance between two different types of samples. Then the 
distance between the two types of test samples Te 1 and Te 2 is the 
smallest distance among those between different types, indicating a 
similarity between the two types of test samples. Finally, we find that 
they are clearly closer to the cluster “a” including the Tr 1 and Tr 2 types 
of training samples than to the type Tr 3. A label “a” was thus assigned to 
all the fused pretreated spectra of the test samples. 

As mentioned above, spectral features were identified by corre
spondence of spectral channel with the spectra of the training samples. 
These spectral features were then concatenated with the sample type 

Fig. 8. PCA map of the fused pretreated spectra of the three types of training 
samples, showing their clustering into two distinct clusters that we labeled as 
cluster “a” and cluster “b”. 

Table 5 
Distance in the hyperspace between different types of samples and data 
dispersion within a given type of samples.   

Tr 1 + Tr 2 Tr 3 Te 1 Te 2 

Tr 1 + Tr 2 5.9 × 10− 3    

Tr 3 1.59 × 10− 2 3.2 × 10− 3   

Te 1 1.02 × 10− 2 2.42 × 10− 2 2.9 × 10− 3  

Te 2 1.19 × 10− 2 2.67 × 10− 2 8.2 × 10− 3 2.4 × 10− 3  
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label to form a generalized test spectrum. They were fed into the trained 
model to assess its prediction performance. 

3.3. Performances of multivariate regressions 

Fig. 9 shows the behavior of trained models. Are presented for each 
model, the reference concentration vs predicted concentration data 
points of the three types of training samples, the linear fitting of the 
ensemble of the three types of training data, together with the associated 
R2 value, and the reference concentration vs predicted concentration 
data points of the test samples. The predicted concentration of a data 
point corresponds to the average over the 61 pretreated spectra of a 
sample. The error bar corresponds to the standard deviation among the 
pretreated spectra (±SD). The ground-truth is also plotted in the figures 
to compare with the linear fitting of the concatenated training data. For 
a direct observation of the effect of the additional feature in the gener
alized spectrum, we show in Fig. 9 (a) the behavior of the model trained 
without additional sample type feature, while in Fig. 9 (b), the behavior 
of the model trained with the additional feature is presented. The two 
models were trained with a similar optimization procedure. The cali
bration and prediction performance parameters extracted from the 

models are presented in detail in Table 6. 
In Fig. 9 and Table 6, we can see first that the calibration perfor

mance of the models is significantly improved with respect to the uni
variate models presented in Fig. 3 and Table 4, showing a strong 
nonlinear fitting ability of a model based on neural network. Such fitting 
ability is able to take into account the chemical matrix effect due to 
various chemical speciation of the nitrogen-bearing compounds. A slight 
weakness of the calibration performance of the model trained with 
generalized spectra compared to that trained with selected features can 
be remarked. Look at now the prediction performance of the models, we 
can observe a general degradation with respect to the calibration per
formances for the both models. This corresponds to a usual behavior of a 
machine learning model, because of the differences that can exist be
tween the training and the testing data. It is exactly the situation 
occurring in our case, the experiment was designed to test the models 
with independent samples in order for the resulted assessment param
eters to be representative of the performance of the models in real ap
plications. As expected, a better prediction performance is observed for 
the generalized spectrum model with respect to the selected feature 
model, which represents the capacity of the first to provide more ac
curate nitrogen concentrations in a real application. This improvement 
contrasts with the above-mentioned weakness of the calibration per
formance of the generalized spectrum model compared to the selected 
feature model. We can understand such contrast by the fact that an 
intervention in the features based on a physical a priori knowledge can 
perturb the inherent structure of the data, leading thus to a less efficient 
fitting of them. At the same time, the introduced physical knowledge, 
being an indication of the physical relation existing between the spectra 
and the concentrations, reenforces the robustness and the generaliz
ability of the model. We have obtained finally a LOD of 0.18 wt% and a 
RMSEP of 0.041 wt% with the model trained with generalized spectra, 
which is much improved compared to the previously reported values, 
and represents one step forward to detect nitrogen with LIBS on Mars. 

4. Conclusion 

In conclusion, this work intends to improve the sensitivity and the 
accuracy of LIBS detection of nitrogen for quantitative analysis of ni
trogen in Mars surface materials. The method developed can also be 
applied to other circumstances where a sensitive and accurate nitrogen 
determination is required, analysis of farmland soils for example. These 
applications can meet common difficulties of a weak nitrogen emission 
and a chemical matrix effect due to various chemical speciation of 
nitrogen-bearing compounds in analyzed materials. The developed 
method tackles the problem in the experimental level with a sensitive 
detection using a CT spectrometer tuned to the nitrogen emission 
spectral range. Univariate models based on the nitrogen lines present a 
poor performance, with an obvious matrix effect. A simultaneous 
detection with an Echelle spectrometer offers the possibility of spectrum 
fusion, where the spectral range of nitrogen emissions of an Echelle 
spectrum is replaced by the corresponding CT spectrum. Such fused 

Fig. 9. Behaviors of the multivariate models based on BPNN, trained with the 
selected features of the fused pretreated spectra of the training samples (a), and 
with the generalized spectra by including the sample type label in the selected 
features (b). 

Table 6 
Performance assessment parameters of the multivariate models trained with 
selected features and generalized spectra respectively.  

Model performance parameters Type of the model 

BPNN with 
selected features 

BPNN with 
generalized spectrum 

Calibration 

R2 0.9995 0.9947 
LOD (wt%) 0.19 0.18 
RMSEC (wt%) 0.0058 0.0093 
REC (%) 5.4 6.2 
RSDC (%) 5.9 6.8 

Prediction 
RMSEP (wt%) 0.099 0.041 
REP (%) 39.4 16.7 
RSDP (%) 24.7 3.6  
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spectrum contains optimized information of nitrogen emissions with the 
CT spectrum, and those of other elements of the matrix with the Echelle 
spectrum, allowing an effective training of a multivariate model based 
on machine learning. Notice that the combination of two spectrometers 
equipped with respectively an ICMOS and an ICCD cameras used in our 
experiment does not represent the unique way to implement of the 
method. Any practical solution with a lighter equipment can be a good 
one provided its equivalent capacity. The merit of our work consists in 
demonstrating that spectra with different properties can be combined to 
provide information, directly and indirectly correlated to the element to 
be determined, to a neural network, in order to ensure the effectiveness 
and the robustness of a model. The approach of generalized spectrum, 
particularly relevant for the case of obvious matrix effect was imple
mented with the help of unsupervised data clustering and hyperspace 
distance calculation, to further improve the prediction performance of 
the trained model. Final results show a LOD of 0.18 wt% and a RMSEP of 
0.041 wt%, representing a step forward to a sensitive and accurate 
determination of nitrogen in a complex matrix as Mars soil, required for 
Mars explorations as well as other applications such as farmland soil 
analysis for agriculture. 
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