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A B S T R A C T   

Mercury (Hg) was reported to accumulate in rice grains, and, together with the selenium (Se) was found in rice, 
the co-exposure of Hg-Se via rice consumption may present significant health effects to human. This research 
collected rice samples containing high Hg:high Se and high Se:low Hg concentrations from high Hg and high Se 
background areas. The physiologically based extraction test (PBET) in vitro digestion model was utilized to 
obtain bioaccessibility data from samples. The results showed relatively low bioaccessible for Hg (<60%) and Se 
(<25%) in both rice sample groups, and no statistically significant antagonism was identified. However, the 
correlations of Hg and Se bioaccessibility showed an inverse pattern for the two sample groups. A negative 
correlation was detected in the high Se background rice group and a positive correlation in the high Hg back
ground group, suggesting various micro forms of Hg and Se in rice from different planting locations. In addition, 
when the benefit-risk value (BRV) was calculated, some “fake” positive results showed while Hg and Se con
centrations were directly used, which indicated that bioaccessibility should not be neglected in benefit-risk 
assessment.   

1. Introduction 

The interactions between mercury (Hg) and selenium (Se) have been 
studied since the 1970s. Pařízek and Ošťádalová (1967) first reported 
the protective effect of Se on Hg toxicity in laboratory mice. Also, a 
molar ratio of 1:1 between Hg and Se was found in marine mammals and 
in organs of human who exposed to high levels of inorganic Hg (Koe
man, Peeters, Koudstaal-Hol, Tjioe, & De Goeij, 1973; Kosta, Byrne, & 
Zelenko, 1975). After that, numerous studies were conducted to explore 
the relationship and effects of Hg and Se, and many observations in 
animals supported the protective effect of Se on both inorganic Hg (IHg) 
and methylmercury (MeHg) (Khan & Wang, 2009). Selenium is still 
considered an effective method to detoxify the side effects of Hg 
ingestion; thus, Se and Hg levels in food and their relationship were 
investigated to assess their possible health effects on humans. As an 
essential protein resource, fish was focused because high Hg concen
tration was found since Minamata disease. Cabañero et al. (2004, 2007) 
considered that Hg toxicity from ingestion was correlated to the molar 
ratio between bioaccessible Se and Hg (Se:Hg), and that a high Se:Hg has 

an adequate protection effects from consuming sardine, swordfish and 
tuna. Similar results were also reported in other fish and shell fish spe
cies (Calatayud et al., 2012; Burger and Gochfeld. 2011, 2012; Afonso 
et al., 2015), widely sold in Europe and the US. However, for some fish 
species, the Se:Hg was reported <1 (e.g., blue shark), and a cautionary 
recommendation for consumption was suggested (Matos et al., 2015). In 
order to assess the potential health effect for Hg and Se ingestion by 
consuming fish, Ralston and Raymond (2013) conducted Se-Health 
Benefit Value (HBVSe) to calculate the health risk. Zhang, Feng, Chan, 
and Larssen (2014) considered the essential Se ingestion amount and 
proposed Benefit-risk value (BRV) to evaluate the Hg and Se co- 
exposure. Based on the vast amount of fish consumption and the out
comes of the health risk assessments, fish-eating recommendations were 
provided by certain government agencies as a means to protect the 
human health (EPA, 2021). 

While fish received plenty of attention in aquatic environment, rice, 
as an important food group, was found to concentrate Hg in terrestrial 
environment. Up to 214.7 mg/kg, rice samples collected in Wanshan 
district, eastern Guizhou province, has been reported to contain Hg 
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concentration that cannot be ignored, because Wanshan is reported as a 
typical Hg polluted area with a long history of Hg mining activities (Feng 
et al., 2008; Li, Feng, Qiu, Shang, & Wang, 2008). Thus rice has been 
considered as an important pathway of Hg exposure, especially for the 
residents of inland China (Feng & Qiu, 2008; Zhang, Feng, Larssen, Qiu, 
& Vogt, 2010). In addition, Se concentrations in rice ranging from 0.025 
to 1.88 mg/kg were reported in China, with a relatively high Se con
centration found in certain high Se background areas, e.g., Enshi, which 
located in Hubei province and human Se poisoning occurred in the 
1960s (Huang et al., 2013; Qin, Zhu, Liang, Wang, & Su, 2013; Dinh 
et al., 2018), and also in Se-enriched rice cultivars (Chen et al., 2002; 
Williams et al., 2009; Chang et al., 2019; Jiao et al., 2022). Due to the 
reports mentioned above, health risk assessments were conducted by 
some researchers. However, the health risks caused by Hg exposure via 
rice consumption are limited for commercial rice purchased in China 
and Sri Lanka (Wang et al., 2017; Xu et al., 2020a,2020b). When bio
accessibility was considered, the health risks were further reduced. The 
THg bioaccessibility in rice samples was reported <50% in China (Wu 
et al., 2018) and with a range of 12.6 ± 17.2–44.6 ± 5.0% in Canada 
(Lin, Santa-Rios, Barst, Basu, & Bayen, 2019), and the MeHg bio
accessibility was reported with a range of 40.5 ± 9.4% in China (Gong 
et al., 2018). The Se bioaccessibility was reported with a range of 71.5 ±
11.2% in rice samples collected in northeast China, which is relatively 
higher than the MeHg bioaccessibility in rice (Wang et al., 2021). Based 
on the research results mentioned above, the limited health risks re
ported can be related to the low Hg concentrations; most rice samples 
determined in these studies were collected in non-Hg contaminated 
areas. Thus, the attentions should be paid on the high Hg background 
areas. 

Furthermore, Se and Hg levels have been reported in rice, and 
combined with the large amounts of rice consumed, the co-exposure of 
both Hg and Se may cause different health effects due to the negative 
health impacts of Hg and narrow safe-ingestion amount of Se, e.g., 
Table S1 showed the National Health Commission of People’s Republic 
of China (NHC) advices of an estimated average requirement (EAR), 
recommended nutrient intake (RNI), and tolerable upper intake level 
(UL) of Se for residents of different sex, ages, and health conditions in 
the national standard (NHC, 2017). Similar recommendations were also 
shown in Table S1, which provided by the US Institute of Medicine for 
the EAR and recommended dietary allowance (RDA) of Se (Institute of 
Medicine, 2000). In the case where the ingested amount of Se exceeds 
the UL or less than the EAR, Se is considered to cause negative health 
impacts. To limit Hg ingestion, the WHO (WHO, 2010) has set provi
sional tolerable weekly intake (PTWI) of THg and MeHg respectively 
(Table S1). If co-ingested at relatively high Hg levels, the individual’s 
health may seriously be affected by the synergistic effects of these two 
elements, which deserves careful investigation on extreme cases of Hg- 
Se co-exposure caused by rice consumption. 

In this research, an in vitro digestion experiment was applied to 
determine the THg, MeHg and Se bioaccessibility of rice samples from 
high Hg and Se background areas. Most importantly, the bioaccessibility 
data were applied to investigate further (1) the interactions between Hg 
and Se in rice (2) the potential antagonism between Hg and Se. The 
health effects from Hg and Se co-exposure and the potential health 
benefit-risks from rice consumption (under the high Hg and Se con
centrations) were discussed under the different Hg-Se interactions. 

2. Material and method 

2.1. Study area and sample collection 

The rice samples were collected from Enshi and Wanshan areas 
which were introduced above. A total of 23 rice samples were collected 

from rice paddies, of which 11 were from Enshi (ES1-11) and 12 were 
from Wanshan (WS1-12). The two sampling locations were shown in 
Fig. S1. 

Rice grains were used in this study. The collected rice grains were 
dried at room temperature, treated into polished rice, then milled into 
rice powder and stored in Ziploc polyethylene bags until analysis. 

2.2. In vitro experiment 

The physiologically based extraction test (PBET) in vitro digestion 
model was used in this study because our previous work has proved that 
this method is relatively more stable and accurate (Wu et al., 2018). The 
ingredients and parameters of PBET are listed in Table S2, which was 
firstly developed by Ruby, Davis, Schoof, Eberle, and Sellstone (1996) 
and rearranged by Ng, Juhasz, Smith, and Naidu (2015). 

To simulate the food condition, each rice powder sample was 
weighed to 1 g into a 50 mL centrifuge tube, and deionized water was 
added to 1 mL. The tube was capped and placed into a 100 ◦C water bath 
for 30 min to simulate the cooking procedure. The cooked samples were 
used in the in vitro digestion experiment, and the simulated gastric fluid 
was added into centrifuge tubes to 50 mL. The tubes were shaken at 
37 ◦C, 120 rpm for the time listed in Table 1, then centrifuged at 3000 
rpm for 20 min and the supernatants were collected. The simulated in
testinal juice was added into the residues, also shaken at 37 ◦C, 120 rpm, 
then centrifuged as described above and the supernatants were 
collected. The collected supernatant samples were frozen at − 20 ◦C until 
further analysis. 

2.3. Hg and Se concentration determination 

To quantify the Hg levels in samples, each rice samples was weighed 
to 1 g to correspond to the in vitro experiment, and the supernatants 
were quantified as 10 mL into 15 mL centrifuge tubes. Two different 
digestion procedures were applied: (1) for the THg analysis, 5 mL of 
HNO3 was added to each sample, and tubes were placed in a 95 ◦C water 
bath for 3 h; (2) for the MeHg analysis, 5 mL of KOH- CH3OH solution 
(25% w/v) was added to each sample and placed into a 75 ◦C water bath 
for 4 h. After either procedure, each sample was cooled to room tem
perature and topped to 15 mL with deionized water. To determine the 
MeHg and THg concentrations, the procedures of the United States 
Environmental Protection Agency method 1630 (USEPA, 1998) and 
1631 (USEPA, 2002) were followed, respectively. Cold vapor atomic 
fluorescence system (CVAFS) was applied for THg determination and 
gas chromatography (GC)-CVAFS for MeHg (Model III detector, Brooks 
Rand Instruments, the USA), which followed the USEPA method 1630 
and 1631. The limits of detection (LODs) for THg and MeHg were 0.03 
ng/L and 0.02 ng/L, respectively. 

For Se detection, each rice sample was weighed to 0.2 g, and su
pernatants were quantified as 5 mL into 10 mL Teflon tubes. We fol
lowed the preprocessing method was introduced by Zhang et al. (2015). 
In brief, analytical grade concentrated HNO3 (3 mL) was added and then 
the tubes were capped in a fume hood. After 3 h, the closed tubes were 
heated for 8 h at 155 ◦C in a blast drying oven (BPG-9240A, Yiheng 
Science Instrument Ltd., China). After cooling, 2 mL of 30% H2O2 was 
added, and the solution was recapped and heated for 45 min at 90 ◦C. 
Each digestion solution was then transferred into a 15 mL polytetra
fluoroethylene (PFA) container and evaporated on a hot plate at 90 ◦C to 
near dryness. Selenium in each digestion solution was transformed into 
Se (IV) by adding 2.4 mL of 5 mol/L HCl (ultrapure grade), followed by 
incubation at 95–100 ◦C for 45 min. Each solution was finally diluted to 
16 mL with deionized water. The total Se concentration (TSe) of the 
digestion solutions was quantified by the method introduced by Zhu, Li, 
Qin, and Li (2008), which using an atomic fluorescence spectrometer 
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(AFS) equipped with a sequential injection hydride generation (HG) 
sampling system (Beijing Jitan Instrumentals Co. Ltd., Beijing, China) 
and the LOD was 0.2 μg /L. 

2.4. Data analysis 

To calculate the bioaccessible fraction, the Eq. (1) was applied: 

Bioaccessibile fraction(ng) = Cext × Vext (1)  

where Cext (ng/mL) is the Hg concentration of the simulated digestion 
fluids, and Vext (mL) is the volume of simulated digestion fluids; 

The bioaccessibility of Hg in rice was calculated by the Eq. (2) 
introduced by the USEPA (USEPA, 2012). 

Bioaccessibility(%) =
Bioaccessible fraction

Csample⋅Msample
⋅100 (2)  

where Csample (ng/g) is the Hg concentration in the sample and Msample 
(g) is the mass of the sample. 

To describe the interaction of Se and Hg, the molar ratio (MR) was 
applied, which was calculated by the Eq. (3): 

MR =
Se

Se molar weight

/
Hg

Hg molar weight
(3) 

In this equation, the molar weight of Hg, Se and MeHg was 200.6, 
78.9 and 215, respectively. 

To assess the possible health impacts of Se-Hg co-exposure on human 
due to rice consumption, the BRV introduced by Zhang et al. (2014) was 
utilized Eqs. (4) and (5): 

BRV = PDISe − ΔSe − PDIHg (4)  

PDI = (C × IR)/bw (5)  

where PDI represents probable daily intake and is expressed as μg/kg 
bw/day, the parameter C is the concentration of contaminants in food 
and expressed as μg/kg, which were calculated with the bioaccessibility 
data in this research, and IR is the food ingestion rate (kg/d). ΔSe de
scribes the minimal Se amount required for normal biological function 
when Hg exposure is zero (Zhang et al., 2014), the EAR values (NHC, 
2017) were chosen as ΔSe in this research. The BRV was measured in 
nmol/kg bw/d. 

All statistical analyses were performed with SPSS software (IBM 
Corporation, v26.0) for parametric or non-parametric test methods, 

based on the outcome of normality testing. Two-way analysis of variance 
(ANOVA) and multivariate analysis of variance were also applied to 
determine the effects of different factors on the concentration and bio
accessibility of Hg. 

2.5. Quality assurance and quality control 

The range of relative standard deviation (RSD) values ranged from 
2.3% to 7.8% for duplicate samples. The Hg and Se concentrations in 
certified reference material (CRM) were determined from three dupli
cate samples listed in Table 1. 

3. Results 

3.1. Hg and Se concentrations 

Based on the Chinese national standard of contaminants in food 
(GB2762-2017), the THg concentration in cereals is regulated to 20 μg/ 
kg. As shown in Table 2 and Fig. 1A, all rice samples of ES met the 
standard, indicating that Hg contamination in the non-mercury 
contaminated area was limited and that the THg concentrations in the 
rice of these area were relatively low. However, for the WS rice samples, 
the THg concentration exceeded the standard in 7 samples. More than 
half of the samples in this group contained a high THg concentration 
which may cause adverse health effects through rice consumption. Also, 
WS sample group has relatively higher MeHg/THg ratio than the ES 
sample group. Previous research showed that MeHg in rice paddy is 
important source for rice (Meng et al., 2010), WS is Hg contaminated 
area thus it contains relatively high Hg concentration in rice paddy, 
which may cause the high MeHg concentration in rice. For Se concen
trations, the Chinese national standard recommends a value ranging 
between 40 and 300 μg/kg for Se-enriched rice (GB/T22499-2008). 
Three of the WS samples exceeded the upper limit of the Se standard; 
however, this standard is not mandatory but more like a recommenda
tion. Exceeding the standard does not imply definite adverse health ef
fects. Nonetheless, the exceeding of both Hg and Se standard existed; 
thus, the health effects deserve attention. 

Compared with the previous rice data also collected in these areas, 
THg concentrations in WS rice were relatively low, possibly related to 
the recent pollution control actions implemented by the local govern
ment. However, MeHg concentrations in WS rice were similar to pre
viously reported data, implying that the MeHg concentration did not 
reduce with the THg concentration. A recent study in Wanshan showed 
that IHg absorbed by rice leaves could not be methylated into MeHg in 

Table 1 
The reference value and measured value of Hg and Se in CRM.  

CRM THg (μg/kg) MeHg (μg/kg) TSe(μg/kg) 

reference value measured value Recovery (%) reference value measured value Recovery (%) reference value measured value Recover (%) 

GBW- 
10020 

150 ± 20 145 ± 6 98 ± 9 — —  170 ± 30 152 ± 11 91 ± 9 

TORT-2 — —  152 ± 13 140 ± 5 93 ± 5 — —   

Table 2 
Hg and Se concentrations in rice samples (μg/kg).  

Location N THg MeHg MeHg/THg 
(%) 

Se Ref. 

mean ± SD range mean ± SD range mean ± SD range 

ES 11 5.33 ± 0.35 3.49–7.27 1.62 ± 0.30 0.58–6.86 30 ± 5 68.8 ± 19.9 15.1–246.8 this research 
WS 12 35.96 ± 7.50 6.92–82.03 10.12 ± 1.27 3.30–17.60 42 ± 8 276.4 ± 93.8 14.3–1127.9 this research 
Enshi \ \ \ \ \ \ 590 90–1880 Chang et al., 2019 
Wanshan \  \ \ \ \ 40 ± 6 17–130 Zhang et al., 2015 
Wanshan \  3.2–214 \ \ \ \  Feng et al., 2008 
Wanshan \ \ 6.0–113 \ \ \ \ \ Li et al., 2008 
Wanshan \ \ \ 7.0 ± 3.2 3.8–18 \ \ \ Meng et al., 2010 
Wanshan \ \ \  3.1–13.4 \  \ Li et al., 2008  
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above-ground parts (Liu, Meng, Poulain, Meng, & Feng, 2021). Due to 
the pollution control, the IHg deposition from the atmosphere was lower 
in Wanshan. Thus, the decrease in THg concentration is possibly related 
to the reduced absorption of IHg by leaves. However, the absorption of 
MeHg by roots from the rice paddy was not significantly affected. 
Moreover, Se concentrations in rice of ES were also lower than previ
ously reported data because the farmlands containing high Se concen
tration were mainly converted to plant crops with high economic value. 

3.2. Hg and Se bioaccessible fractions and bioaccessibility 

As introduced by Ruby et al. (1996), oral stage was not included in 
PBET in vitro method, which were explained as relatively short time of 
oral contact (Ng et al., 2015). In addition, Hg and Se in rice were mainly 
bound to cysteine (Meng et al., 2014; Sun, Liu, Williams, & Zhu, 2010), 
thus the amylase in saliva may have limited effect on the bioaccessibility 
of Hg and Se in rice. Consequently, only gastrointestinal contact was 
included in this research. The bioaccessible fraction of Hg and Se were 
determined to represent the total mass of Hg and Se dissolved into 
simulated digestion fluid (Fig. 1C). In the gastric digestion stage, the 
THg and MeHg bioaccessible fractions for ES ranged from 1.13 ± 0.04 to 
1.89 ± 0.80 ng and from 0.07 ± 0.03 to 0.45 ± 0.06 ng, respectively. 
For Se, the bioaccessible fractions ranged from 3.0 ± 0.1 to 8.7 ± 0.4 ng. 
In contrast, the THg, MeHg and Se bioaccessible fraction for WS ranged 
from 1.54 ± 0.62 to 14.05 ± 3.59 ng, from 0.88 ± 0.13 to 6.87 ± 0.49 
ng, and from 5.2 ± 0.2 to 49.9 ± 1.4 ng, respectively. Overall, the 
bioaccessible fractions of WS samples in the gastric fluid were higher 
than those of the ES samples. Similar results were also obtained for the 
intestinal stage. The THg, MeHg and Se bioaccessible fractions for the ES 
samples were 1.22 ± 0.04 to 1.65 ± 0.29 ng, 0.04 ± 0.01 to 0.41 ± 0.01 
ng, and 0.2 ± 0.3 to 5.4 ± 0.0 ng respectively. The THg, MeHg and Se 
bioaccessible fractions for the WS samples were 0.31 ± 0.07 to 3.74 ±
0.35 ng, 0.34 ± 0.06 to 2.18 ± 0.08 ng and 2.1 ± 0.1 to 22.1 ± 0.3 ng, 
respectively. 

The THg, MeHg and Se bioaccessibility were shown in Fig. 1B. Se 
bioaccessibility was overall lower than 25% except in the WS-1 rice 
sample. After the intestinal digestion stage, Se bioaccessibility was 
elevated but lower than 50%, except for WS-1. The Se bioaccessibility 
between the two sample groups could not be distinguished superficially, 

and the mean values were 20 ± 4% and 20 ± 6% for the ES sample 
group and the WS sample group, respectively. However, the Hg bio
accessibility demonstrated a discernable pattern between the two sam
ple groups. In the ES sample group, the THg bioaccessibility was higher 
than MeHg bioaccessibility, with a mean value of 54 ± 3% and 26 ± 3%, 
respectively. In contrast, the WS sample group showed an opposite 
trend, with mean value of 20 ± 1% and 40 ± 6% for THg and MeHg 
bioaccessibility, respectively. In general, the data of THg and MeHg 
bioaccessibility in the ES and WS sample groups showed an apparent 
difference, which will be tested by statistical methods in next part. Based 
on the reported bioaccessibility data (Table S3), MeHg bioaccessibility 
in the ES sample group and THg bioaccessibility in the WS sample group 
were consistent. However, the THg bioaccessibility in the ES sample 
group and MeHg bioaccessibility in the WS sample group were elevated. 
In addition, Se bioaccessibility in both sample groups were primarily 
lower than reported data, most likely because the samples used in those 
studies were purchased from markets. Due to the food safety regulation, 
commercial rice was mainly tested to meet the standard; thus, the Hg 
and Se concentrations were lower than the samples of our research 
samples. While the Se bioaccessibility of both sample groups was lower 
than the reported data, the THg and MeHg bioaccessibility showed a 
different trend for the two sample locations; thus, the relationship be
tween Hg and Se should be discussed. 

4. Discussion 

4.1. Variation in Hg and Se bioaccessibility with different impact factors 

As shown in Fig. 2A, combined with the results of the independent 
sample nonparametric test (Mann-Whitney U test), the p-value for the 
THg and MeHg were all <0.001, for the Se was 0.03 (p < 0.05). 
Consequently, the two sampling locations showed significant differences 
in Hg and Se concentrations. As mentioned above, Hg and Se bio
accessibility showed an apparent difference between the ES and WS 
groups (Fig. 2B), and the Mann-Whitney U test (Fig. 2B) verified the THg 
bioaccessibility to be statistically different between the two sample 
groups (p < 0.05). The mean value of THg bioaccessibility in the ES 
group was higher than that of the WS group but was statistically insig
nificant for MeHg bioaccessibility (p = 0.22) and for Se bioaccessibility 

Fig. 1. The concentration, bioaccessible fraction and bioaccessibility of Hg and Se in rice samples, in Fig. 2C, group1 and group2 represent two parallel tests; G and I 
represent gastric and intestinal digestion stage, respectively. 
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(p = 0.23). From the mean value of THg, MeHg and Se concentration, 
WS samples showed higher Hg and Se concentrations than ES samples. 
In contrast, the mean values of THg bioaccessibility in both digestion 
stages of ES group were higher than those of the WS group. 

Paired sample t-test was utilized to examine the differences in the 
two digestion stages (Fig. 2C). In both sample groups, significant p- 
values (<0.05) for THg, MeHg and Se bioaccesibility were obtained, and 
the average of D-value between gastric and gastrointestinal stage was 
negative. This suggested that the bioaccessibility of the gastrointestinal 
phase was significantly higher than the gastric phase. An independent 
sample nonparametric test was used to test for the difference between 
the two locations. According to the results of the Mann-Whitney U test 
and Kolmogorov-Smirnov test, only THg bioaccessibility of gastric and 
gastrointestinal phase for the two sampling locations showed a statisti
cally significant difference (p < 0.001). 

Results from our previous study showed that in non-mercury 
contaminated areas, planting locations have a limited effect on the Hg 
concentration in rice (Wu, Li, & Feng, 2022). However, in Xunyang 
County, which is also a Hg mining area, Liu et al. (2021) reported that 
the soil and atmosphere were both a source of IHg while the soil was the 
only source of MeHg in rice plants. In recent years, most Hg mining 
activities have been sealed in Wanshan due to pollution control; thus, 
atmospheric Hg concentration has decreased, and atmospheric deposi
tion has been limited. The higher Hg concentration in the soil was likely 
the dominant impact factor for both IHg and MeHg concentrations in the 
WS sample group. Chang et al. (2019) showed that the decomposition of 
organic matter in rice paddies could promote the Se bioavailability and 
accumulation in rice; therefore, the soil was also the primary source of 
rice Se. Consequently, the significant difference in Hg and Se concen
trations of the two sample groups might have been affected by higher Hg 
and Se concentrations in the soil of selected sampling sites. 

Nevertheless, when analyzing the results of the two sampling loca
tions and two digestion phases, the MeHg and Se bioaccessibility did not 
show significant differences. However, only the THg bioaccessibility 
showed a statistical difference between the two sampling sites. The IHg 
form was assumed to be relatively stable in rice because IHg cannot be 
methylated in rice plants (Liu et al., 2021). Our previous research also 
suggested that Hg forms can strongly affect the bioaccessibility (Wu 
et al., 2022). Combined with the much higher THg concentration but 
lower bioaccessibility in the WS samples, this research suggests that IHg 

bioaccessibility may be played an important role in the difference of THg 
bioaccessibility. The effect of Hg and Se antagonism was also speculated 
to be able to affect the Hg and Se bioaccessibility, which will be dis
cussed in the following section. 

4.2. Interaction and possible antagonism between Hg and Se 
bioaccessibility 

Linear correlation was applied to determine the relationship between 
Hg and Se bioaccessibility (Fig. 3 and Table 3). The calculated correla
tions presented an inverse trend for the two sample groups. In the ES 
sample group, both THg and MeHg bioaccessibility showed a negative 
correlation with Se bioaccessibility, while the WS sample group showed 
a positive correlation. According to the results of linear correlation 
analysis results (Table 3), the correlation of MeHg and Se bioaccessibiliy 
showed a significant relationship (p < 0.05) in the ES sample group. In 
contrast, the THg bioaccessibility had a significant relationship (p <
0.05) with both MeHg and Se bioaccessibility in the WS sample group. 
Compared with the data of rice sample containing relatively low Hg and 
Se concentrations (Gong et al., 2018; Wang et al., 2021), the MeHg 
concentrations of the ES samples were similar to the data but Se con
centration were relatively higher, and the MeHg and Se bioaccessibility 
was lower. Rice samples from WS contain much higher Hg and Se con
centrations but relatively low THg and Se bioaccessibility, although the 
MeHg bioaccessibility was consistent with those reported previously. 
Gong et al. (2018) suggested that Se may not be the dominant factor of 
MeHg bioaccessibility due to the non-significant relationship of MeHg 
bioaccessibility with the Se concentration. This suggestion may be 
applied to the condition of rice with relatively low Hg and Se concen
trations. However, due to the distinct Hg and Se geological background 
in this study, the ES samples contained low Hg concentrations and high 
Se concentrations. The THg bioaccessibility did not show a significant 
relationship with Se bioaccessibility but had a significant negative 
relationship with MeHg bioaccessibility, suggesting antagonism be
tween Se and MeHg in ES samples. 

The WS samples contained both high Hg and Se concentrations, and 
MeHg bioaccessibility was not affected by Se bioaccessibility. However, 
THg bioaccessibility was much lower than the ES sample group and the 
previously reported data (Table S3). Due to the high IHg fraction in the 
THg concentration for these samples, it could be speculated that the IHg 

Fig. 2. The variations of Hg and Se in (A) concentrations between two sampling locations, (B) bioaccessibilities between two sampling locations and (C) bio
accessibilities between two digestion stages. 
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bioaccessibility would be low. Combined with the relatively low Se 
bioaccessibility, it can be further hypothesized that Se in the WS samples 
mainly affected the IHg bioaccessibility. Mercury and Se were recently 
reported to bind in various micro forms in different tissues of rice, e.g., 
selenomethionine (SeMet) and selenomethylcysteine (SeMeSeCys) were 
easily transported to rice grain than inorganic forms such as selenite and 
selenate (Carey et al., 2012), and MeHg was mostly presented as MeHg- 
cysteine complex (MeHg-Cys) in rice grain (Meng et al., 2014), the 
previous results showed that various Hg and Se micro forms presents 
different behavior in rice plant, thus the content ratio of Hg and Se micro 
forms may lead to the differences in their bioaccessibility. Consequently, 
the possible reason of Se interacted with IHg in WS samples but with 
MeHg in ES samples was likely relate to the various micro forms of IHg 
and MeHg in rice samples. 

Furthermore, the molar ratio (MR) value for Se:Hg to review the co- 
exposure of Hg and Se from fish, indicating that the a MR of Se:Hg >1 
represents a potential detoxification function of Se on Hg exposure 
(Cabañero, Madrid, & Cámara, 2007; Burger & Gochfeld, 2012; Cala
tayud et al., 2012; Burger, Jeitner, Donio, Pittfield, & Gochfeld, 2013). 
This method was also utilized in this research to explore the interaction 
between Hg and Se in rice. The MR was calculated for each individual 
rice sample, and the average and the mean value were determined per 
group. The initial Hg and Se concentrations and bioaccessible fractions 

were used to determine the different MR values, represented as MR and 
MRbio respectively (Table 4). All the MR values for both sample groups 
were higher than 1 but with considerable variation; both the MR values 
(mean value) of Se:THg and Se:MeHg for the ES sample group were 
higher than the WS group, although not statistically significant (p >
0.05, Mann-Whitney U test). When the bioaccessible fraction was 
considered, the MRbio were statistically significantly lower (p < 0.01, 
paired sample t-test) than MR in both sample groups. However, as shown 
in Table 4, the MRbio showed a different pattern compared to the MR 
values. The mean MRbio of Se:THg in WS group was higher than the ES 
group, but with no statistically significant difference (p > 0.05, Mann- 
Whitney U test). Yet the mean MRbio of Se:MeHg showed the opposite 
trend and with a statistically significance (p < 0.01, Mann-Whitney U 
test). These results provided evidence that combination of Se and Hg 
varied in two sample groups. Together with the differences in the Se and 
Hg correlation as discussed above, our results suggest a significantly 
different interaction mode of Se and Hg in rice samples, which may be 
related to differences in their content and concentration of micro-forms. 
The latter phenomenon deserves to be further investigated in future 
studies. 

4.3. Potential health impact of human 

As discussed in section 4.3, the Se and Hg interaction were varied in 
the two sampling groups, which may have caused a variation in the Se-Hg 
co-exposure rates from rice consumption by residents in the selected 
sampling locations. The reference intake values (Table S1) will be applied 
in health impact evaluation. The average body weight for male and fe
male adults in China is 69.6 kg and 59 kg, respectively (SCIO, 2020). The 
data on rice consumption is based on the cereal ingestion recommenda
tion of the Chinese Nutrition Society (CNS) as 0.2–0.3 kg/d for adults 
(CNS, 2022), where an upper ingestion rate of 0.3 kg/d was used in the 
assessment. The PDI and BRV were calculated using the concentration 
and the bioaccessible fraction of Se and Hg in rice samples for the two 
sampling locations. The PDIbio and BRVbio represented the value 
considered the bioaccessibility. The PTWI for THg and MeHg were con
verted into daily intake limitation of 0.72 μg/kg bw/d and 0.23 μg/kg 
bw/d, respectively. The EAR to UL of Se were also converted to an intake 
ranging between 0.72 and 5.75 μg/kg bw/d. The PDI and BRV were 

Fig. 3. The correllations of THg, MeHg and Se bioaccessibility in two sampling locations.  

Table 3 
The equation of correlation curve and the goodness of fit of Hg and Se 
bioaccessibility.    

THg bioaccessbility MeHg bioaccessibility 

ES MeHg bioaccessibility Y = 0.1453•X + 17.80 
R2 = 0.0183 
p = 0.69 

— 

Se bioaccessibility Y = -0.4941•X + 46.77 
R2 = 0.1322 
p = 0.27 

Y = -0.7734•X + 39.72 
R2 = 0.3743 
p = 0.04 

WS MeHg bioaccessibility Y = 2.549•X − 12.83 
R2 = 0.3417 
p = 0.04 

— 

Se bioaccessibility Y = 2.698•X − 34.52 
R2 = 0.4403 
p = 0.02 

Y = 0.3243•X + 7.685 
R2 = 0.1210 
p = 0.26  
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expressed as μg/kg bw/d and μmol/kg bw/d as suggested by Zhang et al. 
(2014). 

The PDI results showed that both Hg and Se ingestion were lower 
than the recommendation values. When bioaccessibility was considered, 
the PDIbio was further reduced and much lower than the standard. 
Because the samples in this study were obtained from the high Hg and Se 
background areas, the Hg and Se concentrations in rice were relatively 
high. However, even in such an extreme situation, the rice consumption 
still showed a limited risk of causing Hg or Se poisoning. Furthermore, as 
shown in Table 5, BRV calculated with Hg and Se concentrations showed 
a noteworthy phenomenon; the mean BRV for ES samples was negative 
but for WS samples was positive. Based on the theory of BRV, Hg and Se 
concentrations in ES samples showed possible health risks (BRV < 0) but 
potential health benefits (BRV > 0) for WS samples. However, when 
bioaccessibility was considered, BRVbio in both the ES and WS groups 
showed negative results, suggesting possible health risks in both sample 
groups. Due to the BRV considers the minimal Se requirement for human 
(Eq.4); thus, in this research, rice samples from ES contained relatively 
high Se but low Hg concentrations; the Se concentration did not fulfill 
the necessary standard, and the risk of Se insufficiency may have been 
overestimated. On the contrary, WS rice samples contained high Se and 
Hg concentrations, and the Se concentrations were even higher than the 
ES samples. Therefore, the risk of Hg ingestion was covered by the 
sufficient Se ingestion. Consequently, health risk assessment using the 
Hg and Se concentrations in rice may produce misleading results. When 
bioaccessibility was considered, the miscalculation could be corrected 
by the amount released into the digestion fluid. Overall, even though the 
BRVbio showed negative health impacts, the values were small, indi
cating limited health risks by rice consumption. Combined with the re
sults of PDIbio, the risk of Hg poisoning caused by rice consumption was 
limited. The results of commercial rice samples and rice samples from 
non-mercury contaminated areas (Gong et al., 2018; Xu et al., 2020a; 

Wu et al., 2022) indicate that most of the rice with regulated Hg and Se 
concentrations may not be able to cause alarming health risks with Hg 
ingestion. However, for the residents of high Hg and Se background 
areas, the risk of chronic co-exposure to Hg and Se should not be 
neglected, and a more accurate assessment method for chronic exposure 
is required. 

5. Conclusion 

It is known that Hg can be accumulated in rice grain, and the health 
risk caused by rice consumption is a concern. The rice samples collected 
from the high Hg and Se background areas were selected to explore the 
extreme Hg and Se concentration conditions on rice. The bioaccessibility 
was investigated to determine the interaction between Hg and Se in 
simulated human digestion system. Based on our results, the THg con
centration of WS rice samples were exceeded the Chinese food limita
tion, and the Se concentration in rice sample from both groups (ES and 
WS) were relatively higher. The PBET in vitro digestion model was 
applied to access the bioaccessibility fractions, showing relatively low 
bioaccessible percentages for Hg and Se in the both rice sample groups. 
None of the rice sample groups showed a statistically significant corre
lation between bioaccessible Hg and Se. However, inverse trends were 
observed. A possible reason for the latter may be the difference in micro- 
forms of Hg and Se in rice samples from the different planting locations. 
Consequently, the interaction between Hg and Se might have been 
affected by the micro forms and then showed in bioaccessibility. Thus, 
the micro-forms of bioaccessible Hg and Se in rice are important to 
bioaccessibility and deserve a further investigation. 

For the benefit-risk assessment, the MRbio of Se:Hg in rice was higher 
than 1, whereas the PDIbio was lower than the recommended ingestion 
limitation. The BRVbio was negative but relatively low, indicating that 
the risk of Hg exposure via rice consumption might be limited. 

Table 4 
Description of MR of Se and Hg in two rice sample groups.   

Se:THg Se:MeHg  

MR MRbio MR MRbio  

Mean ± SD Range Mean ± SD Range Mean ± SD Range Mean ± SD Range 

ES 37.9 ± 13.8 6.3–168 8.1 ± 1.1 3.3–14.7 203.5 ± 85  20.5–989 87.7 ± 22.8 20.8–256 
WS 18.8 ± 4.1 1.9–38.1 11.0 ± 1.4 1.9–16.8 81.3 ± 27.4  3.0–326 22.9 ± 4.6 3.9–49.3  

Table 5 
PDI and BRV of rice consumption in two sampling locations (nmol/ kg bw/day).    

ES WS THg limitation MeHg limitation Se intake range   

Mean ± SD Range Mean ± SD Range 

Male     

0.72 0.23 

0.72–5.75  

PDITHg 0.023 ± 0.005 0.015–0.031 0.115 ± 0.112 0.059–0.354  
PDIMeHg 0.007 ± 0.004 0.003–0.017 0.044 ± 0.019 0.014–0.076  
PDISe 0.297 ± 0.284 0.065–1.064 1.19 ± 1.40 0.062–4.862  
PDIbio THg 0.012 ± 0.001 0.010–0.014 0.030 ± 0.024 0.009–0.077  
PDIbio MeHg 0.002 ± 0.001 0.001–0.004 0.016 ± 0.009 0.005–0.029  
PDIbio Se 0.038 ± 0.015 0.016–0.059 0.104 ± 0.079 0.041–0.310  
BRVTHg − 0.005 ± 0.004 − 0.008–0.004 0.005 ± 0.017 − 0.009–0.051  
BRVMeHg − 0.005 ± 0.004 − 0.008–0.004 0.006 ± 0.018 − 0.009–0.052  
BRVbio THg − 0.009 ± 0.001 − 0.009–0.008 − 0.008 ± 0.001 − 0.009–0.006  
BRVbio MeHg − 0.009 ± 0.001 − 0.009–0.008 − 0.008 ± 0.001 − 0.009–0.005 

Female     

0.85–6.78  

PDITHg 0.027 ± 0.006 0.018–0.037 0.183 ± 0.132 0.035–0.388  
PDIMeHg 0.008 ± 0.005 0.003–0.020 0.051 ± 0.022 0.017–0.089  
PDISe 0.350 ± 0.335 0.077–1.255 1.41 ± 1.65 0.073–5.735  
PDIbio THg 0.014 ± 0.001 0.012–0.017 0.036 ± 0.028 0.009–0.090  
PDIbio MeHg 0.002 ± 0.001 0.001–0.004 0.018 ± 0.011 0.006–0.045  
PDIbio Se 0.045 ± 0.018 0.018–0.069 0.123 ± 0.093 0.049–0.366  
BRVTHg − 0.007 ± 0.004 − 0.010–0.003 0.004 ± 0.017 − 0.010–0.049  
BRVMeHg − 0.007 ± 0.004 − 0.010–0.003 0.004 ± 0.018 − 0.010–0.051  
BRVbio THg − 0.010 ± 0.001 − 0.011–0.01 − 0.010 ± 0.001 − 0.010–0.007  
BRVbio MeHg − 0.010 ± 0.001 − 0.011–0.01 − 0.010 ± 0.001 − 0.010–0.007  
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Consequently, future studies should focus more attention on the long- 
term health impacts of chronic co-exposure to Hg and Se on the resi
dents in high Hg and Se background areas. However, it should be noted 
that the Hg and Se concentrations directly used to calculate the BRV 
showed “fake” positive results in some samples, while bioaccessibility 
data were used to calculate the BRVbio showed negative results. This 
implies that the concentrations of pollutants used in risk assessment 
calculation may lead to misestimation and that bioaccessibility should 
not be neglected. 
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