唐宗源,李杰,邓昌州等. 2023. 华北克拉通中部造山带龙门钾质岩浆结晶条件:矿物化学和锆石微量元素的约束.岩石学报, 39(05):1370-1386, doi:10.18654/1000-0569/2023.05.10

华北克拉通中部造山带龙门钾质岩浆结晶条件: 矿物化学和锆石微量元素的约束^{*}

唐宗源^{1,2} 李杰^{1**} 邓昌州³ 郑涵⁴ 刘少泽⁵ TANG ZongYuan^{1,2}, LI Jie^{1 * *}, DENG ChangZhou³, ZHENG Han⁴ and LIU ShaoZe⁵

1. 河北省战略性关键矿产资源重点实验室,石家庄 050031

2. 西北大学地质学系,大陆动力学国家重点实验室,西安 710069

3. 中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳 550081

4. 中南大学地球科学与信息物理学院,长沙 410083

5. 河北地质大学华信学院,石家庄 050700

1. Hebei Key Laboratory of Strategic Critical Mineral Resources, Shijiazhuang 050031, China

2. State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China

3. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

4. School of Geosciences and Info-physics, Central South University, Changsha 410083, China

5. Huaxin College of Hebei Geo University, Shijiazhuang 050700, China

2022-12-29 收稿, 2023-03-06 改回.

Tang ZY, Li J, Deng CZ, Zheng H and Liu SZ. 2023. Crystallization conditions of magma from Longmen potassic pluton of the Trans-North China Orogen, North China Craton: Constraints from mineral chemistry and zircon trace element. *Acta Petrologica Sinica*, 39(5): 1370 – 1386, doi: 10.18654/1000-0569/2023.05.10

Abstract The Early Cretaceous potassic outcrops in the Trans-North China Orogen provide natural samples for the studying on the origin of mantle-derived magmas. However, the chemical and physical conditions of diagenesis are still unknown. In this paper, we present in-situ mineral geochemistry and zircon trace element analysis for the potassic pluton from Longmen in Laiyuan County to help answer these questions and to constrain the relationship between temperature and pressure conditions for mineral formation, oxygen fugacity, and mineralization. All zircons in monzonite and diorite have a high Th/U ratio (>0.1), which is of a typical magmatic zircon characteristics, and exhibit strong regular oscillatory zoning as well as enrichment in heavy rare earth elements relative to light rare earth elements with a positive Ce anomaly and a negative Eu anomaly. According to the results of electron probe microanalysis, amphibole in diorite belongs mainly to ferrotschermakite, while plagioclase in monzonite and diorite is mainly andesine, and biotite in monzonite mainly magnesiobiotite. The temperature (793 ~ 842℃), pressure (0.50 ~ 0.75GPa), depth (19 ~ 28km), low oxygen fugacity (log $f_{0_2} = -12.21 \sim -11.38$), and high-water content (8.5% ~ 10.75%) of the magma were calculated based on the compositions of the amphibole in the diorite. The temperature (764 ~ 788 °C) and low oxygen fugacity ($\log f_{02} = -15.14 \sim -14.54$) of the magma were calculated based on the compositions of biotite in the monzonite. The temperature ($770 \sim 978$ °C) and low oxygen fugacity ($\Delta FMQ = -0.37 \sim +1.70$) of the magma were calculated based on the composition of zircons in the diorite and monzonite from Longmen. The mineral chemistry study shows that amphibole crystallizes in deep magma chambers at higher temperatures and pressures than biotite does in crustal environments. The crystallization of amphibole, biotite and zircon in the Longmen rock mass is mainly controlled by magmatic differentiation. It demonstrates that the oxygen fugacity of magma changes as a result of the decompression melting in the geochemical dynamic process. The amphibole in diorite gradually crystallized with the upwelling of magma, and the biotite in monzonite had a high X_{Mg} value during mantle metasomatism, resulting in magnesian biotite. High water

第一作者简介: 唐宗源, 男, 1990年生, 博士, 讲师, 主要从事火成岩的研究与教学, E-mail: tangzy 19@ hgu. edu. cn

^{*} 本文受河北省自然科学基金(D2022403015)资助.

^{**} 通讯作者:李杰,男,1982 年生,博士,副教授,主要从事矿床地球化学研究与教学,E-mail: lijiesue@163. com

content of the amphibole in diorite is related to fluid derived from a subducted slab. Potassic rocks (ca. 141Ma) in the Trans-North China Orogen were caused by the overlying lithospheric mantle that was metasomatized by fluids related to westward subduction/rollback of the Paleo-Pacific Plate (Izanagi Plate), resulting in high water content of the magma. However, the thin lithosphere and low oxygen fugacity at this period restrict the migration of iron, copper and gold, making it difficult for siderophile and chalcophile elements to accumulate, resulting in the mineralization of copper, iron and gold.

Potassic pluton; Zircon trace element; Mineral chemistry; Oxygen fugacity; Trans-North China Orogen Key words

华北克拉通中部造山带发育的早白垩世钾质岩是研究华北克拉通中部幔源岩浆成因的天然样品,然而其成岩物 摘要 理化学条件仍不明确。本文选取了涞源县龙门岩体中闪长岩和二长岩开展了矿物原位地球化学和锆石微量元素分析,以探 讨矿物形成的温压条件及氧逸度与矿化的关系。分析结果显示,二长岩和闪长岩的锆石 Th/U 比值较高(>0.1),轻稀土亏 损、重稀土富集,具明显的 Ce 正异常和 Eu 负异常特征,并具有明显的震荡环带,为典型岩浆成因锆石。电子探针结果显示, 龙门岩体中斜长石主要为中性斜长石,黑云母为原生镁质黑云母,角闪石主要为钙铁闪石。闪长岩中角闪石结晶温度为793 ~842℃,压力为0.50~0.75GPa,深度范围为19~28km,具有较低氧逸度(log f₀,为-12.21~-11.38)和高的含水量(8.5% ~10.75%);二长岩中黑云母结晶温度为764~788℃,具有更低的氧逸度(log f₀₂ = -15.14~-14.54);闪长岩和二长岩中锆 石结晶温度为770~978℃,具有较低的氧逸度(ΔFMQ = -0.37~+1.70)。矿物化学分析表明,角闪石和黑云母虽都在地壳 开始结晶,但角闪石形成于比黑云母更深的岩浆房。龙门岩体中角闪石、黑云母和锆石的结晶主要受岩浆分异控制,其地球 化学动力学机制主要为岩浆上侵时减压熔融,进而引起岩浆氧逸度随岩浆演化而变化。随着岩浆上涌,闪长岩中角闪石随着 温度降低和压力减少逐渐结晶,地幔交代作用导致二长岩中的黑云母具有较高的Xme值,进而形成镁质黑云母。结合区域地 质背景,古太平洋板块(伊佐奈琦板块)俯冲-后撤释放的流体交代上覆岩石圈地幔对中部造山带钾质岩(~141Ma)的形成有 一定贡献,该过程导致了岩浆具有较高的含水量,但龙门岩体低的氧逸度和区域上较厚的岩石圈制约了成矿金属物质(Fe-Au 等)的迁移和富集,因而不利于亲硫、亲铁元素聚集以及铁、金矿化的形成。 关键词

钾质岩体;锆石微量元素;矿物化学;氧逸度;中部造山带

中图法分类号 P575. 1; P588. 122

华北克拉通在晚中生代发生了大规模破坏,在其周缘和 内部发生了强烈的岩浆活动和大规模成矿作用(Li et al., 2012; Zhu et al., 2015; Wang et al., 2020)。在华北克拉通中 部造山带形成了太行山北段构造-岩浆-成矿带(吴福元等, 2000;邓晋福等,2003),围绕麻棚岩体和赤瓦屋岩体(形成时 代~130Ma)发育以石湖金矿、木吉村铜钼矿为代表的金及 有色金属成矿作用(高永丰等,2011; Dong et al., 2013; Gao et al., 2013; Li et al., 2013; 曲凯等, 2014; 申志超等, 2015; 王银 川等,2018)。与成矿相关的侵入岩的物理化学性质是影响 岩浆热液形成、演化及成矿物质卸载的重要条件,对成矿至 关重要。近年来在华北克拉通中部的涞源县龙门地区发现 了与金多金属矿化(Au品位可达 5.14g/t,张淼鑫等,2021) 有关的一套早白垩世(~140Ma)二长岩-闪长岩为主的岩体, 属于钾质岩,其形成时代略早于区域上的金-钼-铜矿成矿时 期。作者在前期针对本岩体开展了岩石成因方面的研究,初 步认为龙门钾质岩是由尖晶石-石榴石过渡带中含角闪石的 二辉橄榄岩为特征的古老的富集地幔的低程度部分熔融形 成的(Tang et al., 2022), 但对该岩体的岩浆演化过程中矿物 结晶条件(温度和压力)、氧逸度等还缺乏深入研究,而这是 评价岩浆-热液成矿系统的潜力的重要指标(Mungall,2002; Simon et al., 2003), 对于评价岩体是否具成矿的潜力具有重 要意义。

基于此,本次工作针对近年来新发现的涞源县龙门钾质 侵入岩为研究对象,通过矿物原位地球化学和锆石微量元素

分析方法,限定岩浆结晶时的温度、压力和含水量、氧逸度等 成岩物理化学条件,为区内钾质岩成矿潜力提供矿物学方面 的探索。

1 区域地质背景及样品特征

华北克拉通作为中国最古老的克拉通,分为东部陆块、 西部陆块和中部造山带三个部分(Zhao et al., 2000)。东部 和西部陆块于太古宙晚期至古元古代早期发展,并在约 1.85Ga 时碰撞形成统一的华北克拉通(Zhao et al., 2001)。 中生代以来,华北克拉通东部遭遇构造热事件而发生再活化 (Zheng et al., 1996)。太行山是华北克拉通中部造山带的一 部分(图1a),代表了东部和西部陆块之间的古元古代俯冲/ 碰撞边界(Wang et al., 2004)。

太行山北段中生代岩浆岩带以 NNE 向构造-岩浆带和 EW 向褶皱与挤压逆冲构造为特征,中生代岩浆岩类型复杂, 但以中酸性岩占绝对优势。岩基及其周边发育一批多金属 矿床、矿点和矿化点,矿化主要发生于岩体内、岩体与围岩接 触带和岩体附近围岩中。太行山北段中生代岩体以大河南 和王安镇岩体(涞源杂岩体)为代表,主要形成于早白垩世, 包括石英二长岩、二长花岗岩、石英闪长岩和花岗闪长岩等 中酸性岩和少量基性岩,在岩体外侧有众多小岩株呈零星状 分布(蔡剑辉等,2003),这些闪长质-花岗质岩侵位于前寒武 纪变质基底中(Shen et al., 2013; Li et al., 2014)。

图 1 华北克拉通早白垩世岩浆岩分布图(a, 据 Liu *et al.*, 2019 修改)及龙门岩体地质简图(b,据 Tang *et al.*, 2022 修改) Fig. 1 Distribution map of Early Cretaceous igneous rocks of the North China Craton (a, after Liu *et al.*, 2019) and simplified geological map of Longmen pluton (b, after Tang *et al.*, 2022)

涞源县龙门金多金属矿是近年来矿产普查中新发现的 金多金属矿化点,与金矿有关的小规模二长-闪长质岩石出 露于龙门地区。大地构造位置处于中部造山带(太行山)北 部,地层有以太古代斜长片麻岩为主的振华峪组,斜长角闪 岩、角闪片岩为主的老潭沟组以及第四系,龙门岩体侵入于 振华峪组地层。前人在本区发现一处金铜铁多金属矿化带 与构造断裂关系密切(图 1b),并沿 NNW 向断裂展布,这些 断裂构造严格控制含矿脉体(石英脉)产状,是含矿热液上升 的主要通道(张淼鑫等,2021)。龙门岩体东西长约4km,南 北宽约2km,出露面积约6km²,呈不规则小岩株状。龙门岩 体的岩性主要为二长岩(LM03、LM19)和闪长岩(LM05-2), 为中粗粒结构,块状构造。样品 LM03 和 LM05-2 采自涞源 县龙门村北部(图1b:39°14'30"N、114°28'53"E:39°14'33"N、 114°28′53″E),样品 LM19 采自涞源县龙门村东北部(图 1b; 39°14′18″N、114°29′29″E)。二长岩主要由斜长石(45%~ 50%)、碱性长石(30%~35%)、黑云母(5%~10%)和辉石 (3%~5%)组成,含有少量磁铁矿、磷灰石等副矿物。斜长 石呈板状,粒径约0.5~1mm,部分绢云母化;碱性长石呈板 状,粒径约为0.5~2mm,局部高岭土化;黑云母呈片状,粒径 约为0.5~2mm,部分颗粒具筛状结构,筛孔内充填斜长石、 碱性长石和黑云母,常见包裹副矿物现象,副矿物包括磷灰 石、锆石和金属矿物;辉石呈半自形-他形柱状,粒径约0.20 ~1mm。闪长岩主要由斜长石(55%~60%)、角闪石(25% ~30%)和黑云母(2%~5%)以及少量辉石和碱性长石 (2%~5%)组成。斜长石呈板状,粒径约0.25~1mm,局部 绢云母化;角闪石呈半自形-他形柱状,粒径约0.25~4mm, 可见角闪石与斜长石组成的嵌晶结构,部分具筛状结构并充 填磁铁矿、磷灰石等细小包裹体;黑云母呈片状,粒径约为 0.5~1mm,常见副矿物是金属矿物(图2)。

2 分析方法

锆石分选和制靶在北京中科矿研检测技术有限公司完成,锆石微量元素和矿物电子探针测试在河北省战略性关键 矿产资源重点实验室完成。

将采集的二长岩和闪长岩样品磨制成探针片,选择角闪 石、斜长石和黑云母进行电子探针(EPMA)原位成分分析, 测试分析的机器型号为 JEOL-JXA-8230,测试时的加速电压 为15kV,样品电流为20nA,束斑直径1µm。测试过程中以硬 玉为 Si、A1、Na 的标样,钾长石为 K 的标样,透辉石为 Ca、Mg 的标样,铁铝榴石为 Fe 的标样,锰硅灰石为 Mn 的标样,金红 石为 Ti 的标样, 萤石作为 F 的标样, 氯化钠为 Cl 标样, 铬铁 矿为 Cr 标样。测试过程中标样数据为:硬玉 Na,O = 14. 77% $SiO_2 = 59.45\%$ MgO = 0.27% $A1_2O_3 = 25.04\%$ FeO = 0.15%、CaO = 0.39%; 钾长石 K, O = 15.50%、Na, O = 0.90% $BaO_2 = 0.05\%$ $Fe_2O_3 = 2.01\%$ $Al_2O_3 = 16.72\%$ SiO₂ = 64.81%;透辉石 Na₂O = 0.41%、SiO₂ = 55.35%、MgO = 17.76%、Al₂O₃ = 0.61%、FeO = 0.83%、CaO = 24.82%;铁 铝榴石 SiO₂ = 39.15%、TiO₂ = 0.06%、Al₂O₃ = 22.70%、FeO = 23.88% 、MnO = 0.55% 、MgO = 10.15% 、CaO = 4.00%; 锰 硅灰石 SiO₂ = 48. 42% 、MgO = 0. 24% 、MnO = 24. 17% 、FeO = 8.13%、CaO = 19.04%、ZnO = 0.27%;金红石 O = 40.07%、 Ti = 59.94%; 萤石 Ca = 51.32%、F = 48.67%; 氯化钠 Na = 39.35%、Cl = 60.63%; 铬铁矿 SiO₂ = 0.14%、MgO = 16. 78% $Al_2O_3 = 23.54\%$ NiO = 0.16% $V_2O_5 = 0.16\%$ ZnO0.04%、TiO₂ = 0.13%、Cr₂O₃ = 45.43%、FeO = 12.89%。所 有标样测试值均与标准值误差在 0.1% 之内,保证了测试的 准确性。

图 2 龙门岩体二长岩和闪长岩野外露头(a-c)、正交偏光下(d-f)及背散射(g-i)照片

Cpx-单斜辉石;Amp-角闪石;Bt-黑云母;Pl-斜长石;Kfs-钾长石;Mt-磁铁矿

Fig. 2 Field occurrence photographs (a-c), microphotographs under cross-polarized light (d-f) and backscattered electron images

(g-i) of monzonite and diorite from Longmen pluton

Cpx-clinopyroxene; Amp-amphibole; Bt-biotite; Pl-plagioclase; Kfs-K-feldspar; Mt-magnetite

锆石微量元素分析采用激光烧蚀电感耦合等离子体质 谱仪(LA-ICP-MS)对抛光后的激光片进行测定,激光剥蚀系 统采用搭载 Laurin Technic S155 样品池和 GeoStaruGISTM 软 件的澳大利亚 RESOlution-LR 型高能量 ArF2 准分子激光剥 蚀系统,质谱仪为美国赛默飞 iCAP RQ 型等离子体质谱仪。 激光剥蚀条件为:激光束斑直径 29µm,激光能量密度 3J/ cm²,剥蚀频率 8Hz。剥蚀前采集 10s 的空白,随后进行 40s 的样品剥蚀,剥蚀完成后进行 20s 的吹扫。载气使用高纯度 氦气,气流量为 0.6L/min;辅助气为 Ar 气,气流量为 0.8L/ min。测试锆石微量元素使用 NIST SRM610 作为外标, Si 作 为内标进行微量元素浓度校准。测量的同位素和微量元素 包括²⁹ Si、⁴⁹ Ti、⁸⁹ Y、⁹² Zr、¹³⁹ La、¹⁴⁰ Ce、¹⁴¹ Pr、¹⁴⁶ Nd、¹⁵² Sm、 ¹⁵³Eu¹⁵⁷ Gd¹⁵⁹ Tb¹⁶⁴ Dy¹⁶⁵ Ho¹⁶⁶ Er¹⁶⁹ Tm¹⁷³ Yb¹⁷⁵ Lu⁵ 178 Hf 204 Pb (+ 204 Hg) 206 Pb 207 Pb 208 Pb 232 U 和 238 U 206 Pb 和²⁰⁷ Pb 的停留时间为 0.06s,²⁰⁸ Pb、²³² Th 和²³⁸ U 为 0.02s,其 余元素为0.01s。LA-ICP-MS的详细分析过程和校准参考 Liu et al. (2010)的方法,锆石微量元素数据处理使用 iolite v. 3.1 软件(Paton et al., 2010),测试精度表示为 2δ。有效锆 石年龄的 Ce4+/Ce3+ 比值通过测定锆石稀土元素含量计算

(Li et al. ,2019) $_{\circ}$

3 分析结果

3.1 锆石微量元素

从样品 LM05-2 和 LM19 中分析了 35 个锆石颗粒(表 1),锆石部分晶面模糊,整体为浑圆状-弱圆柱状,磨圆度较 好(图3)。球粒陨石标准化稀土元素配分模式显示出明显 的轻稀土亏损,重稀土富集的左倾谱型(图4a),其数值从 La 到 Lu 变化了 5 到 6 个数量级,而 Yb/Gd 比值则从 4.5 到 12.0。此外,所有锆石稀土配分模式几乎平行,总体变化不 大,反映了它们相似的结晶环境。从理论上讲,稀土元素在 岩浆中主要为三价元素,但 Ce⁴⁺和 Eu²⁺除外,它们表现出与 其他元素不同行为。Ce⁴⁺容易进入锆石的 Zr⁴⁺位点,Eu²⁺容 易进入斜长石的 Ca²⁺位点。

本次对2件龙门岩体(LM05-2和LM19)进行了锆石微 量元素测试,前期所测样品LM05-2和LM19的锆石U-Pb定 年分别为140±1Ma和141±1Ma(Tang et al., 2022)。锆石

表 1

龙门钾质岩锆石微量元素含量(×10⁻⁶)及氧逸度估算值 1 Trace elements (×10⁻⁶) and estimated oxygen fugacity values of zircon from the Longmen potassic pluton Table 1

测点号	LM05	LM05	LM05	LM05	LM05	LM05	LM05	LM05	LM05	LM05	LM05	LM05
	-2-1	-2-2	-2-3	-2-4	-2-5	-2-6	-2-7	-2-8	-2-9	-2-10	-2-11	-2-12
Age (Ma)	137	138	138	142	133	137	143	140	141	141	143	140
Ti	23.65	34. 59	74.82	34.81	24.55	28.63	19.65	37.67	19.40	25.75	55.37	36. 52
Y	918.4	1679	2718	1222	1186	1078	1513	3007	1758	843.6	1991	1287
La	0.05	0.07	0.34	0.06	0.06	0.07	0.01	0.14	0.03	0.04	0.18	0.10
Ce	26.78	43.84	40.31	35.78	39.15	34.69	78.07	63.18	85.32	36.10	42.41	36.46
Pr	1.38	4.26	5.53	1.63	1.85	1.74	1.06	5.20	1.72	0.81	4.10	2.56
\mathbf{Nd}	10.19	30.49	41.96	14.92	15.34	14.72	9.87	44.24	14.90	8.44	31.44	21.42
Sm	12.58	28.16	44.20	17.73	16.85	15.96	11.86	47.61	17.75	9.41	36.74	19.91
Eu	1.20	3.32	4.43	2.40	1.83	1.70	1.62	4.30	2.31	1.12	3.10	2.40
Gd	35.35	68.07	123.6	50.46	43.54	44.93	41.43	135.0	50.32	27.21	92.93	50.74
Tb	9.69	18.16	32. 58	13.68	11.98	12.05	12.28	36.01	15.08	7.93	24.06	13.74
Dy	100.5	184.8	321.1	135.6	123.4	122.5	141.9	355.2	167.7	85.24	235.7	142.0
Ho	31.21	57.70	95.91	41.96	40.00	36.93	49.26	105.0	57.85	28.04	69.85	44.63
Er	121.3	223.2	356.4	161.1	160.8	141.1	213.5	386.3	244.7	115.8	257.8	169.2
Tm	26.75	47.77	71.45	34.47	35, 71	29.81	51.09	78.57	57.82	26.87	53.47	36.60
Yh	248 4	426_1	616 7	305 1	323 7	263 6	498 1	658 5	551.9	255 5	461 0	323 7
Lu	42 54	70 30	100.3	50.77	55 76	43 41	87 21	102 6	96.05	45 58	75 07	54 45
Hf	11267	14302	11724	14724	13597	13623	16464	12574	16161	13497	12153	13723
Th	299 4	507 1	754 1	350 1	445 9	345 6	968 4	1440	1123	326.3	566 4	403 1
I	820 3	401 5	541.6	323.2	472 8	167 A	1200	1007	125	440.4	4 85 1	377 2
(Ce/Ce*)	7 54	3 02	2 26	6 20	7 73	6 15	35.00	3 26	22 56	15 55	3 00	1 78
(Cerce) _D	0.17	0.22	2.20	0.29	0.21	0.15	0.22	0.16	0.24	0.21	0.16	4.70
Eu/Eu	10.05	0.23	0.10	0.25	10.22	0.19	0. 22 50. 42	0.10	0.24	0.21	2.40	6.00
Le / Le^{-}	10.05	4. /4	2. 51	0.22	10. 55	8. 01 955	50.42 014	J. / 8	52.00 910	21.78	5.40	0.00
	834	8/8	9/8	8/8	838	855	814	888	812	845	937	884
	-0.57	0.33	-0.29	0.33	0.67	0.50	1.10	0.49	1. 52	0.50	0.12	0.42
测点号	LM05	LM05	LM05	LM05	LM05	LM19-1	LM19-2	LM19-3	LM19-5	LM19-6	LM19-7	LM19-8
测点号	LM05 -2-14	LM05 -2-17	LM05 -2-18	LM05 -2-19	LM05 -2-20	LM19-1	LM19-2	LM19-3	LM19-5	LM19-6	LM19-7	LM19-8
测点号 Age (Ma)	LM05 -2-14 141	LM05 -2-17 141	LM05 -2-18 142	LM05 -2-19 138	LM05 -2-20 142	LM19-1 139	LM19-2 140	LM19-3 146	LM19-5	LM19-6 139	LM19-7 141	LM19-8
测点号 Age (Ma) Ti	LM05 -2-14 141 60. 41	LM05 -2-17 141 19.75	LM05 -2-18 142 19.86	LM05 -2-19 138 54. 43	LM05 -2-20 142 19.79	LM19-1 139 27. 22	LM19-2 140 20.42	LM19-3 146 37.00	LM19-5 141 51. 83	LM19-6 139 37.45	LM19-7 141 22. 71	LM19-8 140 32. 47
测点号 Age (Ma) Ti Y	LM05 -2-14 141 60. 41 2482 0. 12	LM05 -2-17 141 19.75 1403 0.01	LM05 -2-18 142 19. 86 2667	LM05 -2-19 138 54. 43 2789	LM05 -2-20 142 19.79 1210	LM19-1 139 27. 22 1497	LM19-2 140 20. 42 1048	LM19-3 146 37.00 1726	LM19-5 141 51. 83 1890	LM19-6 139 37. 45 854	LM19-7 141 22. 71 1820	LM19-8 140 32. 47 2370
测点号 Age (Ma) Ti Y La	LM05 -2-14 141 60. 41 2482 0. 12	LM05 -2-17 141 19. 75 1403 0. 01	LM05 -2-18 142 19. 86 2667 0. 05	LM05 -2-19 138 54. 43 2789 0. 18	LM05 -2-20 142 19.79 1210 0.01	LM19-1 139 27. 22 1497 0. 03 27. 68	LM19-2 140 20. 42 1048 0. 01	LM19-3 146 37.00 1726 0.07	LM19-5 141 51. 83 1890 0. 07	LM19-6 139 37.45 854 0.02	LM19-7 141 22. 71 1820 0. 01	LM19-8 140 32. 47 2370 0. 07
测点号 Age (Ma) Ti Y La Ce	LM05 -2-14 141 60. 41 2482 0. 12 41. 69	LM05 -2-17 141 19.75 1403 0.01 90.58	LM05 -2-18 142 19. 86 2667 0. 05 67. 98	LM05 -2-19 138 54. 43 2789 0. 18 56. 06	LM05 -2-20 142 19. 79 1210 0. 01 57. 27	LM19-1 139 27. 22 1497 0. 03 37. 68	LM19-2 140 20.42 1048 0.01 40.22	LM19-3 146 37.00 1726 0.07 34.46	LM19-5 141 51. 83 1890 0. 07 29. 56	LM19-6 139 37.45 854 0.02 24.85	LM19-7 141 22. 71 1820 0. 01 47. 98	LM19-8 140 32. 47 2370 0. 07 46. 40
测点号 Age (Ma) Ti Y La Ce Pr	LM05 -2-14 141 60. 41 2482 0. 12 41. 69 4. 58	LM05 -2-17 141 19. 75 1403 0. 01 90. 58 1. 00	LM05 -2-18 142 19. 86 2667 0. 05 67. 98 3. 79	LM05 -2-19 138 54. 43 2789 0. 18 56. 06 5. 24	LM05 -2-20 142 19. 79 1210 0. 01 57. 27 0. 88	LM19-1 139 27. 22 1497 0. 03 37. 68 1. 99	LM19-2 140 20.42 1048 0.01 40.22 0.64	LM19-3 146 37.00 1726 0.07 34.46 3.92	LM19-5 141 51. 83 1890 0. 07 29. 56 3. 61	LM19-6 139 37. 45 854 0. 02 24. 85 1. 25	LM19-7 141 22. 71 1820 0. 01 47. 98 2. 33	LM19-8 140 32. 47 2370 0. 07 46. 40 3. 14
测点号 Age (Ma) Ti Y La Ce Pr Nd	LM05 -2-14 141 60. 41 2482 0. 12 41. 69 4. 58 38. 21	LM05 -2-17 141 19. 75 1403 0. 01 90. 58 1. 00 10. 41	LM05 -2-18 142 19. 86 2667 0. 05 67. 98 3. 79 32. 47	LM05 -2-19 138 54. 43 2789 0. 18 56. 06 5. 24 45. 40	LM05 -2-20 142 19. 79 1210 0. 01 57. 27 0. 88 9. 49	LM19-1 139 27. 22 1497 0. 03 37. 68 1. 99 18. 22	LM19-2 140 20. 42 1048 0. 01 40. 22 0. 64 6. 49	LM19-3 146 37.00 1726 0.07 34.46 3.92 29.80	LM19-5 141 51. 83 1890 0. 07 29. 56 3. 61 27. 61	LM19-6 139 37. 45 854 0. 02 24. 85 1. 25 10. 38	LM19-7 141 22. 71 1820 0. 01 47. 98 2. 33 22. 54	LM19-8 140 32. 47 2370 0. 07 46. 40 3. 14 22. 70
测点号 Age (Ma) Ti Y La Ce Pr Nd Sm	LM05 -2-14 141 60. 41 2482 0. 12 41. 69 4. 58 38. 21 44. 69	LM05 -2-17 141 19. 75 1403 0. 01 90. 58 1. 00 10. 41 13. 30	LM05 -2-18 142 19. 86 2667 0. 05 67. 98 3. 79 32. 47 31. 50	LM05 -2-19 138 54. 43 2789 0. 18 56. 06 5. 24 45. 40 51. 77	LM05 -2-20 142 19. 79 1210 0. 01 57. 27 0. 88 9. 49 11. 53	LM19-1 139 27. 22 1497 0. 03 37. 68 1. 99 18. 22 20. 91	LM19-2 140 20. 42 1048 0. 01 40. 22 0. 64 6. 49 10. 71	LM19-3 146 37.00 1726 0.07 34.46 3.92 29.80 27.36	LM19-5 141 51. 83 1890 0. 07 29. 56 3. 61 27. 61 27. 23	LM19-6 139 37. 45 854 0. 02 24. 85 1. 25 10. 38 11. 23	LM19-7 141 22. 71 1820 0. 01 47. 98 2. 33 22. 54 26. 71	LM19-8 140 32. 47 2370 0. 07 46. 40 3. 14 22. 70 23. 30
测点号 Age (Ma) Ti Y La Ce Pr Nd Sm Eu	LM05 -2-14 141 60. 41 2482 0. 12 41. 69 4. 58 38. 21 44. 69 4. 11	LM05 -2-17 141 19. 75 1403 0. 01 90. 58 1. 00 10. 41 13. 30 1. 63	LM05 -2-18 142 19. 86 2667 0. 05 67. 98 3. 79 32. 47 31. 50 3. 74	LM05 -2-19 138 54. 43 2789 0. 18 56. 06 5. 24 45. 40 51. 77 4. 73	LM05 -2-20 142 19. 79 1210 0. 01 57. 27 0. 88 9. 49 11. 53 1. 42	LM19-1 139 27. 22 1497 0. 03 37. 68 1. 99 18. 22 20. 91 2. 78	LM19-2 140 20. 42 1048 0. 01 40. 22 0. 64 6. 49 10. 71 1. 17	LM19-3 146 37.00 1726 0.07 34.46 3.92 29.80 27.36 3.45	LM19-5 141 51. 83 1890 0. 07 29. 56 3. 61 27. 61 27. 23 4. 49	LM19-6 139 37.45 854 0.02 24.85 1.25 10.38 11.23 1.52	LM19-7 141 22. 71 1820 0. 01 47. 98 2. 33 22. 54 26. 71 3. 40	LM19-8 140 32. 47 2370 0. 07 46. 40 3. 14 22. 70 23. 30 3. 03
测点号 Age (Ma) Ti Y La Ce Pr Nd Sm Eu Gd	LM05 -2-14 141 60. 41 2482 0. 12 41. 69 4. 58 38. 21 44. 69 4. 11 120. 5	LM05 -2-17 141 19. 75 1403 0. 01 90. 58 1. 00 10. 41 13. 30 1. 63 42. 51	LM05 -2-18 142 19. 86 2667 0. 05 67. 98 3. 79 32. 47 31. 50 3. 74 89. 89	LM05 -2-19 138 54. 43 2789 0. 18 56. 06 5. 24 45. 40 51. 77 4. 73 137. 2	LM05 -2-20 142 19. 79 1210 0. 01 57. 27 0. 88 9. 49 11. 53 1. 42 35. 34	LM19-1 139 27. 22 1497 0. 03 37. 68 1. 99 18. 22 20. 91 2. 78 57. 07	LM19-2 140 20. 42 1048 0. 01 40. 22 0. 64 6. 49 10. 71 1. 17 31. 12	LM19-3 146 37.00 1726 0.07 34.46 3.92 29.80 27.36 3.45 69.13	LM19-5 141 51. 83 1890 0. 07 29. 56 3. 61 27. 61 27. 23 4. 49 76. 52	LM19-6 139 37. 45 854 0. 02 24. 85 1. 25 10. 38 11. 23 1. 52 30. 43	LM19-7 141 22. 71 1820 0. 01 47. 98 2. 33 22. 54 26. 71 3. 40 70. 51	LM19-8 140 32. 47 2370 0. 07 46. 40 3. 14 22. 70 23. 30 3. 03 71. 89
测点号 Age (Ma) Ti Y La Ce Pr Nd Sm Eu Gd Tb	LM05 -2-14 141 60. 41 2482 0. 12 41. 69 4. 58 38. 21 44. 69 4. 11 120. 5 30. 92	LM05 -2-17 141 19. 75 1403 0. 01 90. 58 1. 00 10. 41 13. 30 1. 63 42. 51 12. 25	LM05 -2-18 142 19. 86 2667 0. 05 67. 98 3. 79 32. 47 31. 50 3. 74 89. 89 26. 25	LM05 -2-19 138 54. 43 2789 0. 18 56. 06 5. 24 45. 40 51. 77 4. 73 137. 2 35. 37	LM05 -2-20 142 19.79 1210 0.01 57.27 0.88 9.49 11.53 1.42 35.34 10.60	LM19-1 139 27. 22 1497 0. 03 37. 68 1. 99 18. 22 20. 91 2. 78 57. 07 15. 95	LM19-2 140 20. 42 1048 0. 01 40. 22 0. 64 6. 49 10. 71 1. 17 31. 12 9. 57	LM19-3 146 37.00 1726 0.07 34.46 3.92 29.80 27.36 3.45 69.13 19.08	LM19-5 141 51. 83 1890 0. 07 29. 56 3. 61 27. 61 27. 23 4. 49 76. 52 20. 78	LM19-6 139 37. 45 854 0. 02 24. 85 1. 25 10. 38 11. 23 1. 52 30. 43 8. 49	LM19-7 141 22. 71 1820 0. 01 47. 98 2. 33 22. 54 26. 71 3. 40 70. 51 19. 73	LM19-8 140 32. 47 2370 0. 07 46. 40 3. 14 22. 70 23. 30 3. 03 71. 89 21. 00
测点号 Age (Ma) Ti Y La Ce Pr Nd Sm Eu Gd Tb Dy	LM05 -2-14 141 60. 41 2482 0. 12 41. 69 4. 58 38. 21 44. 69 4. 11 120. 5 30. 92 298. 6	LM05 -2-17 141 19. 75 1403 0. 01 90. 58 1. 00 10. 41 13. 30 1. 63 42. 51 12. 25 139. 2	LM05 -2-18 142 19. 86 2667 0. 05 67. 98 3. 79 32. 47 31. 50 3. 74 89. 89 26. 25 283. 4	LM05 -2-19 138 54. 43 2789 0. 18 56. 06 5. 24 45. 40 51. 77 4. 73 137. 2 35. 37 344. 9	LM05 -2-20 142 19. 79 1210 0. 01 57. 27 0. 88 9. 49 11. 53 1. 42 35. 34 10. 60 116. 5	LM19-1 139 27. 22 1497 0. 03 37. 68 1. 99 18. 22 20. 91 2. 78 57. 07 15. 95 161. 6	LM19-2 140 20. 42 1048 0. 01 40. 22 0. 64 6. 49 10. 71 1. 17 31. 12 9. 57 105. 5	LM19-3 146 37.00 1726 0.07 34.46 3.92 29.80 27.36 3.45 69.13 19.08 191.8	LM19-5 141 51. 83 1890 0. 07 29. 56 3. 61 27. 61 27. 23 4. 49 76. 52 20. 78 212. 6	LM19-6 139 37. 45 854 0. 02 24. 85 1. 25 10. 38 11. 23 1. 52 30. 43 8. 49 89. 24	LM19-7 141 22. 71 1820 0. 01 47. 98 2. 33 22. 54 26. 71 3. 40 70. 51 19. 73 198. 2	LM19-8 140 32. 47 2370 0. 07 46. 40 3. 14 22. 70 23. 30 3. 03 71. 89 21. 00 235. 7
测点号 Age (Ma) Ti Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho	LM05 -2-14 141 60. 41 2482 0. 12 41. 69 4. 58 38. 21 44. 69 4. 11 120. 5 30. 92 298. 6 87. 80	LM05 -2-17 141 19. 75 1403 0. 01 90. 58 1. 00 10. 41 13. 30 1. 63 42. 51 12. 25 139. 2 46. 97	LM05 -2-18 142 19. 86 2667 0. 05 67. 98 3. 79 32. 47 31. 50 3. 74 89. 89 26. 25 283. 4 90. 98	LM05 -2-19 138 54. 43 2789 0. 18 56. 06 5. 24 45. 40 51. 77 4. 73 137. 2 35. 37 344. 9 99. 27	LM05 -2-20 142 19. 79 1210 0. 01 57. 27 0. 88 9. 49 11. 53 1. 42 35. 34 10. 60 116. 5 39. 45	LM19-1 139 27. 22 1497 0. 03 37. 68 1. 99 18. 22 20. 91 2. 78 57. 07 15. 95 161. 6 52. 38	LM19-2 140 20. 42 1048 0. 01 40. 22 0. 64 6. 49 10. 71 1. 17 31. 12 9. 57 105. 5 35. 04	LM19-3 146 37.00 1726 0.07 34.46 3.92 29.80 27.36 3.45 69.13 19.08 191.8 59.62	LM19-5 141 51. 83 1890 0. 07 29. 56 3. 61 27. 61 27. 23 4. 49 76. 52 20. 78 212. 6 66. 31	LM19-6 139 37. 45 854 0. 02 24. 85 1. 25 10. 38 11. 23 1. 52 30. 43 8. 49 89. 24 29. 21	LM19-7 141 22. 71 1820 0. 01 47. 98 2. 33 22. 54 26. 71 3. 40 70. 51 19. 73 198. 2 63. 19	LM19-8 140 32. 47 2370 0. 07 46. 40 3. 14 22. 70 23. 30 3. 03 71. 89 21. 00 235. 7 79. 34
测点号 Age (Ma) Ti Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	LM05 -2-14 141 60. 41 2482 0. 12 41. 69 4. 58 38. 21 44. 69 4. 11 120. 5 30. 92 298. 6 87. 80 318. 7	LM05 -2-17 141 19. 75 1403 0. 01 90. 58 1. 00 10. 41 13. 30 1. 63 42. 51 12. 25 139. 2 46. 97 195. 1	LM05 -2-18 142 19. 86 2667 0. 05 67. 98 3. 79 32. 47 31. 50 3. 74 89. 89 26. 25 283. 4 90. 98 363. 3	LM05 -2-19 138 54. 43 2789 0. 18 56. 06 5. 24 45. 40 51. 77 4. 73 137. 2 35. 37 344. 9 99. 27 361. 4	LM05 -2-20 142 19. 79 1210 0. 01 57. 27 0. 88 9. 49 11. 53 1. 42 35. 34 10. 60 116. 5 39. 45 169. 4	LM19-1 139 27. 22 1497 0. 03 37. 68 1. 99 18. 22 20. 91 2. 78 57. 07 15. 95 161. 6 52. 38 205. 7	LM19-2 140 20. 42 1048 0. 01 40. 22 0. 64 6. 49 10. 71 1. 17 31. 12 9. 57 105. 5 35. 04 147. 6	LM19-3 146 37.00 1726 0.07 34.46 3.92 29.80 27.36 3.45 69.13 19.08 191.8 59.62 231.5	LM19-5 141 51. 83 1890 0. 07 29. 56 3. 61 27. 61 27. 23 4. 49 76. 52 20. 78 212. 6 66. 31 252. 2	LM19-6 139 37. 45 854 0. 02 24. 85 1. 25 10. 38 11. 23 1. 52 30. 43 8. 49 89. 24 29. 21 119. 6	LM19-7 141 22. 71 1820 0. 01 47. 98 2. 33 22. 54 26. 71 3. 40 70. 51 19. 73 198. 2 63. 19 249. 2	LM19-8 140 32. 47 2370 0. 07 46. 40 3. 14 22. 70 23. 30 3. 03 71. 89 21. 00 235. 7 79. 34 330. 1
测点号 Age (Ma) Ti Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm	LM05 -2-14 141 60. 41 2482 0. 12 41. 69 4. 58 38. 21 44. 69 4. 11 120. 5 30. 92 298. 6 87. 80 318. 7 63. 65	LM05 -2-17 141 19. 75 1403 0. 01 90. 58 1. 00 10. 41 13. 30 1. 63 42. 51 12. 25 139. 2 46. 97 195. 1 46. 09	LM05 -2-18 142 19. 86 2667 0. 05 67. 98 3. 79 32. 47 31. 50 3. 74 89. 89 26. 25 283. 4 90. 98 363. 3 78. 73	LM05 -2-19 138 54. 43 2789 0. 18 56. 06 5. 24 45. 40 51. 77 4. 73 137. 2 35. 37 344. 9 99. 27 361. 4 74. 12	LM05 -2-20 142 19. 79 1210 0. 01 57. 27 0. 88 9. 49 11. 53 1. 42 35. 34 10. 60 116. 5 39. 45 169. 4 40. 48	LM19-1 139 27. 22 1497 0. 03 37. 68 1. 99 18. 22 20. 91 2. 78 57. 07 15. 95 161. 6 52. 38 205. 7 44. 62	LM19-2 140 20. 42 1048 0. 01 40. 22 0. 64 6. 49 10. 71 1. 17 31. 12 9. 57 105. 5 35. 04 147. 6 34. 51	LM19-3 146 37.00 1726 0.07 34.46 3.92 29.80 27.36 3.45 69.13 19.08 191.8 59.62 231.5 50.20	LM19-5 141 51. 83 1890 0. 07 29. 56 3. 61 27. 61 27. 23 4. 49 76. 52 20. 78 212. 6 66. 31 252. 2 53. 79	LM19-6 139 37. 45 854 0. 02 24. 85 1. 25 10. 38 11. 23 1. 52 30. 43 8. 49 89. 24 29. 21 119. 6 27. 38	LM19-7 141 22. 71 1820 0. 01 47. 98 2. 33 22. 54 26. 71 3. 40 70. 51 19. 73 198. 2 63. 19 249. 2 55. 88	LM19-8 140 32. 47 2370 0. 07 46. 40 3. 14 22. 70 23. 30 3. 03 71. 89 21. 00 235. 7 79. 34 330. 1 74. 90
测点号 Age (Ma) Ti Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb	LM05 -2-14 141 60. 41 2482 0. 12 41. 69 4. 58 38. 21 44. 69 4. 11 120. 5 30. 92 298. 6 87. 80 318. 7 63. 65 545. 3	LM05 -2-17 141 19. 75 1403 0. 01 90. 58 1. 00 10. 41 13. 30 1. 63 42. 51 12. 25 139. 2 46. 97 195. 1 46. 09 432. 4	LM05 -2-18 142 19. 86 2667 0. 05 67. 98 3. 79 32. 47 31. 50 3. 74 89. 89 26. 25 283. 4 90. 98 363. 3 78. 73 708. 4	LM05 -2-19 138 54. 43 2789 0. 18 56. 06 5. 24 45. 40 51. 77 4. 73 137. 2 35. 37 344. 9 99. 27 361. 4 74. 12 624. 5	LM05 -2-20 142 19. 79 1210 0. 01 57. 27 0. 88 9. 49 11. 53 1. 42 35. 34 10. 60 116. 5 39. 45 169. 4 40. 48 392. 4	LM19-1 139 27. 22 1497 0. 03 37. 68 1. 99 18. 22 20. 91 2. 78 57. 07 15. 95 161. 6 52. 38 205. 7 44. 62 401. 7	LM19-2 140 20. 42 1048 0. 01 40. 22 0. 64 6. 49 10. 71 1. 17 31. 12 9. 57 105. 5 35. 04 147. 6 34. 51 323. 0	LM19-3 146 37.00 1726 0.07 34.46 3.92 29.80 27.36 3.45 69.13 19.08 191.8 59.62 231.5 50.20 447.7	LM19-5 141 51. 83 1890 0. 07 29. 56 3. 61 27. 61 27. 23 4. 49 76. 52 20. 78 212. 6 66. 31 252. 2 53. 79 470. 0	LM19-6 139 37. 45 854 0. 02 24. 85 1. 25 10. 38 11. 23 1. 52 30. 43 8. 49 89. 24 29. 21 119. 6 27. 38 261. 0	LM19-7 141 22. 71 1820 0. 01 47. 98 2. 33 22. 54 26. 71 3. 40 70. 51 19. 73 198. 2 63. 19 249. 2 55. 88 501. 4	LM19-8 140 32. 47 2370 0. 07 46. 40 3. 14 22. 70 23. 30 3. 03 71. 89 21. 00 235. 7 79. 34 330. 1 74. 90 693. 7
测点号 Age (Ma) Ti Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu	LM05 -2-14 141 60. 41 2482 0. 12 41. 69 4. 58 38. 21 44. 69 4. 11 120. 5 30. 92 298. 6 87. 80 318. 7 63. 65 545. 3 86. 61	LM05 -2-17 141 19. 75 1403 0. 01 90. 58 1. 00 10. 41 13. 30 1. 63 42. 51 12. 25 139. 2 46. 97 195. 1 46. 09 432. 4 74. 70	LM05 -2-18 142 19. 86 2667 0. 05 67. 98 3. 79 32. 47 31. 50 3. 74 89. 89 26. 25 283. 4 90. 98 363. 3 78. 73 708. 4 117. 57	LM05 -2-19 138 54. 43 2789 0. 18 56. 06 5. 24 45. 40 51. 77 4. 73 137. 2 35. 37 344. 9 99. 27 361. 4 74. 12 624. 5 99. 31	LM05 -2-20 142 19. 79 1210 0. 01 57. 27 0. 88 9. 49 11. 53 1. 42 35. 34 10. 60 116. 5 39. 45 169. 4 40. 48 392. 4 70. 93	LM19-1 139 27. 22 1497 0. 03 37. 68 1. 99 18. 22 20. 91 2. 78 57. 07 15. 95 161. 6 52. 38 205. 7 44. 62 401. 7 67. 40	LM19-2 140 20. 42 1048 0. 01 40. 22 0. 64 6. 49 10. 71 1. 17 31. 12 9. 57 105. 5 35. 04 147. 6 34. 51 323. 0 59. 54	LM19-3 146 37.00 1726 0.07 34.46 3.92 29.80 27.36 3.45 69.13 19.08 191.8 59.62 231.5 50.20 447.7 74.04	LM19-5 141 51. 83 1890 0. 07 29. 56 3. 61 27. 61 27. 23 4. 49 76. 52 20. 78 212. 6 66. 31 252. 2 53. 79 470. 0 78. 69	LM19-6 139 37. 45 854 0. 02 24. 85 1. 25 10. 38 11. 23 1. 52 30. 43 8. 49 89. 24 29. 21 119. 6 27. 38 261. 0 47. 84	LM19-7 141 22. 71 1820 0. 01 47. 98 2. 33 22. 54 26. 71 3. 40 70. 51 19. 73 198. 2 63. 19 249. 2 55. 88 501. 4 83. 84	LM19-8 140 32. 47 2370 0. 07 46. 40 3. 14 22. 70 23. 30 3. 03 71. 89 21. 00 235. 7 79. 34 330. 1 74. 90 693. 7 119. 8
测点号 Age (Ma) Ti Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf	LM05 -2-14 141 60. 41 2482 0. 12 41. 69 4. 58 38. 21 44. 69 4. 11 120. 5 30. 92 298. 6 87. 80 318. 7 63. 65 545. 3 86. 61 11571	LM05 -2-17 141 19. 75 1403 0. 01 90. 58 1. 00 10. 41 13. 30 1. 63 42. 51 12. 25 139. 2 46. 97 195. 1 46. 09 432. 4 74. 70 17827	LM05 -2-18 142 19. 86 2667 0. 05 67. 98 3. 79 32. 47 31. 50 3. 74 89. 89 26. 25 283. 4 90. 98 363. 3 78. 73 708. 4 117. 57 16033	LM05 -2-19 138 54. 43 2789 0. 18 56. 06 5. 24 45. 40 51. 77 4. 73 137. 2 35. 37 344. 9 99. 27 361. 4 74. 12 624. 5 99. 31 11458	LM05 -2-20 142 19. 79 1210 0. 01 57. 27 0. 88 9. 49 11. 53 1. 42 35. 34 10. 60 116. 5 39. 45 169. 4 40. 48 392. 4 70. 93 15823	LM19-1 139 27. 22 1497 0. 03 37. 68 1. 99 18. 22 20. 91 2. 78 57. 07 15. 95 161. 6 52. 38 205. 7 44. 62 401. 7 67. 40 14204	LM19-2 140 20. 42 1048 0. 01 40. 22 0. 64 6. 49 10. 71 1. 17 31. 12 9. 57 105. 5 35. 04 147. 6 34. 51 323. 0 59. 54 15539	LM19-3 146 37.00 1726 0.07 34.46 3.92 29.80 27.36 3.45 69.13 19.08 191.8 59.62 231.5 50.20 447.7 74.04 11366	LM19-5 141 51. 83 1890 0. 07 29. 56 3. 61 27. 61 27. 23 4. 49 76. 52 20. 78 212. 6 66. 31 252. 2 53. 79 470. 0 78. 69 11674	LM19-6 139 37. 45 854 0. 02 24. 85 1. 25 10. 38 11. 23 1. 52 30. 43 8. 49 89. 24 29. 21 119. 6 27. 38 261. 0 47. 84 12267	LM19-7 141 22. 71 1820 0. 01 47. 98 2. 33 22. 54 26. 71 3. 40 70. 51 19. 73 198. 2 63. 19 249. 2 55. 88 501. 4 83. 84 15642	LM19-8 140 32. 47 2370 0. 07 46. 40 3. 14 22. 70 23. 30 3. 03 71. 89 21. 00 235. 7 79. 34 330. 1 74. 90 693. 7 119. 8 14365
测点号 Age (Ma) Ti Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Th	LM05 -2-14 141 60. 41 2482 0. 12 41. 69 4. 58 38. 21 44. 69 4. 11 120. 5 30. 92 298. 6 87. 80 318. 7 63. 65 545. 3 86. 61 11571 762. 0	LM05 -2-17 141 19. 75 1403 0. 01 90. 58 1. 00 10. 41 13. 30 1. 63 42. 51 12. 25 139. 2 46. 97 195. 1 46. 09 432. 4 74. 70 17827 1559	LM05 -2-18 142 19. 86 2667 0. 05 67. 98 3. 79 32. 47 31. 50 3. 74 89. 89 26. 25 283. 4 90. 98 363. 3 78. 73 708. 4 117. 57 16033 1555	LM05 -2-19 138 54. 43 2789 0. 18 56. 06 5. 24 45. 40 51. 77 4. 73 137. 2 35. 37 344. 9 99. 27 361. 4 74. 12 624. 5 99. 31 11458 1060	LM05 -2-20 142 19. 79 1210 0. 01 57. 27 0. 88 9. 49 11. 53 1. 42 35. 34 10. 60 116. 5 39. 45 169. 4 40. 48 392. 4 70. 93 15823 660. 9	LM19-1 139 27. 22 1497 0. 03 37. 68 1. 99 18. 22 20. 91 2. 78 57. 07 15. 95 161. 6 52. 38 205. 7 44. 62 401. 7 67. 40 14204 318. 8	LM19-2 140 20. 42 1048 0. 01 40. 22 0. 64 6. 49 10. 71 1. 17 31. 12 9. 57 105. 5 35. 04 147. 6 34. 51 323. 0 59. 54 15539 328. 6	LM19-3 146 37.00 1726 0.07 34.46 3.92 29.80 27.36 3.45 69.13 19.08 191.8 59.62 231.5 50.20 447.7 74.04 11366 324.0	LM19-5 141 51. 83 1890 0. 07 29. 56 3. 61 27. 61 27. 23 4. 49 76. 52 20. 78 212. 6 66. 31 252. 2 53. 79 470. 0 78. 69 11674 429. 0	LM19-6 139 37. 45 854 0. 02 24. 85 1. 25 10. 38 11. 23 1. 52 30. 43 8. 49 89. 24 29. 21 119. 6 27. 38 261. 0 47. 84 12267 210. 0	LM19-7 141 22. 71 1820 0. 01 47. 98 2. 33 22. 54 26. 71 3. 40 70. 51 19. 73 198. 2 63. 19 249. 2 55. 88 501. 4 83. 84 15642 497. 4	LM19-8 140 32. 47 2370 0. 07 46. 40 3. 14 22. 70 23. 30 3. 03 71. 89 21. 00 235. 7 79. 34 330. 1 74. 90 693. 7 119. 8 14365 803. 2
测点号 Age (Ma) Ti Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Th Yb Lu Hf Th U	LM05 -2-14 141 60. 41 2482 0. 12 41. 69 4. 58 38. 21 44. 69 4. 11 120. 5 30. 92 298. 6 87. 80 318. 7 63. 65 545. 3 86. 61 11571 762. 0 525. 5	LM05 -2-17 141 19. 75 1403 0. 01 90. 58 1. 00 10. 41 13. 30 1. 63 42. 51 12. 25 139. 2 46. 97 195. 1 46. 09 432. 4 74. 70 17827 1559 1613	LM05 -2-18 142 19. 86 2667 0. 05 67. 98 3. 79 32. 47 31. 50 3. 74 89. 89 26. 25 283. 4 90. 98 363. 3 78. 73 708. 4 117. 57 16033 1555 1291	LM05 -2-19 138 54. 43 2789 0. 18 56. 06 5. 24 45. 40 51. 77 4. 73 137. 2 35. 37 344. 9 99. 27 361. 4 74. 12 624. 5 99. 31 11458 1060 712. 7	LM05 -2-20 142 19. 79 1210 0. 01 57. 27 0. 88 9. 49 11. 53 1. 42 35. 34 10. 60 116. 5 39. 45 169. 4 40. 48 392. 4 70. 93 15823 660. 9 939. 5	LM19-1 139 27. 22 1497 0. 03 37. 68 1. 99 18. 22 20. 91 2. 78 57. 07 15. 95 161. 6 52. 38 205. 7 44. 62 401. 7 67. 40 14204 318. 8 257. 8	LM19-2 140 20. 42 1048 0. 01 40. 22 0. 64 6. 49 10. 71 1. 17 31. 12 9. 57 105. 5 35. 04 147. 6 34. 51 323. 0 59. 54 15539 328. 6 364. 8	LM19-3 146 37.00 1726 0.07 34.46 3.92 29.80 27.36 3.45 69.13 19.08 191.8 59.62 231.5 50.20 447.7 74.04 11366 324.0 239.9	LM19-5 141 51. 83 1890 0. 07 29. 56 3. 61 27. 61 27. 23 4. 49 76. 52 20. 78 212. 6 66. 31 252. 2 53. 79 470. 0 78. 69 11674 429. 0 276. 2	LM19-6 139 37. 45 854 0. 02 24. 85 1. 25 10. 38 11. 23 1. 52 30. 43 8. 49 89. 24 29. 21 119. 6 27. 38 261. 0 47. 84 12267 210. 0 230. 2	LM19-7 141 22. 71 1820 0. 01 47. 98 2. 33 22. 54 26. 71 3. 40 70. 51 19. 73 198. 2 63. 19 249. 2 55. 88 501. 4 83. 84 15642 497. 4 395. 5	LM19-8 140 32. 47 2370 0. 07 46. 40 3. 14 22. 70 23. 30 3. 03 71. 89 21. 00 235. 7 79. 34 330. 1 74. 90 693. 7 119. 8 14365 803. 2 818. 1
测点号 Age (Ma) Ti Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Th U (Ce/Ce*) _D	LM05 -2-14 141 60. 41 2482 0. 12 41. 69 4. 58 38. 21 44. 69 4. 11 120. 5 30. 92 298. 6 87. 80 318. 7 63. 65 545. 3 86. 61 11571 762. 0 525. 5 2. 31	LM05 -2-17 141 19. 75 1403 0. 01 90. 58 1. 00 10. 41 13. 30 1. 63 42. 51 12. 25 139. 2 46. 97 195. 1 46. 09 432. 4 74. 70 17827 1559 1613 33. 21	LM05 -2-18 142 19. 86 2667 0. 05 67. 98 3. 79 32. 47 31. 50 3. 74 89. 89 26. 25 283. 4 90. 98 363. 3 78. 73 708. 4 117. 57 16033 1555 1291 6. 85	LM05 -2-19 138 54. 43 2789 0. 18 56. 06 5. 24 45. 40 51. 77 4. 73 137. 2 35. 37 344. 9 99. 27 361. 4 74. 12 624. 5 99. 31 11458 1060 712. 7 2. 63	LM05 -2-20 142 19. 79 1210 0. 01 57. 27 0. 88 9. 49 11. 53 1. 42 35. 34 10. 60 116. 5 39. 45 169. 4 40. 48 392. 4 70. 93 15823 660. 9 939. 5 24. 53	LM19-1 139 27. 22 1497 0. 03 37. 68 1. 99 18. 22 20. 91 2. 78 57. 07 15. 95 161. 6 52. 38 205. 7 44. 62 401. 7 67. 40 14204 318. 8 257. 8 6. 00	LM19-2 140 20. 42 1048 0. 01 40. 22 0. 64 6. 49 10. 71 1. 17 31. 12 9. 57 105. 5 35. 04 147. 6 34. 51 323. 0 59. 54 15539 328. 6 364. 8 22. 34	LM19-3 146 37.00 1726 0.07 34.46 3.92 29.80 27.36 3.45 69.13 19.08 191.8 59.62 231.5 50.20 447.7 74.04 11366 324.0 239.9 3.25	LM19-5 141 51. 83 1890 0. 07 29. 56 3. 61 27. 61 27. 23 4. 49 76. 52 20. 78 212. 6 66. 31 252. 2 53. 79 470. 0 78. 69 11674 429. 0 276. 2 2. 97	LM19-6 139 37. 45 854 0. 02 24. 85 1. 25 10. 38 11. 23 1. 52 30. 43 8. 49 89. 24 29. 21 119. 6 27. 38 261. 0 47. 84 12267 210. 0 230. 2 8. 20	LM19-7 141 22. 71 1820 0. 01 47. 98 2. 33 22. 54 26. 71 3. 40 70. 51 19. 73 198. 2 63. 19 249. 2 55. 88 501. 4 83. 84 15642 497. 4 395. 5 6. 11	LM19-8 140 32. 47 2370 0. 07 46. 40 3. 14 22. 70 23. 30 3. 03 71. 89 21. 00 235. 7 79. 34 330. 1 74. 90 693. 7 119. 8 14365 803. 2 818. 1 7. 84
测点号 Age (Ma) Ti Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Th U (Ce/Ce*) _D Eu/Eu*	LM05 -2-14 141 60. 41 2482 0. 12 41. 69 4. 58 38. 21 44. 69 4. 11 120. 5 30. 92 298. 6 87. 80 318. 7 63. 65 545. 3 86. 61 11571 762. 0 525. 5 2. 31 0. 17	LM05 -2-17 141 19. 75 1403 0. 01 90. 58 1. 00 10. 41 13. 30 1. 63 42. 51 12. 25 139. 2 46. 97 195. 1 46. 09 432. 4 74. 70 17827 1559 1613 33. 21 0. 21	LM05 -2-18 142 19. 86 2667 0. 05 67. 98 3. 79 32. 47 31. 50 3. 74 89. 89 26. 25 283. 4 90. 98 363. 3 78. 73 708. 4 117. 57 16033 1555 1291 6. 85 0. 22	LM05 -2-19 138 54. 43 2789 0. 18 56. 06 5. 24 45. 40 51. 77 4. 73 137. 2 35. 37 344. 9 99. 27 361. 4 74. 12 624. 5 99. 31 11458 1060 712. 7 2. 63 0. 17	LM05 -2-20 142 19. 79 1210 0. 01 57. 27 0. 88 9. 49 11. 53 1. 42 35. 34 10. 60 116. 5 39. 45 169. 4 40. 48 392. 4 70. 93 15823 660. 9 939. 5 24. 53 0. 21	LM19-1 139 27. 22 1497 0. 03 37. 68 1. 99 18. 22 20. 91 2. 78 57. 07 15. 95 161. 6 52. 38 205. 7 44. 62 401. 7 67. 40 14204 318. 8 257. 8 6. 00 0. 25	LM19-2 140 20. 42 1048 0. 01 40. 22 0. 64 6. 49 10. 71 1. 17 31. 12 9. 57 105. 5 35. 04 147. 6 34. 51 323. 0 59. 54 15539 328. 6 364. 8 22. 34 0. 20	LM19-3 146 37.00 1726 0.07 34.46 3.92 29.80 27.36 3.45 69.13 19.08 191.8 59.62 231.5 50.20 447.7 74.04 11366 324.0 239.9 3.25 0.24	LM19-5 141 51. 83 1890 0. 07 29. 56 3. 61 27. 61 27. 23 4. 49 76. 52 20. 78 212. 6 66. 31 252. 2 53. 79 470. 0 78. 69 11674 429. 0 276. 2 2. 97 0. 30	LM19-6 139 37. 45 854 0. 02 24. 85 1. 25 10. 38 11. 23 1. 52 30. 43 8. 49 89. 24 29. 21 119. 6 27. 38 261. 0 47. 84 12267 210. 0 230. 2 8. 20 0. 25	LM19-7 141 22. 71 1820 0. 01 47. 98 2. 33 22. 54 26. 71 3. 40 70. 51 19. 73 198. 2 63. 19 249. 2 55. 88 501. 4 83. 84 15642 497. 4 395. 5 6. 11 0. 24	LM19-8 140 32. 47 2370 0. 07 46. 40 3. 14 22. 70 23. 30 3. 03 71. 89 21. 00 235. 7 79. 34 330. 1 74. 90 693. 7 119. 8 14365 803. 2 818. 1 7. 84 0. 23
测点号 Age (Ma) Ti Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Th U (Ce/Ce*) _D Eu/Eu* Ce ⁴⁺ /Ce ³⁺	LM05 -2-14 141 60. 41 2482 0. 12 41. 69 4. 58 38. 21 44. 69 4. 11 120. 5 30. 92 298. 6 87. 80 318. 7 63. 65 545. 3 86. 61 11571 762. 0 525. 5 2. 31 0. 17 2. 38	LM05 -2-17 141 19. 75 1403 0. 01 90. 58 1. 00 10. 41 13. 30 1. 63 42. 51 12. 25 139. 2 46. 97 195. 1 46. 09 432. 4 74. 70 17827 1559 1613 33. 21 0. 21 47. 66	LM05 -2-18 142 19. 86 2667 0. 05 67. 98 3. 79 32. 47 31. 50 3. 74 89. 89 26. 25 283. 4 90. 98 363. 3 78. 73 708. 4 117. 57 16033 1555 1291 6. 85 0. 22 9. 04	LM05 -2-19 138 54. 43 2789 0. 18 56. 06 5. 24 45. 40 51. 77 4. 73 137. 2 35. 37 344. 9 99. 27 361. 4 74. 12 624. 5 99. 31 11458 1060 712. 7 2. 63 0. 17 2. 85	LM05 -2-20 142 19. 79 1210 0. 01 57. 27 0. 88 9. 49 11. 53 1. 42 35. 34 10. 60 116. 5 39. 45 169. 4 40. 48 392. 4 70. 93 15823 660. 9 939. 5 24. 53 0. 21 34. 94	LM19-1 139 27. 22 1497 0. 03 37. 68 1. 99 18. 22 20. 91 2. 78 57. 07 15. 95 161. 6 52. 38 205. 7 44. 62 401. 7 67. 40 14204 318. 8 257. 8 6. 00 0. 25 5. 61	LM19-2 140 20. 42 1048 0. 01 40. 22 0. 64 6. 49 10. 71 1. 17 31. 12 9. 57 105. 5 35. 04 147. 6 34. 51 323. 0 59. 54 15539 328. 6 364. 8 22. 34 0. 20 23. 59	LM19-3 146 37.00 1726 0.07 34.46 3.92 29.80 27.36 3.45 69.13 19.08 191.8 59.62 231.5 50.20 447.7 74.04 11366 324.0 239.9 3.25 0.24 2.58	LM19-5 141 51. 83 1890 0. 07 29. 56 3. 61 27. 61 27. 23 4. 49 76. 52 20. 78 212. 6 66. 31 252. 2 53. 79 470. 0 78. 69 11674 429. 0 276. 2 2. 97 0. 30 2. 26	LM19-6 139 37. 45 854 0. 02 24. 85 1. 25 10. 38 11. 23 1. 52 30. 43 8. 49 89. 24 29. 21 119. 6 27. 38 261. 0 47. 84 12267 210. 0 230. 2 8. 20 0. 25 8. 02	LM19-7 141 22. 71 1820 0. 01 47. 98 2. 33 22. 54 26. 71 3. 40 70. 51 19. 73 198. 2 63. 19 249. 2 55. 88 501. 4 83. 84 15642 497. 4 395. 5 6. 11 0. 24 5. 72	LM19-8 140 32. 47 2370 0. 07 46. 40 3. 14 22. 70 23. 30 3. 03 71. 89 21. 00 235. 7 79. 34 330. 1 74. 90 693. 7 119. 8 14365 803. 2 818. 1 7. 84 0. 23 7. 63
测点号 Age (Ma) Ti Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Th U (Ce/Ce [*]) _D Eu/Eu [*] Ce ⁴⁺ /Ce ³⁺ T(°C)	LM05 -2-14 141 60. 41 2482 0. 12 41. 69 4. 58 38. 21 44. 69 4. 11 120. 5 30. 92 298. 6 87. 80 318. 7 63. 65 545. 3 86. 61 11571 762. 0 525. 5 2. 31 0. 17 2. 38 948	LM05 -2-17 141 19. 75 1403 0. 01 90. 58 1. 00 10. 41 13. 30 1. 63 42. 51 12. 25 139. 2 46. 97 195. 1 46. 09 432. 4 74. 70 17827 1559 1613 33. 21 0. 21 47. 66 814	LM05 -2-18 142 19. 86 2667 0. 05 67. 98 3. 79 32. 47 31. 50 3. 74 89. 89 26. 25 283. 4 90. 98 363. 3 78. 73 708. 4 117. 57 16033 1555 1291 6. 85 0. 22 9. 04 815	LM05 -2-19 138 54. 43 2789 0. 18 56. 06 5. 24 45. 40 51. 77 4. 73 137. 2 35. 37 344. 9 99. 27 361. 4 74. 12 624. 5 99. 31 11458 1060 712. 7 2. 63 0. 17 2. 85 934	LM05 -2-20 142 19. 79 1210 0. 01 57. 27 0. 88 9. 49 11. 53 1. 42 35. 34 10. 60 116. 5 39. 45 169. 4 40. 48 392. 4 70. 93 15823 660. 9 939. 5 24. 53 0. 21 34. 94 814	LM19-1 139 27. 22 1497 0. 03 37. 68 1. 99 18. 22 20. 91 2. 78 57. 07 15. 95 161. 6 52. 38 205. 7 44. 62 401. 7 67. 40 14204 318. 8 257. 8 6. 00 0. 25 5. 61 850	LM19-2 140 20. 42 1048 0. 01 40. 22 0. 64 6. 49 10. 71 1. 17 31. 12 9. 57 105. 5 35. 04 147. 6 34. 51 323. 0 59. 54 15539 328. 6 364. 8 22. 34 0. 20 23. 59 818	LM19-3 146 37.00 1726 0.07 34.46 3.92 29.80 27.36 3.45 69.13 19.08 191.8 59.62 231.5 50.20 447.7 74.04 11366 324.0 239.9 3.25 0.24 2.58 886	LM19-5 141 51. 83 1890 0. 07 29. 56 3. 61 27. 61 27. 23 4. 49 76. 52 20. 78 212. 6 66. 31 252. 2 53. 79 470. 0 78. 69 11674 429. 0 276. 2 2. 97 0. 30 2. 26 928	LM19-6 139 37. 45 854 0. 02 24. 85 1. 25 10. 38 11. 23 1. 52 30. 43 8. 49 89. 24 29. 21 119. 6 27. 38 261. 0 47. 84 12267 210. 0 230. 2 8. 20 0. 25 8. 02 887	LM19-7 141 22. 71 1820 0. 01 47. 98 2. 33 22. 54 26. 71 3. 40 70. 51 19. 73 198. 2 63. 19 249. 2 55. 88 501. 4 83. 84 15642 497. 4 395. 5 6. 11 0. 24 5. 72 829	LM19-8 140 32. 47 2370 0. 07 46. 40 3. 14 22. 70 23. 30 3. 03 71. 89 21. 00 235. 7 79. 34 330. 1 74. 90 693. 7 119. 8 14365 803. 2 818. 1 7. 84 0. 23 7. 63 870

续表1

Continued Table 1

测点号	LM19-9	LM19-10	LM19-12	LM19-13	LM19-14	LM19-15	LM19-16	LM19-17	LM19-18	LM19-19	LM19-20
Age (Ma)	141	140	139	141	142	142	143	141	140	142	138
Ti	29.64	47.06	47.21	12.81	39.90	23.23	22.87	27.31	31.45	33.63	30.24
Y	1030	679.0	1328	2058	1374	2113	666.3	1034	1851	543.1	2424
La	0.01	0.01	0.04	0.01	0.06	0.04	0.00	0.01	0.09	0.00	0.05
Ce	30.24	29.92	28.58	70.41	30. 85	50.13	26. 52	33.13	38.27	20.20	36.55
Pr	1.20	0.94	2.20	1.29	3.34	3.55	0.68	1.20	4.06	0.44	3.09
\mathbf{Nd}	10.40	8.64	18.95	17.15	26.99	32.08	6.49	10.40	29.74	4.01	25.01
Sm	11.56	9.92	20.30	23.87	25.24	30.15	7.22	11.83	27.68	6.16	26.83
Eu	1.54	1.49	2.69	2.82	3.37	3.33	1.05	1.57	3.28	0.88	4.09
Gd	31.56	25.82	51.45	68.57	58.65	73.49	22.42	32.97	68.33	17.44	89.58
Tb	9.03	7.34	14.45	19.84	15.03	20.49	6.48	9.49	18.76	5.25	24.83
Dy	98.85	73.67	146.7	212.8	156.2	218.3	67.98	103.4	197.7	55.57	266.6
Ho	34.50	23.51	46.44	70.05	48.04	72.79	22.67	34.86	63.85	18.34	84.55
\mathbf{Er}	149.3	93.00	179.6	289.1	186. 9	297.5	92.6	147.4	252.3	76.00	331.7
Tm	36.20	20.79	38.94	66.21	40.34	66.63	21.84	35.28	54.37	17.48	70.69
Yb	357.1	186.9	341.5	614.2	357.4	597.9	206.5	348.0	485.7	163.4	623.1
Lu	67.90	32.08	57.51	105.7	60.13	102.84	36. 22	63.66	82.36	27.94	103.7
Hf	11700	10609	12606	18491	11760	13955	14161	13840	12448	10882	12008
Th	200.6	170.8	245.5	943.8	280.6	622.0	151.9	236.8	378.5	89.63	736.5
U	337.8	145.8	190. 5	828.1	216.8	526.5	171.4	347.4	301.3	89.11	510.8
(Ce/Ce *) _D	12.10	10.14	4.20	13.65	3.05	5.16	14.91	12.44	3.87	16.68	4.52
Eu/Eu *	0.25	0.28	0.25	0.21	0.27	0.22	0.25	0.24	0.23	0.26	0.25
${\rm Ce}^{4+}/{\rm Ce}^{3+}$	12.32	10.17	3.62	14.03	2.36	4.68	15.41	12.69	3.26	17.36	3.97
$T(\ ^{\circ}\mathbb{C})$	859	916	916	770	895	832	830	850	866	874	862
ΔFMQ	0.37	0.66	0.37	1.70	0.52	1.03	0.92	0.57	0.80	0.70	0.33

注:Eu/Eu^{*} = Eu_N/(Sm_N×Gd_N)^{0.5}, "N"表示球粒陨石标准化值; Ce⁴⁺/Ce³⁺计算方法见 Ballard *et al.* (2002); (Ce/Ce^{*})_D ~ Ce/Ce^{*} = Ce_N/(La_N×Pr_N)^{0.5}; ΔFMQ = 3.74×lg(Ce/(U_i×Ti)^{0.5}) + 2.34, U_i 为锆石结晶 U 含量, U_i = U_測×e^{1.98173×(0.0001)×t}, t 为锆石结晶年龄(Ma), U_测 为测试分析中锆石 U 含量(Loucks *et al.*, 2020)

图 3 龙门岩体代表性锆石阴极发光图像

Fig. 3 Cathodoluminescence images of representative zircon grains separated from Longmen pluton

微量元素分析结果如表 1 所示,其稀土元素总量 ΣREE 在 413.1×10⁻⁶~2022×10⁻⁶之间,样品中的锆石具有高 Th/U 比值(0.36~1.55),所有锆石的 Hf 含量都很高,从 10608× 10⁻⁶到18491×10⁻⁶不等,并表现出具有正 Ce 异常(2.36~ 35.09)和明显负 Eu 异常(0.16~0.30)稀土配分模式(图 4a),显示出明显的震荡环带,具有典型岩浆锆石特征 (Hoskin and Schaltegger, 2003)。样品中绝大多数锆石中 La ≤0.1×10⁻⁶,说明锆石基本不受外界因素(如包裹体和蚀 变)的影响,较高的(Sm/La)_N比值也表现出岩浆锆石的特点 (图 4b;Zhong *et al.*, 2018;Burnham, 2020)。

3.2 矿物学特征

3.2.1 斜长石

斜长石作为龙门岩体的主要浅色矿物,主要为半自形-自形板状产出,一般可见聚片双晶,基本不发育环带构造,其 矿物组成电子探针分析结果如表 2 所示。在龙门岩体中, SiO₂ 含量为 55.79% ~ 62.67%, Al_2O_3 为 23.73% ~ 27.56%, CaO为5.51% ~ 9.52%, Na_2O 为5.87% ~ 7.91%, K_2O 为0.10% ~ 0.41%。斜长石牌号 An 位于 27 ~ 46 之间, 绝大部分落在中长石区,少数落在奥长石区域(图 5a)。 3.2.2 黑云母

黑云母为龙门岩体中的主要暗色矿物,主要呈不规则片状,具明显的多色性,解理发育。黑云母化学成分的电子探针分析果见表 3。黑云母具有富 MgO(13.87%~14.90%)、FeO(14.23%~16.08%)、TiO₂(4.23%~4.87%),但显示出

表 2 二长岩和闪长岩中斜长石电子探针分析结果(wt%)

Table 2 Representative EMPA composition of plagioclase in diorite and monzonite (wt%)

测点号	LM03 -2-1	LM03 -2-2	LM03 -2-3	LM03 -2-4	LM03 -2-5	LM03 -2-6	LM03 -2-7	LM03 -2-8	LM03 -3-1	LM03 -3-2	LM03 -3-3	LM03 -3-4	LM03 -3-5	LM03 -3-6
SiO ₂	61.98	57.26	57.04	60.35	59. 52	58. 57	61.93	58.76	59.54	62.67	60.96	61.11	59. 58	59.89
Al_2O_3	24.07	26.74	26. 59	25.09	25.63	25.94	23.90	26.05	25.35	23.73	24.92	24. 79	25.04	25.17
CaO	5.86	8.80	8.74	6.86	7.56	7.76	5.86	8.04	7.12	5.51	6.86	7.11	7.09	7.27
Na_2O	7.90	6.12	6.18	7.27	7.05	6.85	7.72	6.63	7.02	7.91	7.24	7.39	7.20	7.16
K_2O	0.20	0.25	0.31	0.37	0.25	0.26	0.27	0.21	0.37	0.36	0.34	0.41	0.36	0.33
0								8						
Si	2.75	2.58	2.58	2.69	2.65	2.63	2.75	2.63	2.67	2.77	2.70	2.70	2.67	2.67
Al	1.26	1.42	1.42	1.32	1.35	1.37	1.25	1.37	1.34	1.24	1.30	1.29	1.32	1.32
Ca	0.28	0.43	0.42	0.33	0.36	0.37	0.28	0.39	0.34	0.26	0.33	0.34	0.34	0.35
Na	0.68	0.54	0.54	0.63	0.61	0.60	0.67	0.58	0.61	0.68	0.62	0.63	0.63	0.62
Κ	0.01	0.01	0.02	0.02	0.01	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02
An	28.73	43.65	43.03	33.56	36.68	37.93	29.06	39.60	35.13	27.19	33.70	33.89	34. 52	35.24
Ab	70.10	54.89	55.13	64.29	61.89	60.54	69.36	59.14	62.70	70.67	64.30	63.77	63.41	62.87
	1 17	1 46	1 0 /	2 15	1 44	1 52	1 59	1 26	2 17	2 13	2 00	2 34	2 07	1 80
Or	1.1/	1.40	1. 84	2.13	1.44	1. 52	1.38	1.20	2.17	2.15	2.00	2. 54	2.07	1. 89
Or 测占县	LM19	LM19	LM19	LM19	LM19	LM05	LM05	LM05	LM05	LM05	LM05	LM05	LM05	LM05
Or 测点号	LM19 -4-1	LM19 -4-2	LM19 -4-3	2. 13 LM19 -4-4	LM19 -4-5	LM05 -1-3-1	LM05 -1-3-2	LM05 -1-3-3	LM05 -1-3-4	LM05 -1-3-5	LM05 -2-1-3-1	LM05 -2-1-3-2	LM05 -2-1-3-3	LM05 -2-1-3-4
Or 测点号 SiO ₂	1. 17 LM19 -4-1 60. 95	LM19 -4-2 55.79	LM19 -4-3 57. 59	2. 13 LM19 -4-4 57. 12	LM19 -4-5 60. 15	LM05 -1-3-1 55.93	LM05 -1-3-2 56. 23	LM05 -1-3-3 56.36	LM05 -1-3-4 56. 77	LM05 -1-3-5 56. 74	LM05 -2-1-3-1 57. 29	LM05 -2-1-3-2 56. 13	LM05 -2-1-3-3 58.04	LM05 -2-1-3-4 58. 32
Or 测点号 SiO ₂ Al ₂ O ₃	1. 17 LM19 -4-1 60. 95 24. 36	LM19 -4-2 55. 79 27. 22	LM19 -4-3 57. 59 26. 30	2. 13 LM19 -4-4 57. 12 26. 26	LM19 -4-5 60. 15 24. 64	LM05 -1-3-1 55.93 27.44	LM05 -1-3-2 56. 23 27. 55	LM05 -1-3-3 56.36 27.56	LM05 -1-3-4 56. 77 27. 05	LM05 -1-3-5 56.74 27.25	LM05 -2-1-3-1 57. 29 26. 18	LM05 -2-1-3-2 56. 13 27. 41	LM05 -2-1-3-3 58.04 25.72	LM05 -2-1-3-4 58. 32 25. 55
Or 测点号 SiO ₂ Al ₂ O ₃ CaO	LM19 4-1 60. 95 24. 36 5. 95	1.40 LM19 -4-2 55.79 27.22 9.39	LM19 -4-3 57. 59 26. 30 8. 20	2. 13 LM19 -4-4 57. 12 26. 26 8. 18	LM19 -4-5 60. 15 24. 64 6. 51	LM05 -1-3-1 55.93 27.44 9.50	LM05 -1-3-2 56. 23 27. 55 9. 40	LM05 -1-3-3 56.36 27.56 9.52	LM05 -1-3-4 56. 77 27. 05 9. 09	LM05 -1-3-5 56. 74 27. 25 9. 46	LM05 -2-1-3-1 57. 29 26. 18 8. 31	LM05 -2-1-3-2 56. 13 27. 41 9. 34	LM05 -2-1-3-3 58.04 25.72 7.62	LM05 -2-1-3-4 58. 32 25. 55 7. 50
Or 测点号 SiO ₂ Al ₂ O ₃ CaO Na ₂ O	LM19 4-1 60. 95 24. 36 5. 95 7. 68	LM19 4-2 55.79 27.22 9.39 6.04	LM19 -4-3 57.59 26.30 8.20 6.65 0.28	LM19 4-4 57. 12 26. 26 8. 18 6. 55 0. 26	LM19 -4-5 60. 15 24. 64 6. 51 7. 60	LM05 -1-3-1 55. 93 27. 44 9. 50 6. 15 0. 15	LM05 -1-3-2 56. 23 27. 55 9. 40 6. 17	LM05 -1-3-3 56. 36 27. 56 9. 52 6. 10	LM05 -1-3-4 56. 77 27. 05 9. 09 6. 35 0. 10	LM05 -1-3-5 56.74 27.25 9.46 5.98	LM05 -2-1-3-1 57. 29 26. 18 8. 31 6. 40 0. 17	LM05 -2-1-3-2 56. 13 27. 41 9. 34 5. 87 0. 12	LM05 -2-1-3-3 58. 04 25. 72 7. 62 6. 82 0. 16	LM05 -2-1-3-4 58. 32 25. 55 7. 50 6. 78 0. 22
Or 测点号 SiO ₂ Al ₂ O ₃ CaO Na ₂ O K ₂ O	LM19 -4-1 60. 95 24. 36 5. 95 7. 68 0. 41	LM19 -4-2 55. 79 27. 22 9. 39 6. 04 0. 29	LM19 -4-3 57. 59 26. 30 8. 20 6. 65 0. 38	LM19 -4-4 57. 12 26. 26 8. 18 6. 55 0. 36	LM19 -4-5 60. 15 24. 64 6. 51 7. 60 0. 37	LM05 -1-3-1 55. 93 27. 44 9. 50 6. 15 0. 15	LM05 -1-3-2 56. 23 27. 55 9. 40 6. 17 0. 15	LM05 -1-3-3 56. 36 27. 56 9. 52 6. 10 0. 15	LM05 -1-3-4 56. 77 27. 05 9. 09 6. 35 0. 10	LM05 -1-3-5 56.74 27.25 9.46 5.98 0.13	LM05 -2-1-3-1 57. 29 26. 18 8. 31 6. 40 0. 17	LM05 -2-1-3-2 56. 13 27. 41 9. 34 5. 87 0. 13	LM05 -2-1-3-3 58. 04 25. 72 7. 62 6. 82 0. 16	LM05 -2-1-3-4 58. 32 25. 55 7. 50 6. 78 0. 23
Or 测点号 SiO ₂ Al ₂ O ₃ CaO Na ₂ O K ₂ O O Si	LM19 -4-1 60. 95 24. 36 5. 95 7. 68 0. 41 2. 72	LM19 -4-2 55.79 27.22 9.39 6.04 0.29 2.54	LM19 -4-3 57. 59 26. 30 8. 20 6. 65 0. 38 2. 60	LM19 -4-4 57. 12 26. 26 8. 18 6. 55 0. 36 2. 60	LM19 -4-5 60. 15 24. 64 6. 51 7. 60 0. 37 2. 70	LM05 -1-3-1 55. 93 27. 44 9. 50 6. 15 0. 15 2. 53	LM05 -1-3-2 56. 23 27. 55 9. 40 6. 17 0. 15 2. 54	LM05 -1-3-3 56.36 27.56 9.52 6.10 0.15 8 2.54	LM05 -1-3-4 56. 77 27. 05 9. 09 6. 35 0. 10 2, 56	LM05 -1-3-5 56.74 27.25 9.46 5.98 0.13 2.55	LM05 -2-1-3-1 57. 29 26. 18 8. 31 6. 40 0. 17 2. 60	LM05 -2-1-3-2 56. 13 27. 41 9. 34 5. 87 0. 13 2. 54	LM05 -2-1-3-3 58. 04 25. 72 7. 62 6. 82 0. 16 2. 63	LM05 -2-1-3-4 58. 32 25. 55 7. 50 6. 78 0. 23 2. 64
Or 测点号 SiO ₂ Al ₂ O ₃ CaO Na ₂ O K ₂ O O Si Al	LM19 4-1 60. 95 24. 36 5. 95 7. 68 0. 41 2. 72 1. 28	1.40 LM19 4-2 55.79 27.22 9.39 6.04 0.29 2.54 1.46	LM19 -4-3 57.59 26.30 8.20 6.65 0.38 2.60 1.40	2. 13 LM19 -4-4 57. 12 26. 26 8. 18 6. 55 0. 36 2. 60 1. 41	LM19 4-5 60. 15 24. 64 6. 51 7. 60 0. 37 2. 70 1. 30	LM05 -1-3-1 55.93 27.44 9.50 6.15 0.15 2.53 1.46	LM05 -1-3-2 56. 23 27. 55 9. 40 6. 17 0. 15 2. 54 1. 46	LM05 -1-3-3 56.36 27.56 9.52 6.10 0.15 8 2.54 1.46	LM05 -1-3-4 56. 77 27. 05 9. 09 6. 35 0. 10 2. 56 1. 44	LM05 -1-3-5 56.74 27.25 9.46 5.98 0.13 2.55 1.45	2. 60 LM05 -2-1-3-1 57. 29 26. 18 8. 31 6. 40 0. 17 2. 60 1. 40	LM05 -2-1-3-2 56. 13 27. 41 9. 34 5. 87 0. 13 2. 54 1. 46	LM05 -2-1-3-3 58.04 25.72 7.62 6.82 0.16 2.63 1.37	LM05 -2-1-3-4 58. 32 25. 55 7. 50 6. 78 0. 23 2. 64 1. 36
Or 测点号 SiO ₂ Al ₂ O ₃ CaO Na ₂ O K ₂ O O Si Al Ca	LM19 4-1 60.95 24.36 5.95 7.68 0.41 2.72 1.28 0.28	1.40 LM19 -4-2 55.79 27.22 9.39 6.04 0.29 2.54 1.46 0.46	LM19 4-3 57.59 26.30 8.20 6.65 0.38 2.60 1.40 0.40	2. 13 LM19 -4-4 57. 12 26. 26 8. 18 6. 55 0. 36 2. 60 1. 41 0. 40	LM19 -4-5 60. 15 24. 64 6. 51 7. 60 0. 37 2. 70 1. 30 0. 31	LM05 -1-3-1 55. 93 27. 44 9. 50 6. 15 0. 15 2. 53 1. 46 0. 46	LM05 -1-3-2 56. 23 27. 55 9. 40 6. 17 0. 15 2. 54 1. 46 0. 45	LM05 -1-3-3 56. 36 27. 56 9. 52 6. 10 0. 15 8 2. 54 1. 46 0. 46	LM05 -1-3-4 56. 77 27. 05 9. 09 6. 35 0. 10 2. 56 1. 44 0. 44	LM05 -1-3-5 56.74 27.25 9.46 5.98 0.13 2.55 1.45 0.46	2. 60 LM05 -2-1-3-1 57. 29 26. 18 8. 31 6. 40 0. 17 2. 60 1. 40 0. 40	LM05 -2-1-3-2 56. 13 27. 41 9. 34 5. 87 0. 13 2. 54 1. 46 0. 45	LM05 -2-1-3-3 58. 04 25. 72 7. 62 6. 82 0. 16 2. 63 1. 37 0. 37	LM05 -2-1-3-4 58. 32 25. 55 7. 50 6. 78 0. 23 2. 64 1. 36 0. 36
Or 测点号 SiO ₂ Al ₂ O ₃ CaO Na ₂ O K ₂ O O Si Al Ca Na	1.17 LM19 4-1 60.95 24.36 5.95 7.68 0.41 2.72 1.28 0.28 0.67	1.46 LM19 4-2 55.79 27.22 9.39 6.04 0.29 2.54 1.46 0.46 0.53	LM19 4-3 57. 59 26. 30 8. 20 6. 65 0. 38 2. 60 1. 40 0. 40 0. 58	2. 13 LM19 4-4 57. 12 26. 26 8. 18 6. 55 0. 36 2. 60 1. 41 0. 40 0. 58	LM19 4-5 60. 15 24. 64 6. 51 7. 60 0. 37 2. 70 1. 30 0. 31 0. 66	LM05 -1-3-1 55. 93 27. 44 9. 50 6. 15 0. 15 2. 53 1. 46 0. 46 0. 54	LM05 -1-3-2 56. 23 27. 55 9. 40 6. 17 0. 15 2. 54 1. 46 0. 45 0. 54	LM05 -1-3-3 56.36 27.56 9.52 6.10 0.15 8 2.54 1.46 0.46 0.53	LM05 -1-3-4 56.77 27.05 9.09 6.35 0.10 2.56 1.44 0.44 0.56	LM05 -1-3-5 56.74 27.25 9.46 5.98 0.13 2.55 1.45 0.46 0.52	2. 60 LM05 -2-1-3-1 57. 29 26. 18 8. 31 6. 40 0. 17 2. 60 1. 40 0. 40 0. 40 0. 56	LM05 -2-1-3-2 56. 13 27. 41 9. 34 5. 87 0. 13 2. 54 1. 46 0. 45 0. 52	LM05 -2-1-3-3 58. 04 25. 72 7. 62 6. 82 0. 16 2. 63 1. 37 0. 37 0. 60	LM05 -2-1-3-4 58. 32 25. 55 7. 50 6. 78 0. 23 2. 64 1. 36 0. 36 0. 60
Or 测点号 SiO ₂ Al ₂ O ₃ CaO Na ₂ O K ₂ O O Si Al Ca Na K	I. 17 LM19 4-1 60. 95 24. 36 5. 95 7. 68 0. 41 2. 72 1. 28 0. 28 0. 67 0. 02	1.46 LM19 4-2 55.79 27.22 9.39 6.04 0.29 2.54 1.46 0.46 0.53 0.02	LM19 4-3 57. 59 26. 30 8. 20 6. 65 0. 38 2. 60 1. 40 0. 40 0. 58 0. 02	2. 13 LM19 4-4 57. 12 26. 26 8. 18 6. 55 0. 36 2. 60 1. 41 0. 40 0. 58 0. 02	I. 44 LM19 -4-5 60. 15 24. 64 6. 51 7. 60 0. 37 2. 70 1. 30 0. 31 0. 66 0. 02	LM05 -1-3-1 55.93 27.44 9.50 6.15 0.15 2.53 1.46 0.46 0.54 0.01	LM05 -1-3-2 56. 23 27. 55 9. 40 6. 17 0. 15 2. 54 1. 46 0. 45 0. 54 0. 01	LM05 -1-3-3 56.36 27.56 9.52 6.10 0.15 8 2.54 1.46 0.46 0.53 0.01	LM05 -1-3-4 56.77 27.05 9.09 6.35 0.10 2.56 1.44 0.44 0.56 0.01	LM05 -1-3-5 56.74 27.25 9.46 5.98 0.13 2.55 1.45 0.46 0.52 0.01	2. 00 LM05 -2-1-3-1 57. 29 26. 18 8. 31 6. 40 0. 17 2. 60 1. 40 0. 40 0. 56 0. 01	LM05 -2-1-3-2 56. 13 27. 41 9. 34 5. 87 0. 13 2. 54 1. 46 0. 45 0. 52 0. 01	LM05 -2-1-3-3 58. 04 25. 72 7. 62 6. 82 0. 16 2. 63 1. 37 0. 37 0. 60 0. 01	LM05 -2-1-3-4 58. 32 25. 55 7. 50 6. 78 0. 23 2. 64 1. 36 0. 36 0. 60 0. 01
Or 测点号 SiO ₂ Al ₂ O ₃ CaO Na ₂ O K ₂ O O Si Al Ca Na K An	I. 17 LM19 4-1 60. 95 24. 36 5. 95 7. 68 0. 41 2. 72 1. 28 0. 67 0. 02 29. 27	1.46 LM19 4-2 55.79 27.22 9.39 6.04 0.29 2.54 1.46 0.53 0.02 45.44	LM19 4-3 57.59 26.30 8.20 6.65 0.38 2.60 1.40 0.40 0.58 0.02 39.66	2. 13 LM19 -4-4 57. 12 26. 26 8. 18 6. 55 0. 36 2. 60 1. 41 0. 40 0. 58 0. 02 39. 99	LM19 -4-5 60. 15 24. 64 6. 51 7. 60 0. 37 2. 70 1. 30 0. 31 0. 66 0. 02 31. 46	LM05 -1-3-1 55.93 27.44 9.50 6.15 0.15 2.53 1.46 0.46 0.54 0.01 45.64	LM05 -1-3-2 56. 23 27. 55 9. 40 6. 17 0. 15 2. 54 1. 46 0. 45 0. 54 0. 01 45. 36	LM05 -1-3-3 56.36 27.56 9.52 6.10 0.15 8 2.54 1.46 0.46 0.53 0.01 45.90	2.17 LM05 -1-3-4 56.77 27.05 9.09 6.35 0.10 2.56 1.44 0.56 0.01 43.91	LM05 -1-3-5 56.74 27.25 9.46 5.98 0.13 2.55 1.45 0.46 0.52 0.01 46.29	LM05 -2-1-3-1 57. 29 26. 18 8. 31 6. 40 0. 17 2. 60 1. 40 0. 40 0. 56 0. 01 41. 36	LM05 -2-1-3-2 56. 13 27. 41 9. 34 5. 87 0. 13 2. 54 1. 46 0. 45 0. 52 0. 01 46. 44	LM05 -2-1-3-3 58. 04 25. 72 7. 62 6. 82 0. 16 2. 63 1. 37 0. 37 0. 60 0. 01 37. 80	LM05 -2-1-3-4 58. 32 25. 55 7. 50 6. 78 0. 23 2. 64 1. 36 0. 36 0. 60 0. 01 37. 40
Or 测点号 SiO ₂ Al ₂ O ₃ CaO Na ₂ O K ₂ O O Si Al Ca Na K An Ab	LM19 4-1 60. 95 24. 36 5. 95 7. 68 0. 41 2. 72 1. 28 0. 28 0. 67 0. 02 29. 27 68. 34	1.46 LM19 4-2 55.79 27.22 9.39 6.04 0.29 2.54 1.46 0.46 0.53 0.02 45.44 52.90	LM19 4-3 57. 59 26. 30 8. 20 6. 65 0. 38 2. 60 1. 40 0. 40 0. 58 0. 02 39. 66 58. 17	2. 13 LM19 -4-4 57. 12 26. 26 8. 18 6. 55 0. 36 2. 60 1. 41 0. 40 0. 58 0. 02 39. 99 57. 91	LM19 -4-5 60. 15 24. 64 6. 51 7. 60 0. 37 2. 70 1. 30 0. 31 0. 66 0. 02 31. 46 66. 43	LM05 -1-3-1 55.93 27.44 9.50 6.15 0.15 2.53 1.46 0.46 0.54 0.01 45.64 53.49	LM05 -1-3-2 56. 23 27. 55 9. 40 6. 17 0. 15 2. 54 1. 46 0. 45 0. 54 0. 01 45. 36 53. 81	LM05 -1-3-3 56.36 27.56 9.52 6.10 0.15 8 2.54 1.46 0.46 0.53 0.01 45.90 53.25	LM05 -1-3-4 56.77 27.05 9.09 6.35 0.10 2.56 1.44 0.44 0.56 0.01 43.91 55.53	LM05 -1-3-5 56.74 27.25 9.46 5.98 0.13 2.55 1.45 0.46 0.52 0.01 46.29 52.93	2. 00 LM05 -2-1-3-1 57. 29 26. 18 8. 31 6. 40 0. 17 2. 60 1. 40 0. 40 0. 40 0. 56 0. 01 41. 36 57. 63	LM05 -2-1-3-2 56. 13 27. 41 9. 34 5. 87 0. 13 2. 54 1. 46 0. 45 0. 52 0. 01 46. 44 52. 77	LM05 -2-1-3-3 58. 04 25. 72 7. 62 6. 82 0. 16 2. 63 1. 37 0. 37 0. 60 0. 01 37. 80 61. 24	LM05 -2-1-3-4 58. 32 25. 55 7. 50 6. 78 0. 23 2. 64 1. 36 0. 36 0. 60 0. 01 37. 40 61. 23

图 4 龙门岩体中锆石球粒陨石标准化稀土元素配分图(a,标准化值据 Boynton, 1984)和岩浆锆石与热液锆石辨别图(b, 据 Hoskin, 2005)

Fig. 4 Chondrite-normalized rare earth elements patterns of the zircons (a, normalization values from Boynton, 1984) and diagram to discriminate magmatic and hydrothermal zircon (b, after Hoskin, 2005) from Longmen pluton

表 3 二长岩中黑云母电子探针分析结果(wt%)

Table 3 Representative EMPA composition of biotite in monzonite (wt%)

测点号	LM19 -1-01	LM19 -1-02	LM19 -1-03	LM19 -1-04	LM19 -1-05	LM19 -1-06	LM19 -1-07	LM19 -1-08	LM19 -1-09	LM19 -1-10	LM19 -2-01	LM19 -2-02
SiO	37 34	30 61	38.78	38.05	37.81	37.86	37 62	37.38	37 67	37 50	37.04	37 32
510 ₂ TiO	37.34 4.75	39.01 4.65	30.20 4.74	38.03	37.01 4.67	57.80 4.60	37.02 4.50	57.50 4.64	37.07 4.60	57.59 4.54	37.04 4.56	57.52 1 85
	4.75	4.05	4.74	4.72	4.07	4.00	4. 50	4.04	4.00	4. 54	4.50	4. 65
$\mathbf{H}_2\mathbf{O}_3$	12. 55	12.74	12.72	12.92	12. 69	15.12	12.01	12.90	12.75	12.94	12. 65	12. 39
Teo Mao	0.10	0.12	0.00	0.12	0.00	0.00	0.10	0.10	0.12	0.06	0.00	0 12
MnO MaO	14 27	0.12	14 04	0.12	14 25	14 07	12 02	12 87	12 06	12 08	0.09	0.15
MgO	14.27	0.00	0.00	14.15	0.01	0.00	0.00	0.02	0.01	0.00	14.10	0.00
Na O	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.02	0.01	0.00	0.00	0.00
K 0	0.20	0.12	0.10	0.22	0.10	0.14	0.20	0.20	0. 25	0.15	0.22	0.19
К ₂ 0	9.20	0. 51	9.50	9.57	9.45	9.50	9.19	9.55	9.41	9.05	9.00	9.57
г Сl	0.95	0.01	0.40	0.47	0.48	0.75	0.40	0.48	0.58	0.52	0.55	0.49
СI Т.н.1	0.54	0.01	0.42	0. 50	0.42	0. 42	0.55	0.45	0.55	0.05	0.39	0.41
Total	93.48	94.20	95.91	90.23	90.07	90. 51	94.95 2	94. 80	95.11	95.19	93.00	95.55
0 5:	5 60	5 00	5 71	5 67	5 61	5 62	5 60	5 65	5 69	5 66	5 61	5 60
51	5.02 2.28	J. 88	2. 20	2.22	5.04 2.26	5.05 2.27	3.08	5.05 2.25	5.08 2.22	5.00 2.24	2.20	3. 02 2. 28
AIVI	2. 38	2.12	2.29	2. 55	2. 50	2. 57	2. 52	2.33	2. 52	2. 54	2. 39	2. 58
Al T:	0.00	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11 F ³ +	0.54	0. 52	0.33	0.35	0.32	0.31	0.31	0.35	0.32	0.31	0. 32	0.35
Fe ⁻²⁺	0.54	1.08	0.50	0.55	0.55	0.40	0.55	0.55	0. 52	0.41	1.52	0.54
ге	1.47	1.90	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	1.55	0.02
Mn	2.20	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02
Mg	5.20	5. 21	5.12	5. 14	5. 19	5.12	5. 14	5.12	5. 14	5.14	5.18	5.20
INA V	0.05	0.02	0.02	0.05	0.02	0.02	0.04	0.05	0.05	0.02	0.05	1.80
K V	1. 70	1. 23	1. 70	1. /0	0.66	1.70	1. //	0.66	0.66	1. 74	0.68	0.67
A_{Mg} $E_{o}^{2+}/(M_{m}+E_{o}^{2+})$	0.09	0.02	0.05	0.00	0.00	0.07	0.34	0.00	0.00	0.07	0.08	0.07
$Mar/(Ma + Ea^{2+})$	0.51	0.50	0.55	0.54	0.54	0.55	0.54	0.54	0.54	0.55	0.52	0.55
$\log f_{0}$	- 14 61	- 15 14	- 14 86	- 14 82	- 14 84	- 14 82	- 14 95	- 14 83	- 14 88	- 14 86	- 14 77	- 14 66
$T(\circ C)$	785	764	775	776	776	777	771	776	774	775	778	783
$P(CP_{2})$	0.07	0.02	0.04	0.05	0.06	0.06	0.05	0.06	0.05	0.06	0.07	0.07
Denth (km)	2.60	0.94	1.52	2.04	2.30	2.41	1.90	2. 27	1.89	2.15	2.72	2.61
Dopin(iiii)	1.110	LMIO	LMIO	1.110	LNIO	LMIO	1.1/0	1.110	1.02	LMIO	1.110	1.110
测点号	LM19	LM19	LM19	LM19	LM19	LM19	LM19 -3-02	LM19	LM19	LM19	LM19 -3-06	LM19 -3-07
5:0	-2-05	-2-04	-2-05	-2-00	27.00	-5-01	-5-02	-5-05	-5-04	-5-05	-5-00	-5-07
510 ₂	37.33	37.31	37.50	37.45	37.20	38.10	38.25	37.79	38.20	37.39	37.05	37.91
110 ₂	4. 74	4. 70	4. 70	4.0/	4.40	4. 25	4.40	4.25	4.40	4.57	4.33	4. 50
A12 03	12.78	12.78	12.82	12. 64	12.33	12. 52	12.30	12.40	12.40	12.43	12.70	12.40
reo Ma	0.15	0.05	0.14	0.06	0.06	0.12	0.11	0.14	0.04	0.10	0.08	0.10
MnO MaO	0.15	14 46	0.14	14 28	14 70	0.15	14 26	14 48	14 00	14 25	0.06	14 03
MgO	14. 39	14.40	14. 82	14. 56	14. 70	14. 55	14. 50	14.48	14.90	14.23	14.10	14.05
CaO Na O	0.00	0.00	0.03	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na ₂ 0 K O	0.13	0.19	0.20	0.17	0.12	0.14	0.15	0.10	0.19	0.20	0.17	0.10
К ₂ 0 Е	9.74	9.40	9.50	9.42	9.02	9.40	9.40	9.50	9.51	9.29	9.55	9.21
F Cl	0.30	0.43	0.38	0.30	0.31	0.39	1.14	0.92	0.00	0.41	0.92	0.47
UI Tetel	0.58	0. 59	0.58	0. 59	0. 59	0.41	0.41	0.42	0. 59	0.41	0.42	0.4/
Total	93.18	95.04	93.04	95.55	94. 31	93.70	90.03 2	95.55	90.02	93.84	90.00	93.08
C C:	5 65	5 62	5 61	5 60	5 65	5 72	5 70	5 67	5 60	5 60	5 62	5 60
51 A 1IV	5.05 2.25	5.05 2.27	2 20	5.02 2.20	5.05 2.25	J. 12	2 20	2.07	J. 09 2 21	5.00 2.40	5.05 2.27	J. 00 1 21
AIVI	2.33	2.37	2.39	2.30 0.00	2.33 0.00	2.20	2.30	2.33 0.00	2.31	2.40	2.37	2.32
AI ···	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11 Fo ³ +	0.34	0.34	0.34	0.33	0.30	0.40	0.50	0.40	0.30	0.49	0.51	0.49
re	0.20	1 61	1 10	1.52	1.52	1 50	1 20	1 42	1.40	1 10	1 47	1 40
\mathbf{F}_{0}^{2+}												

续	表	3

Continued Table 3

测点号	LM19 -2-03	LM19 -2-04	LM19 -2-05	LM19 -2-06	LM19 -2-07	LM19 -3-01	LM19 -3-02	LM19 -3-03	LM19 -3-04	LM19 -3-05	LM19 -3-06	LM19 -3 <i>-</i> 07
Mn	0.02	0.01	0.02	0.01	0.01	0.02	0.01	0.02	0.01	0.01	0.01	0.01
Mg	3.27	3.25	3.31	3.22	3.33	3.25	3.19	3.24	3.30	3.18	3.16	3.14
Na	0.04	0.06	0.06	0.05	0.04	0.04	0.04	0.05	0.05	0.06	0.05	0.05
Κ	1.87	1.82	1.82	1.80	1.86	1.81	1.78	1.80	1.77	1.78	1.78	1.76
X_{Mg}	0.68	0.67	0.69	0.68	0.69	0.67	0.71	0.70	0.69	0.73	0.68	0.69
${\rm Fe}^{2+}/({\rm Mg}+{\rm Fe}^{2+})$	0.32	0.33	0.31	0.32	0.31	0.33	0.29	0.30	0.31	0.27	0.32	0.31
$Mg/(Mg + Fe^{2+})$	0.68	0.67	0.69	0.68	0.69	0.67	0.71	0.70	0.69	0.73	0.68	0.69
$\log f_{0_2}$	- 14. 69	- 14. 71	- 14. 59	- 14. 60	- 14. 81	- 15. 05	- 14. 61	- 14. 88	- 14. 80	- 14. 54	- 14. 77	- 14. 83
$T(\ ^{\circ}\mathbb{C})$	782	781	786	786	777	767	785	774	778	788	779	776
P(GPa)	0.06	0.07	0.07	0.07	0.06	0.04	0.05	0.05	0.05	0.07	0.07	0.05
Depth(km)	2.26	2.51	2.68	2.54	2.25	1.49	1.71	1.98	1.74	2.76	2.47	1.87

 $+ X_{Mg} = Mg/(Mg + Fe^{2+})$; Depth(km) = $P/\rho g$ ($\rho = 2700 kg/m^3$, g = 9. 8 m/s²)

图 5 龙门岩体矿物分类图解

(a)斜长石 Or-Ab-An 分类图解(据 Deer et al., 1992 修改);(b)黑云母分类图解(据 Foster, 1960 修改);(c)黑云母 10×TiO₂-(FeO + MgO)-MgO 图解(据 Nachit et al., 2005 修改);(d)角闪石分类图解(据 Leake et al., 1997 修改)

Fig. 5 Classification diagrams of minerals from Longmen pluton

(a) Or-Ab-An diagram of plagioclase (after Deer *et al.*, 1992); (b) classification diagram of biotite (after Foster, 1960); (c) 10 × TiO₂-(FeO + MgO)-MgO diagram of biotite (after Nachit *et al.*, 2005); (d) classification diagram of amphibole (after Leake *et al.*, 1997)

表 4 闪长岩中角闪石电子探针分析结果(wt%)

Table 4 Representative EMPA composition of amphibole in diorite (wt%)

测点号	LM05-1-1	LM05-1-2	LM05-1-3	LM05-1-4	LM05-1-5	LM05-2-1	LM05-2-2	LM05-2-3	LM05-2-4	LM05-2-5
SiO_2	43.00	43.42	41.52	42.57	42.44	43.67	40. 89	42.45	41.81	42. 57
TiO_2	0.56	0.55	0.68	0.62	0.61	0.59	0.69	0.74	0. 78	0.73
Al_2O_3	12.18	12.17	13.98	13.57	13.35	11.63	14.31	13.06	13.68	13.30
FeO	16.51	16.77	17.06	16.53	17.00	16.75	17.29	16.98	17.28	16. 61
$\operatorname{Cr}_2\operatorname{O}_3$	0.10	0.07	0.01	0.03	0.01	0.05	0.04	0.07	0.06	0.04
MnO	0.24	0.19	0.18	0.15	0.18	0.24	0.19	0.23	0.19	0.24
MgO	9.63	9.73	8.65	9.30	9.29	9.59	8.35	9.09	8.73	9.02
CaO	11.64	11.63	11.64	11.64	11.61	11.58	11.44	11.64	11.55	11. 59
Na ₂ O	1.12	1.05	1.23	1.14	1.19	1.09	1.32	1.18	1.21	1.18
K2 0	0.64	0.56	0.83	0.69	0.69	0.64	0.85	0.75	0.72	0.75
Total	95.71	96.17	95.78	96.22	96.40	95.82	95.37	96.18	96.06	96.06
0					2	3				
T (8apfu)										
Si	6.51	6.52	6.31	6.40	6.38	6.60	6.26	6.41	6.33	6.44
^{IV} Al	1.49	1.48	1.69	1.60	1.62	1.40	1.75	1.59	1.67	1.56
T total					8	3				
C (5apfu)										
^{VI} Al	0.68	0.68	0.82	0.80	0.75	0.68	0.84	0.74	0.78	0.81
^{VI} Ti	0.06	0.06	0.08	0.07	0.07	0.07	0.08	0.08	0.09	0.08
Fe^{3} +	0.34	0.39	0.30	0.33	0.39	0.27	0.32	0.31	0.34	0.23
Fe ^{2 +}	1.73	1.68	1.84	1.71	1.71	1.82	1.86	1.81	1.81	1.85
Mg	2.17	2.18	1.96	2.09	2.08	2.16	1.90	2.05	1.97	2.03
C total					:	5				
B (2apfu)										
Fe ^{2 +}	0.02	0.04	0.03	0.04	0.04	0.03	0.04	0.02	0.03	0.03
Mn	0.03	0.02	0.02	0.02	0.02	0.03	0.02	0.03	0.03	0.03
Ca	1.89	1.87	1.90	1.87	1.87	1.88	1.87	1.88	1.88	1.88
Na	0.06	0.07	0.06	0.07	0.07	0.07	0.07	0.06	0.07	0.07
B total						2				
A $(0 \sim 1 apfu)$										
Na	0.27	0.24	0.31	0.26	0.28	0.25	0.33	0.28	0.29	0.28
Κ	0.12	0.11	0.16	0.13	0.13	0.12	0.17	0.14	0.14	0.15
A total	0.39	0.34	0.47	0.40	0.41	0.38	0.49	0.43	0.43	0.43
$Mg/(Fe^{2+} + Mg)$	0.55	0.54	0.57	0.56	0.56	0.55	0.58	0.56	0.57	0.56
Al^{T}	2.17	2.16	2.51	2.40	2.37	2.07	2.58	2.33	2.44	2.37
$Al^{\#}$	0.31	0.32	0.33	0.33	0.32	0.33	0.32	0.32	0.32	0.34
Si *	7.58	7.63	7.31	7.42	7.43	7.71	7.25	7.46	7.37	7.45
Mg *	2.49	2.53	2.23	2.38	2.40	2.49	2.18	2.33	2.26	2.30
Δ NNO	0.09	0.15	-0.34	-0.09	-0.07	0.08	-0.43	-0.18	-0.30	-0.23
$T(\ ^{\circ}\mathbb{C}\)$	808	802	835	825	824	793	842	821	830	821
P(GPa)	0.55	0.54	0.71	0.66	0.64	0.50	0.75	0.62	0.68	0.64
Depth(km)	21	20	27	25	24	19	28	23	26	24
$\log f_{0_2}$	- 11. 85	- 11. 91	-11.46	-11.52	-11.54	- 12. 21	- 11. 38	-11.74	- 11. 59	- 11. 76
$\rm H_2 O_{melt}$	8.89	8.67	10.47	9.83	9.61	8.50	10.75	9.55	10.08	9.85

注: $Al^{#} = {}^{VI}Al/Al^{T}$; 其中 Al^{T} 是角闪石结构式中 Al 原子总数, 即^N $Al + {}^{V}Al$; $T({}^{\circ}C) = 1781 - 132$. $74 \times Si + 116.6 \times Ti - 69.41 \times Fe^{T} + 101.62 \times Na$, 误差 ± 30°C (Putirka, 2016); $P(GPa) = 0.1307 \times Al^{T1.842}$; $\log f_{0_{2}} = -25018.7/(T + 273.15) + 12.981 + 0.046(10P - 1)/(T + 273.15) - 0.5117\ln(T + 273.15) + \Delta NNO$; $\Delta NNO = 1.644Mg^{*} - 4.01$; $Mg^{*} = Mg + Si/47 - {}^{VI}Al/9 - 1.3{}^{VI}Ti + Fe^{3+}/3.7 + Fe^{2+}/5.2 - {}^{B}Ca/20 - {}^{A}Na/2.8 + {}^{A}[]/9.5; H_{2}O_{melt} = 5.215 \times {}^{VI}Al^{*} + 12.28$, 其中 ${}^{VI}Al^{*} = {}^{VI}Al + {}^{V}Al/13.9 - (Si + {}^{VI}Ti)/5 - {}^{C}Fe^{2+}/3 - Mg/1.7 + ({}^{B}Ca + A[])/1.2 + {}^{A}Na/2.7 - 1.56K - Fe^{\#}/1.6$, $Fe^{\#} = Fe^{3+}/(Fe^{T} + Mg + Mn)$ (Ridolfi *et al.*, 2010)

图 6 龙门岩体角闪石 Al₂O₃-TiO₂(a, 据陈光远等,1993)和 Al-Si(b, 据姜常义和安三元,1984)源区图解 Fig. 6 Plots of source region of amphibole Al₂O₃ vs. TiO₂(a, after Chen *et al.*,1993) and Al vs. Si (b, after Jiang and An, 1984) from Longmen pluton

低 Al₂O₃(12.32%~13.12%)的特点。Fe²⁺/(Mg+Fe²⁺)比 值变化小(0.27~0.38)和 Ti < 0.55(0.48~0.55),说明其为 岩浆成因未受后期蚀变影响。黑云母 Mg/(Mg+Fe²⁺)介于 0.62~0.73,具有富镁的特征,为原生镁质黑云母(图5b,c)。 3.2.3 角闪*石*

角闪石作为龙门岩体中主要的铁镁质矿物,主要呈半自 形柱状产出。角闪石的电子探针分析结果(表 4)显示,其具 有高 FeO (16.51% ~ 17.29%)和 Al₂O₃ (11.63% ~ 14.31%)、低 SiO₂(40.89% ~43.67%)的特点。本区角闪石 的 Si 含量较高(6.23~6.57),(Ca + Na)_B为1.94~1.95,均 大于 1.34,^BCa = 1.87~1.90,属钙质角闪石(^BCa \geq 1.50)。 其(Na + K)_A为0.34~0.49,均小于0.50,主要属于钙铁闪 石(图 5d;Leake *et al.*,1997)。

4 讨论

4.1 矿物及锆石结晶条件

黑云母、角闪石和锆石的化学成分可为成岩作用方面提 供物理化学信息。角闪石的 Mg/(Mg + Fe²⁺)变化范围为 0.54~0.58(<0.68)(表4),表明角闪石是岩浆演化结晶分 异作用形成(杜玉龙等,2020)。目前,Ridolfi *et al.*(2010)根 据实验岩石数据和矿物成分数据所计算角闪石结晶的温压 条件 被 普 遍 使用:例如 $P = 19.209e^{(1.438AIT)}$ 和 $T = -151.487Si^* + 2041,其中 Si^* = Si + ^{IV} Al/15 - 2 × ^{IV} Ti - ^{VI} Al/2 - ^{VI} Ti/1.8 + Fe³⁺/9 + Fe²⁺/3.3 + Mg/26 + ^BCa/5 + ^BNa/1.3 + A[]/2.3。但该温压公式主要适用于火山岩和$ 非地幔来源的角闪石压力值,并要求 Al[#] ≤ 0.21。龙门闪长岩中的角闪石具有较高的 Al₂O₃(11.63% ~ 14.31%)含量和较高的 Al(6.37~6.57)、Al[#](0.31~0.34)含量,表明角闪石源自幔源岩浆(图 6a,b;姜常义和安三元,1984;陈光远等,1993),因此该公式并不适用计算该岩体角闪石的结晶温度 与压力。Putirka(2016)通过高温高压实验数据,并通过定量 计算厘定了角闪石地质温度计的可靠性,我们对其所推出的 公式(表4)进行计算显示,闪长岩中角闪石的结晶温度介于 793~842℃之间。汪洋(2014)通过幂函数关系来计算角闪 石全铝压力计(表4),压力计适用于 0.20~1.30GPa 的角闪 石,并且结晶温度大于 700℃,且需要矿物岩石组合中存在碱 性长石和黑云母,本次样品中的闪长岩符合该公式所需条 件,计算得出角闪石结晶压力(P)介于 0.50~0.75GPa 之 间,根据 H = $P/pg(\rho = 2700 kg/m^3, g = 9.8 m/s^2)$ 可知角闪石 结晶深度为 19~28km(表4)。

Henry et al. (2005) 根据泥质变质岩中黑云母 Ti 和 $X_{M_{e}}$ 数据建立了黑云母 Ti 温度计,计算公式见表 3, Sarjoughian et al. (2015)认为该温度计同样适用于中酸性岩浆岩。该公式 要求适用条件为 X_{Mg} = 0.275~1.000, Ti = 0.04~0.60 apfu, T =480~800℃,误差为±25℃。龙门二长岩中黑云母电子探 针结果显示其 X_{Me}介于 0.61~0.64 之间, Ti 含量介于 0.48~ 0.55apfu 之间(表3),符合条件要求。因此根据 Henry et al. (2005)建立的黑云母 Ti 含量温度计得出,黑云母结晶温度 是764~788℃(±25℃),与黑云母Ti-Mg/(Mg+Fe)图解所 得到的温度区间(750~770℃)大体一致(图7),说明黑云母 结晶温度低于角闪石结晶的温度。对于黑云母结晶压力的 计算, Uchida et al. (2007)认为黑云母和角闪石的 Al^T 可用于 计算黑云母全铝压力:P(GPa)=0.303×Al^T-0.653,该公式 适用于压力小于 0.20GPa,但由于该压力计缺乏理论依据和 实验标定,汪洋(2014)认为此方法不建议使用,但可以用来 估算岩浆热液蚀变系统的黑云母形成压力(孙紫坚等, 2017),根据计算可得其压力介于 0.04~0.07GPa 之间,对应 深度为 1.49~2.67km(排除异常低的样品 LM19-1-02)。虽 然无法准确估算黑云母的结晶压力,但较低的结晶温度(764 ~788℃)说明二长岩中黑云母结晶的结晶深度要浅于闪长 岩中角闪石的结晶环境。另外,赵沔等(2015)认为中酸性岩

图 7 龙门岩体黑云母 Ti-Mg/(Mg + Fe)图解(据 Henry *et al.*, 2005 修改)

Fig. 7 Diagram of Ti vs. Mg/(Mg + Fe) of biotite from Longmen pluton (after Henry *et al.*, 2005)

体的黑云母的 X_{Mg} > 0.45 可代表深源系列岩石。龙门二长 岩中黑云母 X_{Mg}值均大于 0.45,说明二长岩的物质来源含有 一定量的地幔物质的加入。岩相学方面,观察到斜长石中包 裹有黑云母,推测二长岩岩浆中地幔物质的注入产生在锆石 结晶之后和黑云母结晶之前阶段,此后黑云母开始结晶,并 且这些斜长石再次结晶包裹了已结晶的黑云母,黑云母具有 较高的 Mg 含量主要由地幔交代作用引起。

通过锆石 Ti 温度计可有效反映岩浆的温度条件,其中, SiO₂和TiO₂的活度也是影响矿物结晶温度重要的因素, Ferry and Watson(2007)总结SiO₂的活度(α_{SiO2})和TiO₂的活 度(α₁₀,)并进行了估算,同时提出了相关经验公式:log $(\text{Ti}_{\text{zircon}}) = 5.711 \pm 0.072 - (4800 \pm 86)/T(\text{K}) - \log \alpha_{\text{Si0}_2} +$ loga_{Ti0},并认为 α_{si0}, 和 α_{Ti0},存在以下适用范围:(1)体系中 有锆石时则 α₁₀,≥0.5;有钛铁矿时则 α₁₀,≥0.6;有榍石和 磁铁矿时则 α₁₀,≥0.7;有金红石时则 α₁₀,=1;(2) 对于硅 质熔体,则 α_{si02}≥0.3,若有石英时则 α_{si02}=1。样品中锆石 Ti 含量在 12.81~74.82 之间,体系中并未发现石英, 而 0.6 几乎是硅质熔体的最小值(Ferry and Watson, 2007),因此 α_{si02}取 0.6, α_{ti02}按典型岩浆范围内的硅酸岩熔体取值为 0.6 (Wark et al., 2007)。根据以上公式得出锆石 Ti 饱和温度处 于较大的范围(770~978℃)。从锆石形态学特征可以判断 (图3),二长岩与闪长岩的锆石可能经历了长时间的搬运过 程或者由于同源岩浆经历了不同的岩浆房过程而导致的浑 圆性特点,这也被角闪石形成于不同的温压环境所证实。

4.2 岩浆氧逸度与含水量

4.2.1 角闪石与黑云母氧逸度与含水量

氧逸度的高低影响岩浆熔体内硫的含量、流体与熔体的 分异程度和斑岩矿床的金属元素含量(Simon *et al.*,2003)。 高氧逸度在岩浆结晶的早期阻止了亲硫元素(如 Fe 和 Au) 进入到硅酸盐矿物相中,使其成为不相容元素聚集在流体相中,为 Fe、Au 矿化提供了有利的成矿条件。

根据 Putirka (2016)所计算的角闪石结晶温度(793 ~ 842℃),利用 Ridolfi *et al.* (2010)所建立的角闪石氧逸度计算公式,可知龙门岩体的角闪石结晶氧逸度为 ΔNNO = $-0.43 \sim +0.15$,对应的 log f_{02} 介于 $-12.21 \sim -11.38$ 之间,位于 ΔNNO 与 ΔMH 之间,表明岩浆处于较低的氧逸度状态(图 8a),这不利于金属矿床的形成。根据 Ridolfi *et al.* (2010)所提出的角闪石中岩浆水含量的公式(H₂O_{melt} = $5.215 \times$ ^W Al^{*} +12.28)获得岩浆含水量为: $8.5\% \sim 10.75\%$ (表4),说明岩浆具有富水的特点,这也为含水矿物角闪石的稳定结晶提供了条件。

二长岩中黑云母具有低 Al(表 3)并与磁铁矿和钾长石 共生的特点(图 2d, e, g, h),符合 David and Hans(1965)根据 $Fe^{3+}-Mg^{2+}-Fe^{2+}$ 含量估计的黑云母结晶时的氧逸度水平。 由图 8b 可知,样品落入 Δ NNO 和 Δ MH 缓冲线之间,显示出 低氧逸度水平。另根据 David and Hans(1965)提出的氧逸度 经验公式 $logf_{0_2} = 10.9 - 27000/T(K)(表 3)来估算黑云母结$ $晶的氧逸度,我们据此得出二长岩中黑云母的氧逸度 <math>lg f_{0_2}$ 为 - 15. 14 ~ - 14. 54。因此,龙门二长岩中黑云母在低氧逸 度条件下结晶形成。

4.2.2 锆石氧逸度

龙门钾质岩中锆石的 Hf 含量均较高(全部 > 10,000 × 10⁻⁶),表明其岩浆演化程度较高(Claiborne *et al.*,2010),随着演化程度的进行,岩浆温度的降低,离子半径较小的 Hf⁴⁺ 比 Zr⁴⁺ 以及 U⁴⁺ 比 Th⁴⁺ 更容易进入锆石中(Wang *et al.*, 2010),这将表现出岩浆演化的过程中 Zr 与 Th 逐渐减少(图 9a),Hf 含量会随岩浆演化程度增强而增加。另外,二长岩与闪长岩的锆石微量元素具有相似的分布与演化趋势,表明 两者共同受岩浆分异控制。

锆石 Ce 异常和 Ce4+/Ce3+可揭示岩浆的真实氧逸度 (Ballard et al., 2002; Trail et al., 2011), 岩浆在高氧逸度情况 下通常以 Ce4+形式存在, 而锆石中的 Zr4+可通过类质同象 作用发生置换,使得 Ce4+/Ce3+比值的大小可有效评价岩浆 的氧逸度状态。通常认为 Ce4+/Ce3+ 比值越大, 岩浆的氧逸 度越高,成矿潜力更佳(Loader et al., 2017)。在锆石 Ce4+/ Ce³⁺-T(℃)图解中(图9b),样品中锆石Ce⁴⁺/Ce³⁺值与锆石 结晶温度呈负相关性,即岩浆氧逸度随岩浆演化逐渐升高, 这可能是由于随着岩浆分离结晶作用进行过程中温度降低 和/或成分变化等因素造成(图 9c, Liu et al., 2010)。此外, Eu 负异常主要是由于岩浆结晶过程中 Eu²⁺大量进入斜长石 所致,随着温度降低和氧逸度升高,Eu²⁺被氧化成Eu³⁺,进 而导致斜长石的 Eu 负异常降低,因此锆石中 Eu/Eu*比值也 被认为是评价岩浆氧逸度情况的重要指标(Burnham et al., 2015)。由此计算得出,龙门地区的二长岩和闪长岩的锆石 显示出低氧逸度特点((Ce/Ce*)) = 2.36~35.09,Ce⁴⁺/ $Ce^{3+} = 1 \sim 34$, $Eu/Eu^* = 0.16 \sim 0.30$)。 另外, Loucks *et al.*

图 8 龙门岩体角闪石 logf₀₂-*T*(℃)(a,据 Ridolfi *et al.*,2010 修改)和黑云母 Fe³⁺-Fe²⁺-Mg²⁺(b,据 Wones and Hans,1965 修改)氧逸度图解

 $\Delta IW = 方铁矿 - 自然铁; \Delta MW = 磁铁矿 - 赤铁矿; \Delta FMQ = 方铁矿 - 磁铁矿 - 石英; \Delta NNO = 自然镍-绿镍矿; \Delta MH = 磁铁矿 - 赤铁矿$

Fig. 8 Diagrams of amphibole oxygen fugacity (a, after Ridolfi *et al.*, 2010) and biotite oxygen fugacity (b, after Wones and Hans, 1965) for the Longmen pluton

 ΔIW = wiistite-iron; ΔMW = magnetite-wustite; ΔFMQ = quartz-fayalite-magnetite; ΔNNO = nickel-nickel oxide; ΔHM = hematite-magnetite

图 9 龙门岩体锆石微量元素图解

(a) 锆石 Zr/Hf-Th/U 图解;(b) 锆石 Ce⁴⁺/Ce³⁺-T(℃)图解;(c) 锆石 Hf-Ce/Ce*图解

Fig. 9 Diagrams of zircon trace elements of Longmen pluton

(a) diagram of Zr/Hf vs. Th-U for zircons; (b) diagram of Ce^{4+}/Ce^{3+} vs. $T(^{\circ}C)$ for zircons; (c) diagram of zircon Hf vs. Ce/Ce^{*} for zircons

(2020)通过 U⁴⁺、Ce⁴⁺和 Ti⁴⁺的关系推导出新的氧逸度公式 避免以上方法基于 REE³⁺来计算氧逸度计中的问题可能更 能反映岩浆的氧逸度水平(表 1),得到的 Δ FMQ 介于 – 0.37 ~1.70 之间,与黑云母与角闪石所得结论一致,岩浆整体处 于较低的氧逸度水平。

4.3 成岩构造环境与成矿评价

中生代以来,华北克拉通东部和中部地区主要存在三期 成矿作用(200~160Ma、约140Ma和130~110Ma;毛景文等, 2005)。中部造山带在晚侏罗世至早白垩世整体处于挤压向 伸展转换时期,并在早白垩世处于伸展阶段(Wu et al., 2019),该期间发育的一系列断陷盆地、拆离断层、变质核杂 岩和大量岩浆作用被认为与岩石圈减薄有关(Zhu et al., 2011)。

古太平洋板块(伊佐奈琦板块)俯冲-后撤被认为是中国 东部晚中生代大规模岩石圈伸展减薄的主要原因(孙卫东 等,2008),该时期中部造山带的岩浆-成矿事件被认为与热 机械-化学侵蚀有关(Ma et al.,2016),上升的软流圈逐渐侵 蚀华北克拉通东部岩石圈地幔使其逐渐变薄,俯冲板片释放 的流体逐渐交代古老岩石圈地幔并产生同位素富集的镁铁 质和碱性岩浆(Cai et al.,2013)。该岩体的 Ba/Th-Ba/La 协 变图解指示其源区也受到了流体交代作用的影响(Tang et al.,2022),这可能使得岩浆呈现出富水特征,进而出现含水 矿物(黑云母和角闪石),而较为宽泛的角闪石和锆石结晶温 度显示了龙门岩体的形成经历了岩浆减压熔融过程。

富水钾质岩浆高氧逸度岩浆不仅激发了下地壳的重熔, 还活化了下地壳的金属硫化物,利于成矿流体出溶,因而有 利于亲硫、亲铁元素聚集并促成铁、铜和金矿化的形成,但这 需要钾质岩浆具有很高的氧逸度(王瑞等,2021;汪在聪等, 2021)。富水岩浆和高氧逸度可以使深部金属元素析出并迁 移至浅部地壳(Richards, 2003),但对于这期岩浆低氧逸度 特征通常使金多金属以硫化物的形式晶出(Richards, 2015),这将降低熔/流体中金多金属成矿元素的含量并制约 了Fe-Cu-Au的迁移,不利于多金属矿床的形成,这已被来自 深源的富含硫化物的基性岩包体所证实(刘金霖等,2021)。

虽然晚中生代古太平洋板块俯冲很有可能活化了这些 硫化物,但在~141Ma时期的俯冲洋壳可能刚到达中部造山 带地区(Tang et al.,2022),使得该时期岩浆-成矿作用较弱, 由于远离俯冲带和较厚的岩石圈(~100km)使得该期岩体 不利于成矿。在之后的板片后撤时期,该区域受到机械-热 侵蚀作用的影响逐渐显著,出现了相应的多金属矿产资源, 例如高氧逸度的成矿岩体(麻棚、赤瓦屋岩体;刘伟等, 2007)。另外,Lu et al. (2016)通过统计全球含矿与不含矿 的中酸性侵入体的锆石微量元素特征发现,锆石 Eu/Eu*、 (Ce/Nd)/Y和 Dy/Yb 比值可有效区别富矿与贫矿岩体。富 矿岩体 中 锆 石 具 有 高 的 Eu/Eu*(>0.3)、(Ce/Nd)/Y (>0.01)和低的 Dy/Yb 比值(<0.3),但龙门岩体中低的 Eu/Eu*(0.16~0.30)、(Ce/Nd)/Y(0.0004~0.0093)和 Dy/Yb(0.28~0.55)显示出有限的成矿潜力。

5 结论

(1)龙门岩体主要为二长岩与闪长岩,为一套中性钾质 岩,角闪石形成与古太平洋板片释放的流体交代岩石圈地幔 过程相关,岩浆上升过程中经历了减压熔融,逐渐形成了富 水的角闪石,随着幔源岩浆运移到深部岩浆房时形成闪长岩 中的角闪石斑晶(~28km,~842℃),残余岩浆继续上升,角 闪石斑晶在浅部继续结晶(~19km,~793℃)。地幔交代作 用发生在黑云母结晶之前,导致了二长岩中的黑云母具有较 高的 Mg 含量。

(2)闪长岩中角闪石结晶温度为 793~842℃, 压力为
0.50~0.75GPa,结晶深度为 19~28km, 氧逸度(log f₀₂)为
-12.21~-11.38,含水量为 8.5%~10.75%; 二长岩中黑
云母结晶温度为 764~788℃, 氧逸度 log f₀₂ 为 - 15.14~
-14.54。二长岩和闪长岩中锆石结晶温度为 770~978℃,
氧逸度 ΔFMQ 介于 -0.37~+1.70 之间,岩浆整体处于低氧
逸度水平。

(3)古太平洋板块俯冲-后撤释放的流体交代上覆岩石 圈地幔导致了龙门钾质岩浆具有较高的含水量,但岩浆的氧 逸度较低,综合评价岩体的整体成矿潜力有限。 谨以此文祝贺河北地质大学70周年华诞!

致谢 本文还受到河北省战略性关键矿产资源重点实验 室开放基金(HGU-SCMR2205)、河北地质大学 2023 年国家 预研项目(KY202312)、河北地质大学博士科研启动基金 (BQ2019068)和河北省高等学校科学技术研究重点项目 (ZD2021018)资助。野外工作得到了河北省地矿局国土资 源勘查中心张森鑫、张思佳、孙广盛和刘成等人的大力支持; 文章撰写过程中得到了吉林大学地球科学学院孙德有教授 的指导;审稿专家提出了宝贵修改意见;作者对此深表感谢!

References

- Ballard JR, Palin MJ and Campbell IH. 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364
- Boynton WV. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. Developments in Geochemistry, 2: 63 – 114
- Burnham AD, Berry AJ, Halse HR, Schofield PF, Cibin G and Mosselmans JFW. 2015. The oxidation state of europium in silicate melts as a function of oxygen fugacity, composition and temperature. Chemical Geology, 411: 248 – 259
- Burnham AD. 2020. Key concepts in interpreting the concentrations of the rare earth elements in zircon. Chemical Geology, 551: 119765
- Cai JH, Yan GH, Chang ZS, Wang XF, Shao HX and Chu ZY. 2003. Petrological and geochemical characteristics of the Wanganzhen complex and discussion on its genesis. Acta Petrologica Sinica, 19 (1): 81-92 (in Chinese with English abstract)
- Cai YC, Fan HR, Santosh M, Liu X, Hu FF, Yang KF, Lan TG, Yang YH and Liu Y. 2013. Evolution of the lithospheric mantle beneath the southeastern North China Craton: Constraints from mafic dikes in the Jiaobei terrain. Gondwana Research, 24(2): 601–621
- Chen GY, Sun DS, Zhou XR, Shao W, Gong RT and Shao Y. 1993. Genetic Mineralogy and Gold Mineralization of Guojialing Granodiorite in Jiaodong Region. Beijing: China University of Geosciences Press, 1-131 (in Chinese)
- Claiborne LL, Miller CF and Wooden JL. 2010. Trace element composition of igneous zircon: A thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contributions to Mineralogy and Petrology, 160 (4): 511-531
- David RW and Hans PE. 1965. Stability of biotite: Experiment, theory, and application. American Mineralogist, 50(9): 1228 - 1272
- Deer WA, Howie RA and Zussman J. 1992. An Introduction to the Rock-Forming Minerals. 2nd Edition. London: Longman Group, 1–232
- Deng JF, Su SG, Zhao HL, Mo XX, Xiao QH, Zhou S, Liu C and Zhao GC. 2003. Deep processes of Mesozoic Yanshanian lithosphere thinning in North China. Earth Science Frontiers, 10(3): 41 – 50 (in Chinese with English abstract)
- Dong GC, Santosh M, Li SR, Shen JF, Mo XX, Scott S, Qu K and Wang X. 2013. Mesozoic magmatism and metallogenesis associated with the destruction of the North China Craton: Evidence from U-Pb geochronology and stable isotope geochemistry of the Mujicun porphyry Cu-Mo deposit. Ore Geology Reviews, 53: 434 – 445
- Du YL, Fang WX and Lu J. 2020. Characteristics of diagenetic temperature-pressure-oxygen fugacity of gabbro-diabase and tendency of geothermal evolution of magma diagenesis in Sareke, Xinjiang. Acta Petrologica Sinica, 36 (2): 484 – 508 (in Chinese with English abstract)
- Ferry JM and Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers.

Contributions to Mineralogy and Petrology, 154(4): 429-437

- Foster MD. 1960. Interpretation of the composition of trioctahedral micas. U. S. Geological Survey Professional Paper 354-B. Washington: United States Government Printing Office, 1-49
- Gao YF, Wei RH, Hou ZQ, Ma GX, Zhao RS, Chen ZK, Wu JL, Peng YX and Gao M. 2011. Mujicun porphyry copper mineralization: Response to Mesozoic thinning of lithosphere in North China Craton. Mineral Deposits, 30 (5): 890 – 902 (in Chinese with English abstract)
- Gao YF, Santosh M, Wei RH, Ma GX, Chen ZK and Wu JL. 2013. Origin of high Sr/Y magmas from the northern Taihang Mountains: Implications for Mesozoic porphyry copper mineralization in the North China Craton. Journal of Asian Earth Sciences, 78: 143 – 159
- Henry DJ, Guidotti CV and Thomson JA. 2005. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90(2-3): 316-328
- Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62
- Hoskin PWO. 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637 - 648
- Jiang CY and An SY. 1984. On chemical characteristics of calcic amphiboles from igneous rocks and their petrogenesis significance. Journal of Mineralogy and Petrology, 4(3): 1-9 (in Chinese with English abstract)
- Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino J, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW and Youzhi G. 1997. Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61 (405): 295 - 310
- Li JW, Bi SJ, Selby D, Chen L, Vasconcelos P, Thiede D, Zhou MF, Zhao XF, Li ZK and Qiu HN. 2012. Giant Mesozoic gold provinces related to the destruction of the North China craton. Earth and Planetary Science Letters, 349 – 350; 26 – 37
- Li SR, Santosh M, Zhang HF, Shen JF, Dong GC, Wang JZ and Zhang JQ. 2013. Inhomogeneous lithospheric thinning in the central North China Craton: Zircon U-Pb and S-He-Ar isotopic record from magmatism and metallogeny in the Taihang Mountains. Gondwana Research, 23(1): 141 – 160
- Li SR, Santosh M, Zhang HF, Luo JY, Zhang JQ, Li CL, Song JY and Zhang XB. 2014. Metallogeny in response to lithospheric thinning and craton destruction: Geochemistry and U-Pb zircon chronology of the Yixingzhai gold deposit, central North China Craton. Ore Geology Reviews, 56: 457 - 471
- Li WK, Cheng YQ and Yang ZM. 2019. Geo- f_{0_2} : Integrated software for analysis of magmatic oxygen fugacity. Geochemistry, Geophysics, Geosystems, 20(5): 2542 2555
- Liu JG, Cai RH, Pearson DG and Scott JM. 2019. Thinning and destruction of the lithospheric mantle root beneath the North China Craton: A review. Earth-Science Reviews, 196: 102873
- Liu JL, Li HB, Wang J and Zhang YF. 2021. Characteristics of oxygen fugacity of mantle peridotites in the northern Xing'an-Mongolia Orogenic Belt. Acta Petrologica Sinica, 37(7): 2073 – 2085 (in Chinese with English abstract)
- Liu W, Dai TG, Fu WJ, Sun SD and Hu B. 2007. Characteristics of oreforming fluids of the Shihu gold deposit, western Hebei. Geology in China, 34(2): 335 – 341 (in Chinese with English abstract)
- Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537 - 571

Loader MA, Wilkinson JJ and Armstrong RN. 2017. The effect of titanite

crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth and Planetary Science Letters, 472: 107 – 119

- Loucks RR, Fiorentini ML and Henríquez GJ. 2020. New magmatic oxybarometer using trace elements in zircon. Journal of Petrology, 61 (3): egaa034
- Lu YJ, Loucks RR, Fiorentini M, McCuaig TC, Evans NJ, Yang ZM, Hou ZQ, Kirkland CL, Parra-Avila LA and Kobussen A. 2016. Zircon compositions as a pathfinder for porphyry Cu ± Mo ± Au deposits. In: Richards JP (ed.). Tectonics and Metallogeny of the Tethyan Orogenic Belt. Society of Economic Geologists, 329 – 347
- Ma L, Jiang SY, Hofmann AW, Xu YG, Dai BZ and Hou ML. 2016. Rapid lithospheric thinning of the North China Craton: New evidence from Cretaceous mafic dikes in the Jiaodong Peninsula. Chemical Geology, 432: 1 – 15
- Mao JW, Xie GQ, Zhang ZH, LI XF, Wang YT, Zhang CQ and Li YF. 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrologica Sinica, 21(1): 169 – 188 (in Chinese with English abstract)
- Mungall JE. 2002. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 30(10): 915-918
- Nachit H, Ibhi A, Abia EH and Ohoud MB. 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus Geoscience, 337(16): 1415 – 1420
- Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A and Maas R. 2010. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems, 11(3): Q0AA06
- Putirka K. 2016. Special Collection: Rates and depths of magma ascent on Earth: Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. American Mineralogist, 101(4): 841 – 858
- Qu K, Dong GC, Li SR, Shen JF, Wang YJ, Wang X and Luo W. 2014. Lithogeochemistry and Sr-Nd-Pb isotopic characteristics of Mujicun porphyry Cu-Mo deposit in Taihang Mountains and their significances. Geoscience, 28 (3): 449 - 460 (in Chinese with English abstract)
- Richards JP. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98(8): 1515 – 1533
- Richards JP. 2015. The oxidation state, and sulfur and Cu contents of arc magmas: Implications for metallogeny. Lithos, 233: 27 - 45
- Ridolfi F, Renzulli A and Puerini M. 2010. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subductionrelated volcanoes. Contributions to Mineralogy and Petrology, 160 (1): 45-66
- Sarjoughian F, Kananian A, Ahmadian J and Murata M. 2015. Chemical composition of biotite from the Kuh-e Dom pluton, Central Iran: Implication for granitoid magnatism and related Cu-Au mineralization. Arabian Journal of Geosciences, 8(3): 1521-1533
- Shen JF, Santosh M, Li SR, Zhang HF, Yin N, Dong GC, Wang YJ, Ma GG and Yu HJ. 2013. The Beiminghe skarn iron deposit, eastern China: Geochronology, isotope geochemistry and implications for the destruction of the North China Craton. Lithos, 156 – 159: 218 – 229
- Shen ZC, Hou ZQ, Yu F, Chen ZK, Li QY, Ma GX, Ge F and Wang ZM. 2015. SHRIMP zircon U-Pb ages and Hf isotopes of the intermediate-acidic rocks of Wanganzhen complex in northern part of Taihang Mountains and their geological implications. Acta Petrologica Sinica, 31(5): 1409 – 1420 (in Chinese with English abstract)
- Simon AC, Pettke T, Candela PA, Piccoli PM and Heinrich CA. 2003. Experimental determination of Au solubility in rhyolite melt and magnetite: Constraints on magmatic Au budgets. American Mineralogist, 88(11-12): 1644-1651
- Sun WD, Ling MX, Wang FY, Ding X, Hu YH, Zhou JB and Yang

XY. 2008. Pacific plate subduction and Mesozoic geological event in eastern China. Bulletin of Mineralogy, Petrology and Geochemistry, 27(3): 218 – 225 (in Chinese with English abstract)

- Sun ZJ, Fang WX, Lu J, Wang TR, Guo YQ and Song LH. 2017. Mineralization characteristics and indication significance of biotite rutile from the gabbro intrusions in the Yinmin iron copper district, Yunnan Province. Geoscience, 31(2): 267 – 277 (in Chinese with English abstract)
- Tang ZY, Zhao GC, Zhang MX, Sun DY, Zhang CL, Zhang SJ, Sun GS, Zhang ZF, Shao C, Yang YC, Liu C and Wang XP. 2022. Petrogenesis and tectonic affinity of Early Cretaceous potassic diorites in the northern Taihang Mountain, Trans-North China Orogen. Journal of Asian Earth Sciences, 240: 105441
- Trail D, Watson EB and Tailby ND. 2011. The oxidation state of Hadean magmas and implications for early Earth's atmosphere. Nature, 480 (7375): 79-82
- Uchida E, Endo S and Makino M. 2007. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology, 57(1): 47-56
- Wang R, Luo CH, Xia WJ, Sun YC, Liu B and Zhang JB. 2021. Progresses in the study of high magmatic water and oxidation state of post-collisional magmas in the Gangdese porphyry deposit belt. Bulletin of Mineralogy, Petrology and Geochemistry, 40(5): 1061 - 1077 (in Chinese with English abstract)
- Wang X, Griffin WL and Chen J. 2010. Hf contents and Zr/Hf ratios in granitic zircons. Geochemical Journal, 44(1): 65 – 72
- Wang Y. 2014. The Al-in-hornblende barometry for calc-alkaline igneous rocks: Retrospect, evaluation and applications. Geological Review, 60(4): 839-850 (in Chinese with English abstract)
- Wang YC, Li SR, Yan YJ, Hou TJ, Han LJ and Li ZZ. 2018. LA-ICP-MS zircon U-Pb age, geochemical characteristics and metallogenic significance of quartz diorite porphyrite dykes from the Shihu gold deposit in the middle of Taihang Mountain. Geological Science and Technology Information, 37(5): 37 – 48 (in Chinese with English abstract)
- Wang YJ, Fan WM, Zhang YH, Guo F, Zhang HF and Peng TP. 2004. Geochemical, ⁴⁰ Ar/³⁹ Ar geochronological and Sr-Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca. 1800Ma event of the North China Craton. Precambrian Research, 135 (1 – 2): 55 – 77
- Wang ZC, Cheng H, Zong KQ, Geng XL, Liu YS, Yang JH, Wu FY, Becker H, Foley S and Wang CY. 2020. Metasomatized lithospheric mantle for Mesozoic giant gold deposits in the North China craton. Geology, 48(2): 169-173
- Wang ZC, Wang CY, Wang X, Cheng H and Xu Z. 2021. Metasomatized lithospheric mantle and gold mineralization. Earth Science, 46(12): 4197 - 4229 (in Chinese with English abstract)
- Wark DA, Hildreth W, Spear FS, Cherniak DJ and Watson EB. 2007. Pre-eruption recharge of the Bishop magma system. Geology, 35 (3): 235 - 238
- Wones DR and Hans PE. 1965. Stability of biotite: Experiment, theory and application. American Mineralogist, 50(9): 1228 – 1272
- Wu FY, Sun DY, Zhang GL and Ren XW. 2000. Deep geodynamics of Yanshan movement. Geological Journal of China Universities, 6 (3): 379 - 388 (in Chinese with English abstract)
- Wu FY, Yang JH, Xu YG, Wilde SA and Walker RJ. 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47: 173 – 195
- Zhang MX, Tang ZY, Zhang P, Yang YC, Zhang ZF, Zhang SJ, Sun GS, Liu C and Shao C. 2021. Geological characteristics of Longmen gold polymetallic deposit in Laiyuan, Hebei Province. Mineral Exploration, 12 (9): 1871 – 1880 (in Chinese with English abstract)
- Zhao GC, Cawood PA, Wilde SA, Sun M and Lu LZ. 2000. Metamorphism of basement rocks in the central zone of the North China Craton: Implications for Paleoproterozoic tectonic evolution. Precambrian Research, 103(1-2): 55-88

- Zhao GC, Wilde SA, Cawood PA and Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45-73
- Zhao M, Yang SY, Zuo RG, Zhao KD, Jiang YH, Ling HF and Chen PR. 2015. Magmatic evolution characteristics of Xiangshan volcanicintrusive complex from the Gan-Hang Belt: Studies on the mineral chemistry of plagioclase and biotite. Acta Petrologica Sinica, 31 (3): 759-768 (in Chinese with English abstract)
- Zheng Y, Zhang Q, Wang Y, Liu R, Wang SG, Zuo G, Wang SZ, Lkaasuren B, Badarch G and Badamgarav Z. 1996. Great Jurassic thrust sheets in Beishan (North Mountains): Gobi areas of China and southern Mongolia. Journal of Structural Geology, 18(9): 1111 -1126
- Zhong SH, Feng CY, Seltmann R, Li DX and Qu HY. 2018. Can magmatic zircon be distinguished from hydrothermal zircon by trace element composition? The effect of mineral inclusions on zircon trace element composition. Lithos, 314 – 315: 646 – 657
- Zhu RX, Chen L, Wu FY and Liu JL. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Science China (Earth Sciences), 54(6): 789-797
- Zhu RX, Fan HR, Li JW, Meng QR, Li SR and Zeng QD. 2015. Decratonic gold deposits. Science China (Earth Sciences), 58(9): 1523 – 1537

附中文参考文献

- 蔡剑辉, 阎国翰, 常兆山, 王晓芳, 邵宏翔, 储著银. 2003. 王安镇 岩体岩石地球化学特征及成因探讨. 岩石学报, 19(1): 81-92
- 陈光远,孙岱生,周珣若,邵伟,宫润潭,邵岳. 1993. 胶东郭家岭 花岗闪长岩成因矿物学与金矿化.北京:中国地质大学出版社, 1-131
- 邓晋福,苏尚国,赵海玲,莫宣学,肖庆辉,周肃,刘翠,赵国春. 2003. 华北地区燕山期岩石圈减薄的深部过程. 地学前缘,10 (3):41-50
- 杜玉龙,方维萱,鲁佳.2020.新疆萨热克辉长辉绿岩类成岩温度-压力-氧逸度特征与成岩作用演化趋势.岩石学报,36(2):484 -508
- 高永丰,魏瑞华,侯增谦,马国玺,赵荣升,陈志宽,吴金乱,彭玉 旋,高明. 2011. 木吉村斑岩铜矿成矿作用:华北克拉通中生代 岩石圈减薄的响应. 矿床地质,30(5):890-902
- 姜常义,安三元.1984.论火成岩中钙质角闪石的化学组成特征及 其岩石学意义.矿物岩石,4(3):1-9
- 刘金霖,李怀滨,王建,张云峰. 2021. 兴蒙造山带北部岩石圈地幔 橄榄岩氧逸度特征研究. 岩石学报,37(7):2073-2085
- 刘伟, 戴塔根, 傅文杰, 孙磉礅, 胡斌. 2007. 冀西石湖金矿成矿流 体特征. 中国地质, 34(2): 335-341
- 毛景文,谢桂青,张作衡,李晓峰,王义天,张长青,李永峰. 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景. 岩石学报,21(1):169-188
- 曲凯,董国臣,李胜荣,申俊峰,王艳娟,王霞,罗薇. 2014. 太行山 木吉村斑岩铜(钼)矿床岩石地球化学、Sr-Nd-Pb 同位素特征及 其地质意义. 现代地质, 28(3): 449-460
- 申志超,侯增谦,于枫,陈志宽,李秋耘,马国玺,葛峰,王志敏. 2015. 太行山北段王安镇杂岩体中酸性岩锆石 SHRIMP U-Pb 定 年、Hf 同位素组成及其地质意义. 岩石学报,31(5):1409-1420
- 孙卫东,凌明星,汪方跃,丁兴,胡艳华,周继彬,杨晓勇. 2008. 太

平洋板块俯冲与中国东部中生代地质事件. 矿物岩石地球化学 通报, 27(3): 218-225

- 孙紫坚,方维萱,鲁佳,王同荣,郭玉乾,宋丽红.2017. 云南因民 铁铜矿区辉长岩类中黑云母-金红石化特征及其指示意义.现代 地质,31(2):267-277
- 王瑞,罗晨皓,夏文杰,孙英才,刘彪,张京渤. 2021. 冈底斯后碰 撞斑岩成矿带高水、高氧逸度岩浆成因研究进展. 矿物岩石地 球化学通报,40(5):1061-1077
- 汪洋. 2014. 钙碱性火成岩的角闪石全铝压力计——回顾、评价和应 用实例. 地质论评, 60(4): 839-850
- 王银川,李胜荣,闫永杰,侯天江,韩丽娟,李真真. 2018. 太行山 中段石湖金矿区石英闪长玢岩脉 LA-ICP-MS 锆石 U-Pb 年龄、地

球化学特征及成矿意义. 地质科技情报, 37(5): 37-48

- 汪在聪, 王焰, 汪翔, 程怀, 许喆. 2021. 交代岩石圈地幔与金成矿 作用. 地球科学, 46(12): 4197-4229
- 吴福元,孙德有,张广良,任向文. 2000. 论燕山运动的深部地球动 力学本质. 高校地质学报,6(3):379-388
- 张森鑫,唐宗源,张璞,杨永超,张志富,张思佳,孙广盛,刘成,邵 琛. 2021.河北省涞源龙门金多金属矿床地质特征研究.矿产 勘查,12(9):1871-1880
- 赵沔,杨水源,左仁广,赵葵东,姜耀辉,凌洪飞,陈培荣. 2015. 赣 杭构造带相山火山侵入杂岩的岩浆演化特征——来自斜长石和 黑云母的化学成分研究. 岩石学报,31(3):759-768