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A B S T R A C T   

People generally spend most of their time indoors, making indoor air quality be of great significance to human 
health. Large spatiotemporal heterogeneity of indoor air pollution can be hardly captured by conventional filter- 
based monitoring but real-time monitoring. Real-time monitoring is conducive to change air assessment mode 
from static and sparse analysis to dynamic and massive analysis, and has made remarkable strides in indoor air 
evaluation. In this review, the state of art, strengths, challenges, and further development of real-time sensors 
used in indoor air evaluation are focused on. Researches using real-time sensors for indoor air evaluation have 
increased rapidly since 2018, and are mainly conducted in China and the USA, with the most frequently 
investigated air pollutants of PM2.5. In addition to high spatiotemporal resolution, real-time sensors for indoor air 
evaluation have prominent advantages in 3-dimensional monitoring, pollution peak and source identification, 
and short-term health effect evaluation. Huge amounts of data from real-time sensors also facilitate the modeling 
and prediction of indoor air pollution. However, challenges still remain in extensive deployment of real-time 
sensors indoors, including the selection, performance, stability, as well as calibration of sensors. In future, 
sensors with high performance, long-term stability, low price, and low energy consumption are welcomed. 
Furthermore, more target air pollutants are also expected to be detected simultaneously by real-time sensors in 
indoor air monitoring.   

1. Introduction 

Air pollution is the fifth leading risk factor for mortality worldwide 
which causes approximately 6.7 million premature deaths, 500,000 
newborns deaths, and reduces life expectancy on average by 20 months 
globally in 2019 (Health Effects Institute, 2020). Continuous efforts 
have been made to control ambient air pollution in many counties. For 
example, China implemented clean air action in 2013 and three-year 
action plan in 2018 to control air pollutant emissions (The Central 
People’s Government of the People’s Republic of China, 2013, 2018), 
resulting in a decrease of annual average ambient PM2.5 concentration 
from 72 µg/m3 in 2013 to 33 µg/m3 in 2020 (Clear Air Asia, 2021). 

Compared with ambient air pollution, indoor air pollution has received 
less attention partly due to the lack of measurement data. However, 
people generally spend 80 %–90 % of their time indoors (Klepeis et al., 
2001), where air pollution can be more severe than that in outdoors due 
to extensive internal emissions (Han et al., 2015; Huang et al., 2022; 
Yang et al., 2021). Indoor air pollution exposure is responsible for 64 % 
of premature death associated with overall air pollution exposure 
(World Air Quality Report, 2020). Exposure to poor indoor air can also 
result in sick building syndrome and lower work efficiency of human 
(Laumbach and Kipen, 2005). Therefore, indoor air quality monitoring 
is of high significance for human health protection. 

Conventionally, air pollution monitoring is based on fixed 
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monitoring stations by passive or continuous sampling (Fig. 1). Data 
from these instruments are standardized with high quality. However, 
high price, large size, noisy, as well as high maintenance cost make these 
instruments are sparsely deployed and hinder their use in indoor air 
monitoring. With the development of sensor technology, real-time 
monitors are becoming more and more popular for air quality moni-
toring, which have deeply improved air pollution monitoring by 
providing high spatiotemporal data (Gozzi et al., 2016). Owing to the 
deployment of low-cost sensors, coverage of air quality data was 
expanded from 4,745 locations in 2020 to 6,475 locations in 2021 
(World Air Quality Report, 2021). At first, real-time sensors were typi-
cally deployed to supplement ambient air quality data beyond fixed 
monitoring stations that were sparsely distributed (Chojer et al., 2020; 
Rai et al., 2017). In the past fifteen years, sensors with low price, 
portability, and acceptable precision broaden air quality monitoring 
from ambient to community or individual home (Clements et al., 2017) 
(Fig. 1). Recently, real-time sensors are now available in combination 
with communication technologies (Wi-Fi, ZigBee etc.) which can update 
air quality data to end users in time and further make real-time sensors 
popular in indoor air evaluation (Saini et al., 2020). 

Mountains of literatures have evaluated indoor air quality using real- 
time sensors with various research objectives. Huang et al. (2022) 
investigated indoor air pollution levels, indoor/outdoor ratios, and the 
influencing factors on household PM2.5 based on real-time monitoring. 
Li et al. (2022a) explored internal differences in various microenviron-
ments and personal exposures to PM2.5 based on low-cost sensors. Lau-
rent et al. (2021) found cognitive function was associated with real-time 
indoor PM2.5 concentrations. It was observed that per 8.8 µg/m3 PM2.5 
increase would result in 0.82 % and 6.18 % increases in Stroop response 
time and Stroop interference time, respectively. However, some major 
deficiencies of real-time monitoring have also been reported, including 
but not limited to the need for sensor calibration, the reliability of data, 
and few types of target pollutants, which have hindered the further 
application of real-time monitoring indoors (Chojer et al., 2020; Kumar 
et al., 2015). 

In view of the importance of real-time sensors, previous studies have 
discussed the development, challenges, and recent advancement of real- 
time sensors (Chojer et al., 2020; Morawska et al., 2018; Snyder et al., 
2013). However, there are still knowledge gaps in indoor air evaluation 
using real-time sensors, including: 1) What is the current state of real- 
time sensors applied in indoors? 2) What are the special strengths/ 
weaknesses of real-time sensors in indoor air evaluation? 3) What should 
be concerned when using real-time sensors? 4) What functions are ex-
pected for the future development of real-time sensors? To answer the 
above questions, related researches were systematically reviewed with 
the emphasis on the current status, strengths, challenges, and future 
research priorities of real-time sensors used for indoor air evaluation. 
This study is expected to provide comprehensive understanding of real- 
time sensors deployed indoors, and helpful information for sensor 
technology development. 

2. The state of art of real-time monitoring 

As shown in Fig. 2, literature search was conducted using three da-
tabases: Web of Science, Scopus, and PubMed. The search themes were: 
“indoor air pollution” or “household air pollution” or “indoor air qual-
ity” or “household air quality” or “indoor air monitoring” or “inhalation 
exposure” and “real time monitoring” or “real time” or “dynamic”. A 
total of 6,991 records were observed. Among them, 1,523 records were 
from PubMed, 3,110 records were from Web of Science, and 2,358 re-
cords were from Scopus, respectively. After excluding duplicates, 4,657 
records were found. Literature titles were firstly reviewed. 3,756 articles 
were removed due to inconsistent research objectives, and 901 records 
were selected for abstract reviewing. Then abstracts of these selected 
articles were reviewed, and 261 articles associated with the review 
scopes were read in full-text. 54 articles focused on chamber studies, 
sensor design, and modelling without measured data were further 
excluded. Finally, 207 literatures highly associated with the review 
scopes were used for analysis. All researches included in this review 
were published online from 8, January 1998 to 31, July 2022. 

The selected researches usually have different foci, which can be 
classified as follow: 1) assessment of the impacts of influencing factors 
(e.g., ventilation, human activities) on indoor air quality; 2) spatial 
variations of indoor air quality in different locations or specific loca-
tions; 3) temporal variations of indoor air quality with different time 
resolutions (seconds, minutes, hours, days, etc.); 4) indoor and outdoor 
relationships including the comparison of pollutant levels in indoor and 
outdoor air or analysis of their interactions; 5) short-term health impact 
assessments associated with indoor air exposures; and 6) other objects 
such as vertical profiles of indoor air pollutants and indoor air pollution 
predicting using sensor data. 

As shown in Fig. 3A, the publications of real-time sensors in indoor 
air quality measurement have shown an increasing trend in the past few 
decades. From 1998 to 2011, the number of publications was relatively 
small (0–6 publications per year), and the publications increased 
steadily during the years of 2012–2017 (8–12 publications per year). In 
the recent five years (since 2018), there has been a significant increase in 
publications (16–44 publications per year). Of these publications, the 
most were conducted in Asian (103 publications), followed by European 
(46) and North America (38), and only a few studies conducted neither 
in Africa (5) or South America (2) (Fig. 3B). However, severe indoor air 
pollution caused by solid fuel combustion in Africa has been reported in 
the existing studies. For example, the daily indoor PM2.5 level in Malawi, 
southern Africa was 226 ± 206 µg/m3 due to biomass fuel combustion 
(Fullerton et al., 2009), which was far higher than the WHO 

Fig. 1. The comparison of indoor real-time monitor and conventional sampler.  Fig. 2. Systematic review flowchart in this study.  
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recommended level (15 µg/m3), indicating the urgent need to improve 
indoor air pollution in these areas with less attention. As for the country 
level, China owns the most publications on indoor air quality evaluation 
using real-time sensors (49 publications), followed by the United States 
(34), and South Korea (16). 

As shown in Fig. 3C, residential homes rank as the most interesting 
microenvironments for indoor air pollution studies, accounting for 39.6 
% of total publications. Of these publications focusing on indoor air 
pollution in residential homes, 59 researches reported home locations, 
of which 31 studies were conducted in urban homes, 7 studies were in 
suburban homes, and 21 studies were in rural homes, indicating that 
rural homes received relatively less attention compared with urban 
homes. However, indoor air pollution can be more severe in rural homes 
due to extensive solid fuel combustion (Du et al., 2018; Huang et al., 
2022). For example, the indoor PM2.5 concentration of urban house-
holds in China was 123.9 ± 122.3 μg/m3, significantly lower than that 
in rural households of 164.3 ± 104.5 μg/m3 (Yang et al., 2021). 
Furthermore, Sun et al., (2022) revealed dose-dependent increasing 
patterns of reactive oxygen species (ROS) and Cellular interleukin-6 (IL- 
6) levels to PM2.5 derived from solid fuel combustion, indicating that 
rural residents who exposed to high PM2.5 might suffer from great health 
risks. Therefore, indoor air pollution in rural areas should be paid special 
attention. Educational places (i.e., school, classroom, and library) rank 
as the second popular microenvironments (19.6 %), followed by health 
care places (i.e., hospital, day-care center, and child-care center, 11.6 
%). Indoor air pollution in transports was evaluated by 8.4 % publica-
tions. Even though people generally spend only 5.5 % of their daily time 
in traffic (Sa et al., 2022), indoor air quality evaluation in transportation 
is important, especially for drivers due to their generally longer working 
time (11.4 h) (Sekkay et al., 2021), and large population base (for 
example, 17.28 million truck drivers in China) (China News, 2021). 

Conventionally, each real-time sensor has its specific target pollut-
ants, and several sensors will be adopted simultaneously for multi- 
pollutant detection (Barkjohn et al., 2021; Canha et al., 2018; Gitau 
et al., 2019). In recent years, sensor monitoring system and multi-sensor 
array (or referred as electronic nose), which are capable of monitoring 
multiple pollutants, have developed rapidly and received increasing 
attention in indoor air monitoring (Ye et al., 2021). For example, Zheng 

et al., (2022) applied a highly accurate photoacoustic gas monitoring 
system which can monitor up to 5 gases (Carbon dioxide (CO2), carbon 
monoxide (CO), formaldehyde, CH4, and total volatile organic com-
pounds (TVOCs)) to reveal the impact of Chinese cooking activities on 
indoor air quality. Tastan and Gokozan (2019) developed an electronic 
nose that can monitor various air parameters (CO2, CO, PM10, and ni-
trogen dioxide (NO2)) and then applied it to monitor indoor air quality. 
In addition to pollutant concentrations, real-time sensors can also pro-
vide environmental parameters such as temperature and relatively hu-
midity (RH) (Tran et al., 2017; Zhang et al., 2021), giving a more 
comprehensive understanding of indoor air quality. 

The sampling periods of these researches varied from within 1 day to 
over 2 years with a median of 7 days, indicating relatively short sam-
pling time using real-time sensors. Only a few studies conducted long-
time samplings (over 1 years) (Cai et al., 2021; Huang et al., 2018; Liu 
et al., 2021a). Even though short sampling time is adequate to investi-
gate the impact of human activities on indoor air, such short sampling 
time is unable to capture long-term variations in indoor air pollution. 

3. Targeted air pollutants 

For the purposes of human health protection and comfortable living, 
indoor air pollutants that have adverse health effects are always moni-
tored. The target pollutants measured by real-time sensors can be simply 
classified into gaseous (e.g., CO, sulfur dioxide (SO2), ozone (O3), oxides 
of nitrogen (NOx), and TVOCs) and particulate pollutants (e.g., particles 
with aerodynamic diameters less than 10 µm (PM10) and 2.5 µm (PM2.5) 
and 1 µm (PM1), and black carbon (BC)) (Rickerby and Skouloudis, 
2014; Sa et al., 2022). As plotted in Fig. 3D, CO2 is the most commonly 
detected gas in indoor air monitoring. In addition to monitoring CO2 
concentration, the relationship of CO2 between indoor and outdoor can 
be used as an index of ventilation condition (Laurent et al., 2021). CO 
(33 publications) and TVOCs (34 publications) are also highly con-
cerned gaseous pollutants in indoor air quality assessment. In addition to 
those frequently measured gaseous air pollutants (as shown in Fig. 3D), 
other gaseous pollutants such as ammonia (3 publications) and SO2 (2 
publications) were occasionally reported. 

PM2.5, which is regarded as the most harmful air pollutant to human 

Fig. 3. The state of art of indoor real-time monitoring, SSPM in Fig. 3E refers to size segregated particles.  
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health (World Air Quality Report, 2021), attracts the most attention in 
indoor air monitoring (94 publications, Fig. 3E). PM10, PM1, and BC are 
also frequently monitored particulate pollutants with 51, 26, and 21 
related publications, respectively. In recent years (2017–2022), bio-
aerosol, including bacteria, viruses, molds, and fungi, etc. (Huang et al., 
2017; Marcovecchio and Perrino, 2021), has become more and more 
popular in indoor air monitoring, in light of its adverse health effects (e. 
g., allergies, asthma, and lung cancer) and important contribution to 
indoor air pollution (5 %–34 %) (Kim et al., 2018; Morawska et al., 
2017). 

3.1. Gaseous air pollutant detection 

Principles for gas sensors include: 1) chemical method based on 
measurable changes in properties of sensing element (e.g., conductivity) 
in response to target gases (White et al., 2012); 2) optical method based 
on general Lambert-Beer law; and 3) surface acoustic wave method 
which detects the subtle surface changes in amplitude or velocity of the 
wave induced by analyte gas exposure (Morawska et al., 2018; Kwak 
et al., 2019). Metal oxide semiconductors (MOS) and electrochemical 
gas sensors are frequently used in gas analysis (Barsan et al., 2007). For 
example, hydrocarbons and their derivatives, SO2, H2S, etc. are detect-
able for MOS sensors (Gebicki, 2016). Electrochemical sensors are 
usually used for toxic gas monitoring than other gas sensors partly due to 
their high accuracy and good selectivity (Khan et al., 2019). Ampero-
metric gas sensor, an important branch of electrochemical sensors, is 
recognized as one of the most promising sensors for inorganic gas 
monitoring (Baracu and Gugoasa, 2021; Baron and Saffell, 2017). 
Furthermore, MOS and electrochemical gas sensors, which have mini-
aturized size, low power consumption and cost, are suitable for indoor 
air evaluation (White et al., 2012). Non-dispersive infrared sensor can 
detect gases with infrared activity, such as CH4 and CO2 (Thompson, 
2016). Photo ionization detectors (PID) are commonly used for VOCs 
detection due to its low detection limits (ppb to ppm) (Thompson, 2016; 
Pang et al., 2019). 

With the development of analytical technology, some unregular 
controlled pollutants have been monitored in real-time. For example, 
Wu et al. (2021) measured real-time gas-phase NCI3 in an aquatic center 
based on a novel continuous analytical instrument. By open-path Fourier 
transform infrared spectroscopy, Chen et al. (2016) monitored the real- 
time concentrations of chloroform in an indoor swimming pool. In 
generally, as the development of technology, more and more gaseous 
pollutants in indoor air can be evaluated based on real-time 
measurement. 

3.2. Particulate air pollutant detection 

Particulate pollutants, particularly particulate matters (PMs), are 
always listed as the primary controlled air pollutants in many air pro-
tection actions. Principles for particle sensors include: 1) direct mea-
surement by tapered element oscillating microbalance method (TEOM) 
according to changes of oscillation frequency (Patashnick and Rup-
precht, 1991); 2) indirect detection by optical method which can be 
further divided into two categories. First, light scattering method that 
detects the intensity of scattered light when particle flow across a light 
beam (Seinfeld and Pandis, 1998). This method has been universally 
used in real-time particle monitoring (Molaie and Lino, 2021). Second, 
image processing-based method that analyzes particle number/mass 
distributions from pictures recorded by camera using image processing 
techniques (Molaie and Lino, 2021). 

BC, as an important component of PMs, is also frequently measured 
in indoor air. Real-time BC can be quantified by optical absorption, 
photoacoustic, and laser induced incandescence methods (Yue et al., 
2014). The principle of optical absorption method is to measure the light 
attenuation of transmitted light (880 nm) which is linearly proportional 
to the amount of filter-deposited BC (Delgado-Saborit, 2012). All studies 

monitored indoor BC adopted optical absorption-based monitors, of 
which MicroAeth AE51 was the most commonly used device (16 of 21 
studies). 

Several technologies are available for real-time bioaerosol moni-
toring such as fluorescence spectroscopy, Raman spectroscopy, elastic 
scattering, microscopy, and holography (Huffman et al., 2020). Among 
these techniques, laser/light-induced fluorescence (LIF) is commonly 
used (Huffman et al., 2020), which uses monochromatic light to inves-
tigate the fluorescent properties of individual biological particle after 
distinguishing biological aerosol from non-biological aerosol by the in-
tensity of fluorescent signal (Pohlker et al., 2012). LIF monitors can also 
provide information on the concentration and size distribution of bio-
aerosol (Bhangar et al., 2014; Patra et al., 2021). 

4. Characterizing indoor air pollution using real-time data 

The way of air pollution analysis and management has changed from 
low to high spatiotemporal resolution due to the availability of real-time 
sensors (Kumar et al., 2016). Given such high spatial and temporal 
resolution data obtained from real-time monitoring, more detailed and 
in-depth contents can be analyzed, e.g., spatiotemporal characteristic 
and heterogeneity. Huge data from real-time monitoring also ensures 
sufficient input data for indoor air pollution simulation and prediction. 
The perspectives into indoor air pollution characterization based on 
real-time data are discussed below. 

4.1. Temporal variation 

The time resolution of real-time sensors generally ranges from sec-
onds to minutes. The availability of such consecutive and high time 
resolution data allows the analysis of dynamic variations of indoor air 
pollution. Generally, dynamic variations of indoor air pollution can be 
classified into within-activity, diurnal, seasonal, and annual variations 
according to different time resolutions. Indoor activities can last from a 
few minutes (e.g., smoking and cooking) to several hours (e.g., air 
cleaner working and heating). These short-term activities have signifi-
cantly positive/negative impacts on indoor air quality, which are crucial 
for indoor air evaluation. For example, cooking activities can increase 
PM2.5 concentrations in kitchen from 4.1 μg/m3 to 695.0 μg/m3 within 
ten minutes, while can reduce 66.0 %–83.6 % of PM2.5 emissions with 
using air cleaners (Sharma and Balasubramanian, 2020). Pollutant 
emission/removal rates are not stable in some activities, such as solid 
fuel combustion processes (Wang et al., 2022), resulting in variations in 
concentrations at different combustion stages. Ciuzas et al. (2015) 
compared the increase and decay rates of different indoor PM2.5 sources 
based on real-time data, and found that the increase rate of heat sources 
(cooking, candle, and cigarette burning, etc.) was faster than that of 
personal care product sources (hair spray and furniture polishing ma-
chine, etc.), and the decline rate was determined by the duration of 
emission sources. He et al. (2021) reported distinct variations in CO2 
concentrations in aircraft cabins at different flight phases, with higher 
concentrations and large fluctuation peaks at boarding and landing 
phases than that at cruising phase. 

Indoor air pollution varies acutely in different sampling days, sea-
sons, and years. Long-term monitoring based on real-time sensors can 
better understand the variation patterns of indoor air pollution in time 
series with low cost and labor input. For example, the diurnal patterns of 
fluorescent biological airborne particles (FBAP) in an office building 
showed three evident stages: firstly, FBAP concentrations rapidly 
increased to high levels at 9:00 due to the occupancy of people, then 
maintained stably until 18:00, and finally decreased quickly to baseline 
after 18:00 when people gradually leaved the office (Li et al., 2022b). 
Elbayoumi et al. (2013) reported distinct seasonal variabilities of PM2.5 
and PM10 concentrations in classrooms by longtime monitoring, with 
higher pollution levels in winter than that in other seasons. Further-
more, higher daily variations of PM10 than PM2.5 were observed from 
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the real-time change curves due to shorter residence time of PM10 in the 
air than PM2.5. Li et al. (2021b) compared indoor air quality in rural 
Beijing before and during the COVID-19 quarantine periods and 
confirmed that COVID-19 quarantine increased indoor PM2.5 concen-
trations by 10 μg/m3 due to stronger internal emissions. 

4.2. Spatial variation 

Spatial variation is another important aspect regarding air pollution 
monitoring and management. At the household level, indoor air quality 
evaluation and subsequent implementation of mitigation action require 
to identify emission hotspots. Portable real-time sensors make it possible 
to conduct intensive monitoring, which can clearly illustrate the spatial 
variations within household. Li et al. (2022a) reported that indoor PM2.5 
concentrations of urban households varied significantly in different 
microenvironments, with the highest in kitchen and the lowest in 
bedroom. Patel et al. (2017) quantified spatial variations in indoor PM 
by installing real-time sensors in multiple locations in households, 
founding that kitchen showed higher PM level and smaller variability 
than other rooms due to strong internal emissions, small size, and 
insufficient ventilation. Furthermore, similar high PM trends were 
observed in rooms adjacent to kitchen due to diffusion. Differences in 
household characteristics and indoor activities will result in large inter- 
household variations in indoor air pollution. Therefore, based on real- 
time monitoring, specific mitigation plans can be made for different 
households. 

At the community level, people stay in a variety of indoor environ-
ments (Fig. 3C), where indoor air pollution in such microenvironment is 
substantially varied. Intensive sampling by portable sensors fills the gap 
of indoor air pollution map. By taking portable real-time PM2.5 sensors, 
Hsu et al. (2020) investigated PM2.5 concentrations in 18 kinds of indoor 
environments, and over 3 times of variations were found with the 
highest in the Taoist temple (62.5 μg/m3) and lowest in office (18.1 μg/ 
m3). 

At the regional scale, the deployment of real-time sensors can 
simultaneously investigate indoor air pollution in different areas or re-
gions. For example, Chan et al. (2021) observed broadly similar tem-
poral trends of indoor PM2.5 in rural and urban households with peaks 
occurred in kitchen during cooking period. However, larger inter-home 
variations were observed in rural households than urban households due 
to the use of different residential energies. In the future, real-time sen-
sors will play a more important role in regional indoor air evaluation. 

4.3. Vertical variation 

The recommended indoor air monitoring height is within the respi-
ratory zone (GAQS, 2002), therefore, instruments for indoor air moni-
toring are mostly placed at a fixed height in the breathing zone, e.g., 
1.45 m above the ground and 1.0 m away from the stove (IIAPIH, 2005). 
However, monitoring at certain height overlooks the vertical variations 
of air pollutants and is not suitable for health risk assessment of people 
with different heights (Fig. 4). For better health risk evaluation, mea-
surements based on vertical gradients of indoor air pollutant are 
essentially needed. Unfortunately, only a few studies performed vertical 
measurement of indoor air pollution (Micallef et al., 1998a; Shen et al., 
2020; Wu et al., 2021). Micallef et al. (1998b) firstly developed an auto- 
controlled lift system (kinetic sequential sampling system) with a single 
sensor that could move vertically and steadily at different positions. By 
adopting this system, Micallef et al. (1998a) measured the vertical PM 
concentrations in a non-smoking indoor environment and found the 
highest PM level was at ~1.3 m. Sensor arrays composed of several 
sensors at multiple heights, are commonly adopted in studies associated 
with vertical variations in indoor air pollution. Shen et al. (2020) 
monitored indoor gases (CO2, CO, TVOCs, formaldehyde, and methane) 
by placing sensors at six different heights and found relatively high 
concentrations in the upper height due to hot air rising. Similarly, 

Ainiwaer et al. (2022) reported highly varied vertical profiles of indoor 
PM2.5 with a high peak at 170–210 cm and a low peak at 110 cm height. 

With the development of Lidar technology, Qiu et al. (2019) devel-
oped a portable indoor side-scattering Lidar (I-Lidar). Field test revealed 
that the newly developed I-Lidar had uniformly vertical resolutions, 
which was more effective and flexible than PM2.5 sensor arrays. He et al. 
(2022) further expanded the I-Lidar technology to profile indoor PM2.5 
in three-dimensions by using I-Lidar arrays (3D I-Lidar). By adopting the 
3D I-Lidars, the detailed trajectories of indoor PM2.5 from cigarette 
smoking and incense burning were visualized and quantified in field, 
and stronger turbulence intensity of cigarette smoking was revealed. 
With the 3D I-Lidar, indoor PM2.5 from different emission sources can be 
illustrated three-dimensionally and dynamically, as well as its emission, 
dispersion, and convection. 

4.4. Peaks and source contribution 

The high time resolution data from real-time sensors promotes the 
identification of peak concentrations in pollution events, which helps 
residents better understand indoor air pollution and then protect human 
health. Huang et al. (2022) reported that the daily average PM2.5 con-
centration in rural kitchens using wood as cooking fuel was 60.1 ± 25.7 
µg/m3, while the peak PM2.5 concentrations could be as high as 1,200 
µg/m3 during cooking period. Exposure to such high pollution levels 
may result in acute health effects, although the exposure duration is 
short. For example, exposure to high NO2 (121.2 µg/m3) during cooking 
period (~15 min) could lead to great falls in peak expiratory flow rates 
in women with asthma (Ng et al., 2001). Therefore, peak value may 
serve as a better indicator for short-term health effect evaluation (Del-
fino et al., 2002). 

The identification and quantification of indoor emission sources is 
vital to implement pollution mitigations and clean interventions (Bari 
et al., 2015). The pollutant peaks recorded by real-time sensors contain 
information about durations and concentrations of each emission 
source, which are crucial to quantitatively analyze the contributions of 
different sources (Drewnick et al., 2012; Men et al., 2021). For example, 
Lu et al. (2020) calculated the contributions of three typical indoor ac-
tivities (cooking, smoking, and mosquito coil combustion) to indoor 
PM2.5 concentrations, of 0.55 ± 1.6, 0.34 ± 0.24, and 4.2 ± 4.0 μg/m3 

per activities, respectively, by extracting the pollution peaks. Men et al. 
(2021) developed a new peak extraction method to quantify the con-
tributions of internal sources to indoor PM2.5, showing indoor activities 
contributed ~70 % and 50 % to indoor PM2.5 during heating and non- 
heating season, respectively. Meanwhile, the tangent line method is 
also used to identify PM2.5 peaks in time series, and then the calculated 
peak areas are used to characterize the contributions of indoor activities 
and outdoor infiltrations (Shen et al., 2020; Shen et al., 2021). For 
example, Shen et al. (2020) quantitatively estimated the contributions of 
outdoor and indoor emission sources on various gases (CO2, CO, 

Fig. 4. Schematic diagram of indoor PM2.5 exposures for people with 
different heights. 
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formaldehyde, TVOCs, and methane) in an apartment, confirming that 
outdoor inputs contributed 15 % (formaldehyde) to 64 % (CO2) to in-
door air pollution. 

4.5. Indoor and outdoor relationship 

As mentioned before, both internal emissions and outdoor in-
filtrations can affect indoor air quality. The ratio of pollutant concen-
trations in indoor to outdoor (I/O) is wildly used to illustrate the 
relationships of indoor and outdoor air. I/O ratio calculated from filter- 
based sampling can hardly capture variations in I/O since the sampling 
resolution is low (e.g., 24 h average). Highly time-resolved data pro-
vided by real-time sensors makes it possible to explore dynamic varia-
tions in I/O based on simultaneous measurements in indoor and outdoor 
air, which is crucial to reflect the effects of various activities on the 
indoor/outdoor relationships (Qi et al., 2017). Huang et al. (2022) re-
ported that the I/O ratios changed slightly (around 1.0) without human 
activities, while increased rapidly when indoor cooking and heating 
occurred. Men et al. (2021) found that the dynamic I/O ratios in rural 
households showed clear diurnal variations with higher in daytime than 
nighttime due to extensive human activities in daytime. The real-time I/ 
O can serve as an indicator to improve indoor air quality through 
changing ventilation condition at proper time. For example, when the I/ 
O increases, opening window will be helpful to alleviate indoor air 
pollution. 

The diffusion of air pollutants from emission sources to other mi-
croenvironments needs time, which is defined as lag time (Chaloulakou 
and Mavroidis, 2002; Chaloulakou et al., 2003). Lag time is an important 
input parameter for modeling the impact of ambient air on indoor air, 
especially for those without internal emissions. Lag time is calculated by 
delayed correlation method, which shifts pollutant concentration data at 
various time intervals, calculates correlation coefficients and then 
identifies the time with maximum calculated correlation coefficients as 
lag time (Han et al., 2015), therefore, high time resolution data is 
necessary. Xu et al. (2020) reported a general lag time of 65 min for 
indoor CO diffusion to outdoors. Qi et al. (2017) reported significantly 
seasonal variations in lag time of household PM2.5 in Beijing, in which 
the lag times were 12 ± 12 min and 78 ± 19 min in non-heating and 
heating seasons, respectively. Different lag times were found between 
rural and urban households; for urban households, indoor air pollution 
lagged to ambient, which was opposite to rural households (Qi et al., 
2019), suggesting different patterns of indoor-outdoor relationships in 
rural and urban homes. 

4.6. Indoor air pollution forecasting 

As an important part of indoor air evaluation, the prediction of in-
door air quality plays an important role for further countermeasure 
implement, especially when direct monitoring is not feasible (Yang and 
Wang, 2017). Indoor air models can be generally divided into physics- 
based mechanistic models and data-driven statistical models, of which 
statistic models are more popular due to their simplicity and easy-to- 
collect input variables (Li et al., 2021e; Tong et al., 2020; Wei et al., 
2019). Generally, statistic models are used to simulate long-term aver-
aged pollutant concentrations (e.g., 24-h average) (Milner et al., 2011), 
and the input data need to be used for training, validating, and testing 
models, resulting in a demand for large data set (Wei et al., 2019). Data 
from sensors are not only highly spatially- and temporally-resolved, but 
also own large data amount, which give a new chance to develop more 
sophisticated statistic models. Based on high spatiotemporal resolution 
PM2.5 data from sensors, Shen et al. (2021) proposed a multivariate 
regression model to predict spatiotemporal variations of indoor PM2.5, 
which considered source strengths, source-receptor pathway distances, 
and lag time. This simple model was possible to be applied to other 
internal sources, however, the large variations in household character-
istics limited the large-scale expansion of this model. To quantify indoor 

PM2.5 in the regional scale, Lu et al. (2020) developed a conceptual 
model by considering external infiltration and indoor contributions 
using simultaneous measured indoor and outdoor data, and then applied 
this model to predict indoor PM2.5 levels in urban Beijing. 

As a leading statistic method, machine learning plays an important 
role in indoor air quality forecasting. Since air pollutant concentrations 
are usually correlated with other parameters (Park et al., 2018), various 
parameters (e.g., temperature, RH) measured by real-time sensors 
further guarantee the development of predictive models using machine 
learning, of which artificial neural network (ANN) is the most popular 
method (Park et al., 2018; Wei et al., 2019). Khazaei et al. (2019) pre-
dicted indoor CO2 levels by combing ANN with indoor temperature and 
RH, resulting in high accuracy of prediction with errors less than 17 ppm 
compared with actual concentrations. Liu et al., (2018) performed in-
door airborne culturable fungi prediction by ANN models using indoor 
CO and PM concentrations, temperature, and RH as input, and the 
highest accuracy was 83 %. Furthermore, time-dependent data from 
sensors can be combined with time series models in machine learning, 
such as recurrent neural networks (RNN), to predict future sequences of 
pollutants more accurately through historical profiles (Wei et al., 2019). 
Ahn et al. (2017) reported indoor RNN-predicted CO2 and PM2.5 con-
centrations, founding that higher accuracy of RNN structures (70.13 % 
for long short-term memory (LSTM) and 84.89 % for gated recurrent 
unit (GRU), respectively) than that of single linear regression method 
(accuracy of 60.96 %). Similar results were also frequently reported in 
other studies (Kim et al., 2020; Lagesse et al., 2020; Loy-Benitez et al., 
2019), indicating the great potential in indoor air pollution modeling in 
combination with sensor data and RNN methods. 

4.7. Health effect assessments 

Epidemiology studies have reported adverse health effects associated 
with air pollutant exposure, such as cardiovascular morbidity and 
mortality (Newby et al., 2015). Most of these studies are based on 
pollutant concentrations in ambient air (Chiarelli et al., 2011; Lelieveld 
et al., 2015; Shen et al., 2019). Only a few studies take indoor air 
pollution into consideration (Shan et al., 2014; Young et al., 2019), 
while most of the exposure occur indoors (Beko et al., 2015). Amongst 
the existing researches, daily (or longer duration) average values are 
usually adopted to assess long-term health effect (Genisoglu et al., 
2019). However, short-term impacts as well as dynamic changes of 
health risk are rarely elucidated. Real-time data facilitates the evalua-
tion of short-term health effects in response to pollutant exposures. Kim 
et al. (2020) investigated the correlations between indoor particles and 
phthalate metabolites based on real-time data, founding that PM10 
showed higher effects on phthalate metabolites at 12 h cumulative in-
tervals than those at 3 h and 6 h. 

It is generally accepted that personal exposure concentration, which 
differs substantially from ambient and indoor pollutant concentrations 
(Barkjohn et al., 2021; Chan et al., 2021), is more suitable for health risk 
assessment. Estimation of daily air pollutant exposure can be achieved 
by time-weighted method which needs two key factors: time activity 
patterns and pollution levels in each microenvironment (Du et al., 2017; 
Kim et al., 2021). Differently, time series data can be combined with 
detailed time activity data to output more accurate results. For example, 
Fathallah et al. (2016) developed an Internet of Things (IoT)-based 
scheme to assess real-time personal formaldehyde and CO2 exposures by 
combining real-time pollutant concentrations in various microenviron-
ments and location information of people. Similarly, Li et al. (2022a) 
quantified real-time PM2.5 exposure by integrating real-time PM2.5 
concentrations in various microenvironments when residents were 
attended. Moreover, wearable devices based on sensor technology can 
capture more detailed spatiotemporal variations in personal exposures 
to air pollutants at the individual level and provide more accurate air 
pollutant exposure concentrations than static monitoring sensors 
(Leaffer et al., 2019; Serrano and Licina, 2022), which makes wearable 
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devices more suitable for personal exposure measurement (Shan et al., 
2020). 

The response of health indicators to air pollutant exposures may 
occur immediately or delay (Millers et al., 2016; Park et al., 2005). For 
example, the strongest impact of PM2.5 exposure on heart rate increase 
was lagged at 3 h, while 0–3 h for fibrinogen increase (Li et al., 2021d). 
Liu et al. (2021b) reported that most metabolites responded to ozone 
exposure immediately; however, hysteresis effects were found for some 
metabolites (2 h to 2 days). The above-mentioned lag effects again 
highlight the need to measure indoor air pollution in real-time to better 
evaluate the impact of indoor air pollution on human health. 

5. Challenges in real-time sensor application 

In recent years, real-time sensors have been commonly used in in-
door air monitoring and have shifted the indoor air pollution evaluation 
from static analysis into high spatiotemporal analysis. Meanwhile, real- 
time sensors promote the evaluation of indoor air quality at the indi-
vidual household and community scale. Therefore, the application of 
real-time sensors has made remarkable achievements and shown 
promising outlook. However, wider adoption of real-time sensors in 
indoor air monitoring is limited by some challenges, such as data quality 
reliability and sensor performance, which is expected to be solved in the 
near future. 

5.1. Sensor selection 

Various types of sensors are now available; however, how to choose 
the most suitable sensor is the first challenge of sensor application. The 
selection of sensors depends on the purpose of study (Gillooly et al., 
2019). Several studies have stated that real-time sensors are sufficiently 
accurate when the monitoring data is used for comparing with regula-
tory standards and/or qualitative analysis (Perez et al., 2018; Sa et al., 
2022; Saini et al., 2021), while higher precision is needed for personal 
exposure evaluation and regulation purpose (Gillooly et al., 2019; Wil-
liams et al., 2014). Three major factors should be considered when 
selecting real-time sensors. First, the detectable range and limit of 
detection (LID) are varied for different sensors, and unreasonable use of 
sensors will introduce measurement errors. Sensors with large detect-
able ranges and high LID are more suitable for highly polluted area than 
those with low detectable ranges and low LID. For example, Afshar- 
Mohajer et al. (2018) found large variations in sensor performances 
under different pollutant concentrations, in which the tested low-cost 
electrochemical gas sensors showed poor performance at high CO 
(>12 ppm) and O3 (>100 ppb), and at low NO2 concentrations (<0.2 
ppm). Zikova et al. (2017) reported LID of 10 µg/m3 for Grimm portable 
laser aerosol spectrometer which limited its application in clean envi-
ronments. Second, the response of PM sensor can be influenced by 
aerosol type (Sousan et al., 2016). Sousan et al. (2017) evaluated the 
response performance of PM sensors to several aerosols (salt, welding 
fume, and road dust), founding Footbot sensors had the highest per-
formance than other two sensor types (Speck and AirBeam sensors), 
especially for dust aerosol monitoring. Similarly, Liu et al. (2020) re-
ported variable sensitivity of Plantower PM2.5 sensor to different aero-
sols, with higher sensitivity to organic particles than to inorganic 
particles (marine aerosols) and ultrafine particles (fresh traffic emis-
sions). Therefore, the improper use of real-time sensors can lead to great 
measurement biases. However, not all sensor parameters (e.g., preci-
sion, LID, and source dependences) are well tested, which results in 
knowledge gaps in sensor selection (Zikova et al., 2017). Third, budget is 
also need to be considered. The cost of real-time sensors ranges from low 
(<$100 per sensor) to high (>$1000 per sensor) (White et al., 2012); 
furthermore, the maintenance cost of sensor may exceed the sensor itself 
(Gillooly et al., 2019), which will further limit the selection of sensors. 

5.2. Sensor performance 

Some real-time sensors have several weaknesses associated with 
their performances. For optical particle sensors, PM mass concentration 
is not directly monitored, but is inferred from determined number 
concentrations and particle sizes with the assumption that particles are 
uniformly distributed and spherical (Paprotny et al., 2013). Conse-
quently, this will lead to inevitable deviations from the actual particle 
concentrations. The accuracy of light scattering-based optical particle 
sensors is also limited to “coincidence error”, which is due to the over-
estimated size of particles when over one particle occurs in the obser-
vation volume (Lekhtmakher and Shapiro, 2004), and consequently 
underestimating the real particle number concentration and limiting the 
upper number concentration (Kuo et al., 2010; Sachweh et al., 1998). In 
addition, light scattering-based optical particle sensors are unable to 
detect ultrafine particle with particle size less than 0.3 μm due to they 
cannot scatter enough light (Väisänen et al., 2022), which further un-
derestimates particle mass concentrations. 

As for gas sensors, an important factor affecting their performances is 
their response to multiple variables. In other words, the cross- 
interference with other air pollutants is a crucial issue for chemical 
sensors, e.g., MOS sensors and electrochemical sensors (Chojer et al., 
2020; Mijling and Jiang, 2017). The most significant cross interference 
was reported between O3 to NO2, possibly as high as 100 % (Mead et al., 
2013). Meanwhile, it was reported that the downward bias was nearly 
20 % in electrochemical sensors for NO2 monitoring even after cor-
recting the O3 interference (Mead et al., 2013). The large cross inter-
ference of NO2 to VOCs was found for MOS sensor due to the strong 
reaction between VOC and NO3

− which was formed by the absorption of 
NO2 of sensitive materials (Zhang et al., 2020). Furthermore, the cross 
interferences of CO and CO2 to TVOCs were also reported (Baldelli, 
2021), in which the increased interfering gas concentrations led to 
higher impact on TVOC sensors. The complex surface reaction inevitably 
results in defects of these sensors, and consequently leading to mea-
surement errors (Zhang et al., 2020). 

The reliability of data from real-time sensor is crucial for further 
analysis and is always a matter of concern (Jovasevic-Stojanovic et al., 
2015). The inherent variability and discreteness among sensors during 
manufacturing process always leads to weak reproducibility of sensors, 
which means different responses may occur when using the same type of 
sensors to detect the same air pollutants (Carotta et al., 2001; Zhang 
et al., 2014). Crilley et al. (2018) assessed the accuracy of 14 optical 
particle counters of the same type and found that the average variance 
coefficients of PM1, PM2.5, and PM10 were 0.32, 0.25, and 0.22, 
respectively, indicating large internal differences between these sensors. 
Castell et al. (2017) compared the sensor performances in the field tests 
and also found that large intra-variations within the same series of 
sensors – the average inter-sensor correlations ranged from 0.49 for NO2 
sensors to 0.86 for NO sensors. Abdul-Wahab et al. (2015) and Afshar- 
Mohajer et al. (2018) reported the coefficient of variations ranged 
from 4.6 % to 18.2 %, 4.4 % to 24.6 %, and 0.4 % to 37.8 % for NO2, O3, 
and CO sensors, respectively. Weak reproducibility reduces sensor ac-
curacy and comparability, which is crucial for sensor array-based studies 
(e.g., vertical variation studies). Furthermore, the sensors adopted in 
different studies are different, and the inconsistence within different 
sensors also challenges the comparability of results. A comparison of 
different particle sensors conducted by Manibusan and Mainelis (2020) 
found the inconsistent results from different PM sensors in the same 
place; this was due to the sensor response relied not only on particle 
composition, but also the specific algorithms for determining the values 
(Manikonda et al., 2016). 

5.3. Sensor stability 

Sensor stability is another important issue to maintain data reli-
ability. First, real-time sensors generally lack long-term stability, which 
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means the accuracy of sensor data will deteriorate over time. For 
example, Peterson et al. (2017) reported that the accuracies of NO2 
sensors decreased significantly after 4 months usage without calibration 
(the fractional error could rise up to ten). Another study by Gillooly et al. 
(2019) observed that the sensitivities of electrochemical gas sensors 
decreased approximately 21 %–29 % after monitoring over 18 months. 
The long-term instability of mobile sensor is majorly attributed to 
baseline drift (Tsujita et al., 2005), which is common in mobile sensors 
due to the tradeoff between drift resistance and low cost and portability 
(Xiang et al., 2013). The causes of sensor drift include heat output 
changes, degradation, and poisoning of sensors (Mijling and Jiang, 
2017; Piedrahita et al., 2014; Romain and Nicolas, 2010). To compen-
sate for drift errors, frequent recalibration is generally adopted. How-
ever, this method is time-consuming and burdensome. Some automatic 
calibration methods are proposed. For example, Xiang et al. (2012) 
developed collaborative calibration technique to adjust drift error based 
on sensor interactions, and successfully reduced the sensor errors to 2.2 
%. 

Second, sensor performances, such as sensitivity and baseline offset, 
can be interfered by meteorological conditions; furthermore, different 
sensors respond differently to meteorological conditions (Castell et al., 
2017; Mead et al., 2013; Tsujita et al., 2005). For example, MOS and 
electrochemical gas sensors are more susceptible to the changes of RH, 
temperature, and pressure than non-dispersive infrared absorption 
sensors (White et al., 2012). Castell et al. (2017) reported the unique 
responses of individual sensors (with NO, CO, NO2, O3, PM10 and PM2.5 
as target pollutants) to the change in temperature and RH. Even though 
the correction factors for temperature and RH are available from generic 
data supplied by sensor manufacturers, these correlation factors are 
insufficient in field conditions where large differences of temperature 
and RH encountered (Castell et al., 2017). In addition, RH is an 
important influencing factor for the accuracy of optical particle coun-
ters, because particle refractive index and size are both associated with 
RH (Crilley et al., 2018; Hu et al., 2010). Crilley et al. (2018) reported 
significant decreases of accuracy of optical PM2.5 sensors when RH > 90 
% with the highest bias over 600 µg/m3 compared with standard in-
struments. This calls for more sophisticated calibration methods, such as 
machine learning (Spinelle et al., 2015). 

5.4. Sensor calibration 

As mentioned before, data quality and accuracy for real-time sensors 
vary largely. Therefore, sensor calibration is needed to reduce the inter- 
sensor variability, and ensure data accuracy and sensor consistency 
(Jovasevic-Stojanovic et al., 2015). The biggest challenge in sensor 
calibration is standard guidance for real-time sensors is less available 
(Castell et al., 2017; Chojer et al., 2020). The available calibration 
methods usually include calibration with professional instruments or 
mutual calibration, as well as calibration under specific pollutant con-
centrations (Crilley et al., 2018; Kang et al., 2022; Kumar et al., 2017). 
Furthermore, most sensors are used directly without any calibration 
(Chojer et al., 2020). Saini et al. (2020) reported that only 22.5 % of 
studies performed sensor calibration before implementation. 

Sensor calibration can be conducted both in the laboratory and in the 
field. Laboratory condition is important to test response time, LID, and 
inter-sensor variations (Piedrahita et al., 2014). Some researches pre- 
calibrated sensors with professional instruments in laboratory before 
field campaigns and good agreements were often reported (Liu et al, 
2020). However, it is difficult to capture the confounding factors that 
can profoundly influence the accuracy of sensors (e.g., meteorological 
conditions, emission sources, and cross-sensitivity) under the well- 
controlled and stable laboratory condition (Morawska et al., 2018; 
Sauerwald et al., 2018). Some researchers compared laboratory and 
field calibration of sensors, and worse performance in field were re-
ported. For example, Castell et al. (2017) reported good calibration 
result in laboratory condition with an average correlation coefficient of 

0.99, which was significantly higher than that in field condition 
(average correlation coefficient: 0.60). Manibusan and Mainelis (2020) 
found the accuracy of PM sensor was site-depended, possibly due to the 
differences in PM composition, and suggested site-specific calibration to 
improve measurement accuracy. Furthermore, inter-sensor variations 
should be considered when calibration was conducted. Therefore, de-
vices are more suitable to calibrate individually rather than using 
average calibration values for all devices in the same surrounding (Fritz 
et al., 2022). 

The calibration methods are various, including but not limited to 
linear model, multi-linear regression model, exponential, logarithmic, 
and machine learning (Karagulian et al., 2019). How to choose the most 
suitable methods for each sensor is a challenge when taking large inter- 
variation of sensors into consideration. For example, some studies re-
ported that PM sensors showed linear responses to the referenced 
methods (Baldelli, 2021; Sousan et al., 2017), while nonlinear responses 
were found in other studies (Jiang et al., 2021; Lee et al., 2020). Spinelle 
et al. (2015) compared the performances of various methods for sensor 
calibration, founding that good performance of simple regression for O3 
calibration, while ANN method was the most efficient method for NO2 
calibration. 

5.5. Working time and life span of real-time sensors 

Some real-time devices are powered by built-in batteries; therefore, 
the working time of these sensors is limited by the battery capacity. For 
example, the running time of MicroAeth AE51 is 22–24 h, which is only 
7 h for Aeroqual handheld NO2 monitor (Series 505) (Delgado-Saborit, 
2012). Such short working time limits these sensors for long-term 
monitoring. Frequent replacement of battery is inefficient and burden-
some, which will reduce the willingness of residents to use these sensors 
(Kuncoro et al., 2022; Xiang et al., 2012). 

Relatively short life expectancy is a major issue for electrochemical 
sensors (only 1–2 years) (Jelicic et al., 2013). For example, the suggested 
lifetime (defined as the total working time when the sensor accuracy 
decreases by 50 %) of Alphasense oxidative gas sensors by manufacturer 
is 2 years. However, the field test conducted by Li et al. (2021c) showed 
that the performances of Alphasense NO2 sensors degraded significantly 
after nearly 200–400 days of use, and become non-functional after 
~400 days of deployment, far shorter than the suggested lifetime of 2 
years. 

6. Further development of real-time sensors 

The ideal sensors are expected to be user friendly and have good 
performances. Therefore, further developed sensors require to have 
advantages such as high accuracy, long lifetime, strong resistance to 
environmental changes and drift, as well as silence, low power con-
sumption, small size, and low cost (Holstius et al., 2014; Mead et al., 
2013). As for the comparability of different sensors, standardized pro-
tocols should be developed, such as referenced instruments and 
methods, for various sensors which have the same target pollutants to 
evaluate their performances and ensure the comparability between 
sensors. 

The indoor air monitoring system, which integrates monitoring with 
communication technologies for data analysis, transmission, and visu-
alization, shows great potential in indoor environment enhancement, 
and is an essential part in smart city (Marques et al., 2020; Zhao et al., 
2019). This system can provide users real-time updates of indoor air 
quality via communication technologies (Bluetooth, ZigBee, and Wi-Fi, 
etc.) and help users make decisions to alleviate indoor air pollution 
(Saini et al., 2020). Such system can be further used to work together 
with ventilation systems. For example, Chiesa et al. (2019) developed a 
multi-sensor system based on IoT to address indoor air pollution by 
integrating monitoring with ventilation system, which could adjust fan 
speed to control ventilation system based on sensor data and specific 
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algorithms. However, some limitations are still existed, such as pro-
cessing capabilities, energy consumption, and application scenarios. It is 
hoped that these limitations can be addressed in the future. 

Technology to improve sensor performance is always demanded. On 
the one hand, sensor performance can be improved by developing highly 
responded and sensitive sensor materials, such as two-dimensional 
materials (Liu et al., 2017). On the other hand, in addition to moni-
toring multiple pollutants at the same time, electronic nose is one of the 
most efficient way to eliminate the influences of interfering gas and 
improve data accuracy (Speller et al., 2015). In addition, as the alter-
native and complementary method to electronic nose, virtual sensor 
array which can produce multiple analyte-specific signals by a single 
physical sensor is a very promising method in addressing cross- 
sensitivity issues (Li et al., 2021a; Zhao et al., 2018). 

For particle monitoring, it is generally accepted that the hazardous 
effect of particles is up to not only mass concentrations, but also 
morphological features and bounded toxic components (such as poly-
cyclic aromatic hydrocarbons and heavy metals) (Fubini and Fenoglio, 
2007; Gozzi et al., 2016). The component analysis is always the main 
advantage of conventional filter-based sampling. Unfortunately, so far, 
most PM compositions cannot be determined by real-time sensors, 
which should be the focus of further development of PM sensors. 

In addition to the development of sensor technology, the improve-
ment of public awareness is necessary. The evaluation and visualization 
of indoor air pollution is an important part for improving indoor air 
quality, as well as the implementation of mitigation measures. However, 
the health impacts of air pollutants and ways to alleviate indoor air 
pollution are well known for researchers but not for the public. How to 
popularize these knowledges to public is important and remained to be 
solved in the future. 

7. Conclusion 

Indoor air quality improvement plays a crucial role in human health 
protection. The comprehensive analysis of indoor air pollution needs 
real-time monitoring. Herein, the state of art of real-time sensors used in 
indoor air monitoring is reviewed. The application of real-time sensors 
in indoor air quality evaluation has experienced three stages, and has 
shown a rapidly increasing trend in recent five years. Studies associated 
with the use of real-time sensors indoors are mainly conducted in China, 
and in residential homes. PM2.5 is the most commonly investigated 
pollutant in indoor real-time monitoring. Real-time sensors can provide 
3-dimensional pollutant data with high spatiotemporal resolution, 
which is hardly reflected by conventional static monitoring. Also, real- 
time sensors have prominent advantages in pollution peak analysis, 
source identification, and short-term human health evaluations. Data 
from real-time sensors is large and has temporal information which 
promotes indoor air quality modeling. 

The available real-time sensors vary in performance, and how to 
choose the most suitable sensor is considerable. In addition, lack of long- 
term stability, weak reproducibility, and the need of frequent calibration 
of real-time sensors limit their wild application in indoor air monitoring. 
Future sensors are expected to have good performances, long-term sta-
bility, drift resistance, and can detect more air pollutants at low price, as 
well as interact with end users. 
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