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Abstract Significant iron (Fe) loss can occur during continental weathering and efflux to the ocean via
runoff, historically affecting global Fe cycling and marine ecosystems. Here, we report extremely low Fe
content in early Carboniferous (ca. 340 Ma) bauxites in southwestern China. These bauxites were formed by
redeposition of terrestrial soils along the paleo-continental margin of the western South China Plate in warm
climates. The bauxites contain high 8°Fe (—=0.17%o to +1.15%o0) values with a negative correlation between
Fe,0, and 8Fe, indicating that a substantial amount of Fe(IIT) was reduced to isotopically light dissolved
Fe(Il) and effuxed to the ocean via reductive dissolution under anoxic conditions. The low Corg content and
low Fe,/Fer, Mo/Al, U/Al, and V/Al ratios of bauxite suggest that this reduction process occurred during the
pedogenic (continental weathering) rather than the depositional/diagenetic stage of karst bauxite formation.
Most of the dissolved Fe(Il) were rapidly re-oxidized to Fe(IlI) and transported toward the paleo-continental
margin forming iron ores with 8°Fe values around zero (—0.13%o to +0.16%0). The negative correlation
between Al,O, and Fe,O, contents in global karst bauxites suggests common Fe loss processes during
continental weathering in geological periods favoring karst bauxite formation, such as during the Carboniferous,
Permian, and Cretaceous periods and the Cenozoic era. Karst bauxite may thus provide a record of Fe loss
during continental weathering and act as an indicator of enhanced Fe flux to oceans.

Plain Language Summary Bauxite deposits are weathered residues enriched in aluminum (Al).
They are of economic importance and record critical information concerning extensive weathering in geological
history. Karst bauxite has extremely low iron (Fe) contents, and the mechanism of Fe loss is poorly understood.
We observed high 83Fe values in the early Carboniferous period (ca. 340 Ma) karst bauxite in southwestern
China, suggesting the bauxite formation under water-saturated anoxic conditions with extensive loss of
isotopically light Fe(Il). Our results indicate strong decoupling of Fe and Al during the formation of karst
bauxite, which may thus act as an indicator of Fe loss during continental weathering.

1. Introduction

As a bioelement, iron (Fe) is involved in numerous physiological processes such as photosynthesis, respiratory
functioning, and nitrogen fixation of plankton. As such, Fe plays an important role in marine ecosystems (Boyd
& Ellwood, 2010). River input, continental marginal sediment Fe-release, submarine hydrothermal emission,
and atmospheric dust deposition are the four principal sources of Fe to the ocean (Beard et al., 2003; Chen
et al., 2020; Dale et al., 2015; Jickells et al., 2005; Raiswell and Canfield, 2012; Saito et al., 2013; Scholz,
Schmidt, et al., 2019).

Continental weathering is a ubiquitous process occurring in the present and the past, forming soils, sediments,
and sedimentary rocks. It shapes the continental crust and modifies its chemical composition by producing detri-
tal materials and releasing ions into the hydrosphere over geological timescales (X. M. Liu et al., 2013; Sauzéat
et al., 2015). The rate and type of continental weathering are an important part of the geochemical budget of all
elements, including Fe (Pistiner & Henderson, 2003). During continental weathering, a large amount of Fe is
released from the dissolution of primary minerals and transported to the ocean via rivers, which may play a key
role in controlling the global Fe cycle and marine ecosystems (Sigman & Boyle, 2000; Wiederhold et al., 2007b).
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Figure 1. (a) World bauxite deposits, from Bogatyrev et al. (2009). (b) Mississippian paleogeography, courtesy of R. Blakey (http://jan.ucc.nau.edu/~rcb7/); bauxite
deposits from Bogatyrev et al. (2009). (c) Paleogeographic map of the Youjiang Basin during the Early Carboniferous (Y. S. Ma et al., 2009).

Pioneering studies have documented that notable net Fe loss can occur during continental weathering and soil
formation in (sub)tropical climate regions due to intensification of weathering with elevated temperature and rainfall
(Akerman et al., 2014; S. Liu et al., 2014; Thompson et al., 2007; Wiederhold et al., 2006; Yesavage et al., 2012).
These Fe were then delivered to the ocean through river systems and thus have a major impact on the global Fe
cycle (Boyd & Ellwood, 2010; Tagliabue et al., 2014). The formation of Fe-poor soil associated with Fe loss is of
great interest and has been used to study Fe migration and transformation at the Earth's surface (e.g., Thompson
et al., 2007; Yamaguchi et al., 2007). However, it has also been argued that during extreme weathering under oxida-
tive conditions, Fe is transformed into immobile ferric Fe and can be re-precipitated as Fe (hydr)-oxides (e.g., S. Liu
etal.,2014;J. L. Ma et al., 2007; Poitrasson et al., 2008). It is an internal redistribution (closed-system) of Fe within
the soil sections, resulting in limited Fe loss (M. Li et al., 2017; Qi et al., 2022). Therefore, the link between the Fe
budget and continental weathering under (sub)tropical climates is not well established and requires further study.

Previous studies show that Fe loss is associated with the formation of bauxite deposits (e.g., Ling et al., 2017;
Mameli et al., 2007). Bauxite is a (paleo-) chemical residue of intense subaerial weathering with AL,O, contents
of >35% and Al,0,/SiO, mass ratios of >2.6 (Bogatyrev et al., 2009). The link between bauxite deposits and
tropical weathering regimes was established by Retallack (2010). Based on the lithology of the depositional
basement, bauxite deposits are generally divided into three types (Bardossy, 1982): (a) karst bauxite developed on
the karstified surfaces of carbonate rocks; (b) lateritic bauxite developed on aluminosilicate rocks; and (c) Tikh-
vin bauxite representing transported and redeposited material overlying the eroded surface of aluminosilicate
rocks. Karst bauxites are widely developed in Phanerozoic strata around the world, especially in the Carbonifer-
ous, Permian, Cretaceous periods, and Cenozoic era. The total karst bauxite resources exceed 10 billion tonnes
(Figure 1, Bardossy, 1982; Bogatyrev et al., 2009; Retallack, 2010). Bauxite deposits in China are dominated
by the karst type and mainly of Carboniferous and Permian age found in the Guizhou, Guangxi, Shanxi, Henan
Provinces, etc. (Deng et al., 2010; Q. Wang et al., 2020; S. Yang et al., 2022; Yu et al., 2019). Karst bauxites
from China (especially central Guizhou bauxite) generally have much lower Fe,O, contents (<2 wt. %, Ling
et al., 2017) than other sediments/sedimentary rocks such as shale (North American Shale Composite (NASC)
average 5.65 wt. %, Gromet et al., 1984). Central Guizhou karst bauxites were formed by the deposition of
Al-rich soils in the early Carboniferous period on carbonate unconformities (basins) along the paleo-continental
margin of the western South China Plate (Figures 1a—1c, Yu et al., 2019). They may have recorded ancient release
of Fe during its formation and thus serve as an interesting target for studying earth-surface Fe cycling during
extreme continental weathering in the geological past.

Fe has two valence states (Fe(I) and Fe(III)) and can produce large isotopic fractionation during redox reactions
(Bergquist & Boyle, 2006). Fe(I) is generally more mobile and isotopically lighter than Fe(III) (John et al., 2012;
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Figure 2. Field photos illustrating the contact relationship between iron bed (iron ore and iron-rich clay) and overlying
bauxite bed (bauxite ore) in the central Guizhou area, SW China.

Teng et al., 2008). In surficial environments, this difference in mobility results in the release of light Fe isotopes
into solution and the preferential sequestration of heavy Fe isotopes in the solid residue (e.g., Ilina et al., 2013;
Johnson et al., 2008). Therefore, iron isotopes can provide deep insights into the mechanism of Fe mobilization
(Rouxel et al., 2005).

As Fe-poor bauxite is a chemical residue of extreme weathering, studying the mechanism of Fe loss during karst
bauxite formation could improve our understanding of the Earth-surface Fe cycling in tropical climate regions.
To achieve this, we studied the isotopic composition of Fe in the early Carboniferous bauxites (ca. 340 Ma) from
central Guizhou, southwestern China.

2. Geological Setting

The lower Carboniferous bauxite belt in central Guizhou, southwestern China, located in the western part of
the South China Plate, contains more than 40 bauxite deposits with total resources exceeding 500 million tons
(Figure 1a; Yu et al., 2019). During the Early Paleozoic, South China and North China plates separated from
Gondwana and drifted northward (Metcalfe, 2006). During the early Carboniferous period, the South China Plate
drifted close to the equator (Figure 1b) and experienced climatic warming, which was conducive to the formation
of tropical soil via crustal weathering (Yu et al., 2019). During this period, Al-rich soils were transported mainly
as suspended particulate matter (SPM) by rivers to the continental margin (Youjiang Basin; east Paleo-Tethys)
and deposited in the Qingzhen-Xiuwen (Guiyang) and Zunyi coastal basins, forming the lower Carboniferous
Jiujialu Formation bauxites in the central Guizhou area (Figure 1c, Yu et al., 2019).

The Jiujialu Formation, which shows parallel unconformities with the overlying lower Carboniferous limestone/
clay rock and the underlying Cambrian or Ordovician dolomite strata, usually comprises a 1-20 m thick bauxite
bed (bauxite ore/clay rock) and an underlying 0—6 m thick iron bed (iron ore/iron-rich clay) (Figure 2). This typi-
cal “iron-bauxite” structure is widespread worldwide, such as the Ghiona bauxite deposit in Greece (Kalaitzidis
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Figure 3. Stratigraphic columns of bauxite-bearing rock series in Lindai area, central Guizhou, SW China, illustrate the contact relationships between the depositional
basement (paleo-karst), iron bed, and bauxite bed. Iron ore occurs only in karst depressions.

etal., 2010), the Nurra bauxite deposit in Italy (Mameli et al., 2007), the Kanisheeteh, Kanirash, Shahindezh, Qopi,
Darzi-Vali; Soleiman-Kandi, Kani-Zarrineh bauxite deposits in Iran (Abedini, Habibi Mehr, et al., 2019; Abedini
et al., 2019a, 2019b; Abedini et al., 2022a, 2022b; Calagari & Abedini, 2007; Khosravi et al., 2017, 2021), and
most bauxite deposits in China (e.g., Ling et al., 2017; X. Liu et al., 2017; Yu et al., 2019; Z. Zhang et al., 2013).
In central Guizhou, the thickness of the Jiujialu Formation is controlled by the paleo-karst unconformities, that
is, the thickness above the karst depression is greater than that above the highland (Figure 3). The underlying
strata (depositional basement of the Jiujialu Formation) include, from SW to NE, the Cambrian Series 2 Qingx-
udong Formation dolomite, Miaolingian Gaotai and Shilengshui formations dolomite, Miaolingian-Furongian
Loushanguan Group dolomite, and Lower Ordovician Tongzi to Meitan formations dolomite and argillaceous
rocks (Figure 4). The bauxites and clay rocks are usually off-white or ash-black in color and have clastic or
compact textures (Figures Sa—5c), whereas the iron ores and iron-rich clays are brownish red or black and have
compact textures (Figures 5d and 5Se).

Figure 4. Photos of the bauxites from central Guizhou Province, Southwest China. (a—c) are bauxites and (d—e) are iron ores
(hematite). (d) Is hematite-rich clay.
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Figure 5. (a—b) Images of the bauxites, (c) clay rock, and (d—f) iron ores from central Guizhou Province, Southwest China. BSE: backscattered electron image. SE:

secondary electronic images.

3. Sampling and Analytical Methods

A total of 68 samples from the lower Carboniferous Jiujialu Formation were collected in central Guizhou, south-
western China. Fresh rock samples from the Jiujialu Formation, including bauxites, bauxitic clays, clay rocks,
iron ores, and iron-rich clays (Figure 4), were collected from outcrops and open pits at three bauxite deposits in
the Guiyang area (Xiaoshanba, Lindai, and Yunwushan), and three bauxite deposits in the Zunyi area (Xinzhan,
Houchao, and Xianrenyan) (Figure S1 in Supporting Information S1).

Polished thin sections were prepared for scanning electron microscope-energy dispersive spectrometer
(SEM-EDS) analyses using a Thermo Scientific Scios DualBeam SEM-EDS at the Institute of Geochemistry,
Chinese Academy of Sciences (IGCAS). Powdered samples were prepared for analyses of Al,O,, SiO,, and Fe,O,
content (n = 47) at the IGCAS. The samples were washed, air-dried, powdered to 200 mesh, and homogenized
prior to chemical analysis. Major element contents of whole-rock samples were determined by X-ray fluorescence
(PANalytical, AXIOS-PW4400) at the IGCAS. The analytical precision is better than 5%. The trace element Mo,
U, and V abundances were analyzed through whole-rock solution-ICP-MS techniques (PlasmaQuant MS Elite)
at the IGCAS. The ICP-MS measurements were quality controlled using international standard samples OU-6,
AMH-1, and GBPG-1, and the relative standard deviation was better than 10%. The organic carbon (Corg) analy-
ses (n = 29) were conducted with an Elementar Vario Microcube analyzer at IGCAS, with analytical errors of less
than +2.5%. Prior to the analyses, the sample powders were leached with 2.5 N HCI to remove inorganic C. The Fe
species extraction (n = 29) were performed at the China University of Geoscience. The Fe-pyrite fraction (Fey, )
was calculated from Ag,S produced by the chromous chloride distillation (Canfield et al., 1986). Fe-carbonate
(Fe,,,; siderite and ankerite), Fe-oxide (Fe_,; e.g., ferrihydrite, goethite and hematite), and Fe-magnetite (Femag)
species were extracted following the method established by Poulton and Canfield (2005). Fe contents were meas-
ured using atomic absorption spectrometry.

Iron isotopes (n = 37) were measured at the Laboratory of Isotope Geology, Institute of Geology, Chinese Acad-
emy of Geological Sciences. The detailed procedures for sample dissolution, chemical separation, and Fe isotope
analysis were described by Sun et al. (2013). In brief, powdered samples were digested with HCI-HF-HNO;,
and Fe was chromatographically separated using an AG MP-1 M anion exchange resin loaded into low-density
polyethylene columns. These processes yielded Fe recoveries of 99.7%—100% for the national basaltic stand-
ard reference material CAGSR-1 (GBW-07105). Iron isotopes were analyzed on a Neptune MC-ICP-MS using
standard—sample bracketing. The external reproducibility of the isotopic measurements for the standard solutions
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Figure 6. (a) Al,0,/Fe,0, versus Fe,z/Fe; and (b) Fe
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/Fe diagrams for central Guizhou bauxite samples. Fe,;/Fe values of <0.22, 0.22-0.38, and >0.38 represent

sil

the oxic, possibly anoxic, and anoxic conditions, respectively (Poulton and Canfield, 2011). Since the formation of karst bauxite is a process of Fe loss and Al retention,
the Al,O,/Fe,O, value can be used to assess the mineralization degree of bauxite; that is, the higher the Al,O,/Fe,0; value, the higher the mineralization degree.

was better than £0.1% (267 n = 90 in one year, Zhu et al., 2008). The Fe isotope compositions are reported
relative to the international standard IRMM-014 as follows: 8°°Feypy; )4 (%0) = [(Fe**/Fe™), . /(Fe>/Fe*)
wvmeore — 11X 103, Replicated measurements of CAGSR-1 (GBW-07105) yielded 83Fe of 0.13%0 = 0.09%0 (20;
n = 5), consistent with previously reported values (Craddock & Dauphas, 2011). Analytical results are given in

Table S1 in Supporting Information S1.

4. Results

The bauxites and bauxitic clays (Al,O, > 35% and 1.8 < Al,0,/SiO, < 2.6) we examined are composed mainly
of Al-hydroxide (diaspore and boehmite), followed by kaolinite and illite, and a small amount of Fe minerals and
detrital minerals (e.g., anatase and zircon) (Figures 5a and 5b). The clay rocks are composed of clay minerals
such as kaolinite and illite, with Al-hydroxides and detrital minerals (Figure 5c). The iron ores and iron-rich clays
are composed of Fe minerals (mainly hematite with a small amount of goethite or siderite) and clay minerals,
with a small amount of automorphic quartzes and almost no detrital minerals (Figures 5d—5f). The significantly
different mineralogical features between bauxite and Fe bed samples indicate different origins, that is, the former
is of detrital depositional origin, while the latter is of chemical depositional origin.

The bauxites/bauxitic clays have Al,O, contents of 52.6-79.6 wt. %, SiO, contents of 1.48-30.1 wt. %, and
Fe, O, contents of 0.46-2.22 wt. %. Clay rocks have relatively lower Al,O, contents (34.1-42.3 wt. %), but rela-
tively higher SiO, (39.5-45.1) and Fe,O, (0.72-5.82 wt. %) contents. Iron ores/iron-rich clays have the lowest
AL O, contents (2.45-31.4 wt. %), moderate SiO, contents (6.76-36 wt. %), and the highest Fe,O, contents
(16.7-79.1 wt. %). All samples we examined contain extremely low organic carbon content (Cyry < 0.16 wt.
%) (Table S1 in Supporting Information S1), indicating an oxic depositional/diagenetic condition (Bennett &
Canfield, 2020). Redox-sensitive elements Mo, U, and V are a reliable proxy of redox conditions in the depo-
sitional/diagenetic environment (e.g., Tribovillard et al., 2006) with Mo/Al, U/Al, and V/Al values below 1, 5,
and 23 (pg g~!/wt. %) indicating oxic conditions. Higher ratios indicate anoxic to euxinic conditions (Bennett &
Canfield, 2020). In this study, the Mo/Al (<1), U/Al (<3), and V/Al (<20 pg g~'/wt. %) ratios of our samples
were extremely low and had no or negative correlation with the Al,O,/Fe,O; ratios (Figure S2 in Supporting
Information S1), indicating an oxidative depositional/diagenetic environment.

The ratio of highly reactive Fe (Fey, = Fe,, + Fe_,, + Fe,, + Fe, ) to total Fe (Fey) is also a reliable proxy of
redox conditions (Scholz, 2018; Scholz, Beil, et al., 2019), with its values <0.22, 0.22-0.38, and >0.38 repre-
senting the oxic, possibly anoxic, and anoxic conditions, respectively (Poulton & Canfield, 2005). Most of our
samples have Fe,;./Fe ratios lower than 0.38, and among them, clay rocks have higher Fe/Fe ratios (average
0.36) than bauxites/bauxitic clays (average 0.27) and iron-rich clay (LD3-11: 0.128) (Figure 6a). In addition,
Feyr/Fe; values are negatively correlated with Al,O,/Fe,O, ratios (Figure 6a). These results are again consistent
with the formation under oxic conditions.

Bauxite/bauxitic clay has a higher proportion of silicate-bound Fe (average Fe/Fe. = 0.725, where

Fe , = Fe; — Fey) than clay rock (average 0.645) (Figure 6b). The §°Fe values of bauxites/bauxitic clays vary

sil
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from —0.17%o to +1.15%0 (n = 21), whereas clay rocks (—0.09%o to +0.35%0; n = 4) and iron ores/iron-rich clays
(=0.13%o0 to +0.16%0; n = 12) have a narrower range of 5°°Fe values.

5. Discussion

5.1. Fe Loss During Karst Bauxite Formation

Karst bauxite is a kind of Fe-depleted and Al-enriched sedimentary rock, and its mineralization process mainly
includes three stages: (a) pedogenesis, were the parent rocks are intensity chemically weathered to form Al-rich
soils in warm climates; (b) sedimentary transport, were Al-rich soils are eroded and transported toward the conti-
nental margin by runoff; and (c) subsequent deposition and diagenesis to form karst bauxites (Bardossy, 1982;
Yu et al., 2019). The depositional basement, that is, carbonate rock and/or shale, has long been regarded as
the source rock of central Guizhou bauxite (Ling et al., 2017; Yu et al., 2019). Intensive chemical weathering
of the parent rock of bauxite forms Al-rich soils, which are subsequently eroded and effluxed to the ocean by
rivers as dissolved phases (include colloid: 1-200 nm), particles including SPM (>0.2 pm), or sand (>63 pm)
(Gaillardet et al., 2003). The detrital minerals (e.g., zircon and anatase) in bauxites studied here, which have
been retained after diagenesis, are predominantly small in size (0.2-5.0 pm) (Figures 5a and 5b). Diaspore, the
primary economic mineral in karst bauxite, is commonly columnar or platy and 1-10 pm in size (Figures 5a—5d).
These particles are consistent in size with SPM, suggesting that the precursor materials leading to karst bauxite
formation were mainly transported as riverine SPM.

Bauxite ores have significantly high A1,0, (average 70.1 wt. %) and extremely low Fe,O, (average 1.02 wt. %)
contents (Table S1 in Supporting Information S1 and references therein), significantly different from normal
sediments/sedimentary rocks and NASC (Al,O, and Fe,O, contents of 16.9 and 5.65 wt. %, respectively; Gromet
et al., 1984). This difference in geochemical composition implies that karst bauxite formation in central Guizhou
had significant Fe loss but retained Al. Mass-change calculations for the sedimentary basement of central Guizhou
bauxites (Loushanguan Group dolomite) suggest that Fe loss occurred during the leaching stage of pedogenesis,
supporting this inference (Ling et al., 2019). In addition, karst bauxite samples from around the world have a
negative correlation between Al,O, (average: 61.9 wt. %) and Fe,O, (average 4.42 wt. %) contents (Figure 7),
suggesting that Fe loss is a common process during karst bauxite formation. We tested if Fe loss occurred and at
what stage of bauxite mineralization by examining the Fe stable isotopes of our samples.

5.2. Iron Isotopic Evidence of Fe Loss

In terrestrial ecosystems, surface weathering under strongly oxidizing conditions has limited Fe isotope frac-
tionation, with mean 83Fe in clastic rocks and sediments of 0%o + 0.2%o (e.g., Beard et al., 2003). The low Fe
bauxites we investigated show high 83°Fe values (up to +1.15%o) (Figure 8). Two processes can lead to high §3°Fe
values, loss of dissolved Fe(Il) that is relatively enriched in 3*Fe, or the net addition of a component enriched
in *Fe (Thompson et al., 2007; Yamaguchi et al., 2007). Our data, showing an inverse relationship between Fe
and Al, support dissolved Fe(II) loss during karst bauxite formation (Figure 7), leading to high §°°Fe values.

Four major processes have been postulated to control the dissolution of Fe minerals in terrestrial ecosystems:
(a) proton-promoted dissolution, (b) oxidative dissolution, (c) reductive dissolution, and (d) ligand-controlled
dissolution (B. Wu et al., 2019 and reference therein). Experimental studies demonstrated that proton-promoted
dissolution (process (a) causes no or only limited, Fe isotope fractionation (Brantley et al., 2004; Wiederhold
et al., 2006). In contrast, oxidative dissolution (process 2) always caused the accumulation of heavy Fe isotopes in
the leachates, leaving behind a rock with relatively light §%°Fe values (B. Wu et al., 2019). Reductive dissolution
(process 3) under anoxic conditions, with or without bacteria, can produce aqueous Fe(II) that has 0.5%0—4%o
lower 8¢Fe values than the Fe(Ill) in the initial material (e.g., Brantley et al., 2004; Butler et al., 2005; Chanda
et al., 2021; Icopini et al., 2004). Inorganic ligand-controlled dissolution (process 4) causes minor depletion
(~0.5%0) in 8%Fe values of the solid phase, whereas biotic/organic ligand-controlled dissolutions can cause
significant Fe isotope fractionation (~2.2%o) (Brantley et al., 2004; Kiczka et al., 2010; Wiederhold et al., 2006).
The Fe isotope fractionation caused by biotic/organic ligand-controlled dissolution was also caused by reductive
dissolution due to the depletion of oxygen through microbial respiration (Brantley et al., 2004). This implies that
during the karst bauxite formation, reductive dissolution under anoxic conditions may be the primary control on
Fe isotope fractionation.
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Figure 7. Al O, versus Fe,O, diagrams for Carboniferous bauxite samples from central Guizhou (n = 172 samples), 130 of
which are from Li (2013), Long et al. (2017), Ling et al. (2017, 2018), and Weng et al. (2019). Global data of karst bauxites
from Mordberg et al. (2000), Mameli et al. (2007), Ye et al. (2008), Deng et al. (2010), Boni et al. (2012), Zarasvandi

etal. (2012), Q. Wang et al. (2012), D. H. Wang et al. (2013), T. Wang et al. (2014), Hanilgi (2013), Z. Zhang et al. (2013),
Li (2013),Z. H. Li et al. (2013), X. Liu et al. (2013, 2016), Abedini and Calagari (2014), Z. L. Huang et al. (2014), Mongelli
etal. (2014), Yu et al. (2014, 2016), Zamanian et al. (2016), Hou et al. (2017), Khosravi et al. (2017), Long et al. (2017),
Yuste et al. (2017), Abedini et al. (2018), Abedini, Khosravi and Dill (2020); Abedini, Mongelli et al. (2020), Weng

etal. (2019), S.J. Yang et al. (2019, 2021), X. F. Liu et al. (2020), Ling et al. (2021), S. Q. Zhang et al. (2021), and Zhao
etal. (2021).

5.3. Pedogenesis Leads to Fe Loss

Fe loss caused by reductive dissolution in the anoxic environment may have occurred at one or more stages of

karst bauxite mineralization. The precursor materials leading to karst bauxite formation were mainly transported

as riverine SPM. In the Phanerozoic with an oxidizing atmosphere, the presence of abundant O, in river water

prevented the reductive dissolution of Fe from taking place (Canfield, 1997). This ruled out the possibility that

Fe loss occurred in the sedimentary transport stage.

Continental marginal sediments may have released dissolved Fe during depositional/diagenetic processes (Dale
et al., 2015; Elrod et al., 2004; John et al., 2012; Lam & Bishop, 2008; Noffke et al., 2012; Scholz et al., 2014;
Scholz, Schmidt, et al., 2019; Severmann et al., 2010). However, published marginal sediments have §°°Fe

values ranging from —0.32%o to +0.3%0 (B. Wu et al., 2019 and reference therein). The less heterogeneous

0.5

8 *Fe (%o)

Clastic rocks and sediments (0£0.2%0)

-0.5 L PR S | L PR e e

@ Clay rock
O Bauxitic clay

@ Bauxite ore
Iron ore i
Iron-rich clay

0.1 1
Fe,O, (wt. %)

100

Figure 8. 53Fe versus Fe,O, diagram. The average 8°Fe value of normal
clastic rocks and sediments is obtained from Beard et al. (2003).

83%Fe values relative to bauxite ores suggest that the depositional/diagenetic
process was unlikely to be the controlling factor in the dissolved Fe released.
This is consistent with the C,,
ies, the results all of which suggest that the bauxites in central Guizhou were

Fe species, and redox-sensitive element stud-

formed under oxic depositional/diagenetic conditions (Table S1 in Support-
ing Information S1; Figure 6 and Figure S2 in Supporting Information S1).
Consequently, we hypothesize that most of the Fe loss occurred during the
pedogenic stage of karst bauxite formation under anoxic conditions.

The pedogenic process can develop a relatively wide range of 5°°Fe values
(—0.52%o0 to +1.04%0) compared with their parent rocks during primary
dissolution and secondary processes, such as oxidation, precipitation, as
well as complexation with soil organic matter (Fekiacova et al., 2013, 2017;
Garnier et al., 2017; Johnson et al., 2008; Kiczka et al., 2011; S. Liu
et al., 2014; Qi et al., 2022; Thompson et al., 2007; Yesavage et al., 2012).
‘When anoxic conditions are present in water-saturated soil with high rainfall,
the Fe isotope fractionation during weathering is redox-controlled and can
show elevated §°°Fe values due to a preferential release of light Fe isotopes
(Akerman et al., 2014; S. Liu et al., 2014; Schuth et al., 2015; Thompson
et al., 2007; Wiederhold et al., 2007a; Yamaguchi et al., 2007). For instance,
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the soil horizon in Hawaiian, studied by Thompson et al. (2007), exhibited high §3Fe values (up to +0.72%0) due
to increased Fe loss in the soil profile under enhanced anoxic conditions. Another example is the Paleoproterozoic
Hekpoort paleosol profile from Gaborone, Botswana (~2.2 Ga), that has high §%°Fe values (—0.17%o to +1.04%o
with an average of +0.55%¢) and negative correlation between §3Fe ratios and Fe,O, contents. These paleo-
sols are considered to be a result of Fe(II) loss under reduced, organic-acid bearing soil water and groundwater
(Yamaguchi et al., 2007). Our data showing increasing bulk §%°Fe values in conjunction with the logarithmic
decrease in Fe,O, content (R? = 0.53) in bauxite samples (Figure 8), is consistent with the residual Fe-depleted
soil being enriched in heavy Fe isotopes due to preferential removal of light Fe isotopes during pedogenesis under
anoxic conditions.

In addition to bauxites having the highest §3Fe values (up to +1.15%o) and Fe/Fe, ratios (average: 0.725),

the positive correlation between Al,0,/Fe,O, and Fe/Fe ratios (Figure 6b) indicates that the Fe species in the

sil

bauxite ore is controlled by Fe ., with elevated 5°°Fe values that were inherited from Fe-depleted soils. This is

sil
consistent with the §%Fe values of the Feg; fractions (up to +1.5%o0) published to date that are exclusively posi-
tive Fe species in soils (B. Wu et al., 2019 and reference therein). Therefore, it is reasonable to hypothesize that
during pedogenesis, dissolved Fe(Il) with light Fe isotopes were preferentially removed from the primary miner-
als during continental weathering, leaving the Fe, in residual soil with heavy Fe isotopic fingerprints (Fekiacova
et al., 2013; B. Wu et al., 2019). However, most of this dissolved Fe(Il) may have been rapidly re-oxidized to
Fe(III) prior to its migration, likely as colloidal substances (M. Li et al., 2017; B. Wu et al., 2019). This oxidation
process produces Fe(II) with §°°Fe values 0.5%0—4%o higher than that of Fe(II) in the initial material, as observed
in both laboratory experiments (Anbar et al., 2005; Beard et al., 2010; Johnson et al., 2002; Nie et al., 2017; L.
Wu et al., 2012) and field studies (M. Li et al., 2017; Wiederhold et al., 2007b; R. Zhang et al., 2015). The
Fe(III) colloids could have Fe isotopic compositions similar to that of continental crust (§%°Fe = +0.07%0) due
to their similar extent of isotopic fractionation between the oxidation of Fe(Il) to Fe(IIl) and the reduction of
Fe(III) to Fe(I) (M. Li et al., 2017; Poitrasson et al., 2008; Wiederhold et al., 2006; B. Wu et al., 2019; R. Zhang
et al., 2015). Such reductive dissolution and re-oxidation has been widely observed during pedogenesis (L. M.
Huang et al., 2018; M. Li et al., 2017; Schuth et al., 2015; Thompson et al., 2007; Wiederhold et al., 2007b).

5.4. Genesis of Iron Beds Beneath Bauxite Beds

The results of petrological and mineralogical studies suggest that iron ore/iron-rich clay was precipitated through
a chemical process, that is, Fe(IIl) colloid precipitated directly due to flocculation or formation of insoluble
Fe(III) due to oxidation of dissolved Fe(Il) in the water column (Figures 4 and 5, Boyle et al., 1977). River
input was the most likely Fe source for these iron ore/iron-rich clay deposits in the continental margin (Escoube
et al., 2009; W. Li et al., 2015). In the Phanerozoic era, however, riverine dissolved Fe is dominated by Fe(III)
colloids and rare dissolved Fe(II) (Boyle et al., 1977; Johnson et al., 2002; B. Wu et al., 2019). Therefore, a possi-
ble mechanism for the formation of iron beds would be the precipitation of riverine Fe(III) colloids prior to the
deposition of bauxite beds in the central Guizhou region. Iron bed samples (—0.13%o to +0.16%0) show similar
Fe isotopic compositions to riverine Fe(Ill) colloids and continental crust (Figure 8, Fantle & DePaolo, 2004;
Ingri et al., 2006), further supporting this interpretation.

Overall, our results support a Fe release and reprecipitation processes during karst bauxite formation in central
Guizhou, southwestern China as follows (Figure 9): (a) during the early Carboniferous period, intensive conti-
nental weathering under a greenhouse climate may have enhanced the release of isotopically light Fe(II) through
reductive dissolution under anoxic conditions in water-saturated soils, leaving the silicate bound Fe in residual
soils with heavy Fe isotopic fingerprints; (b) the majority of these dissolve Fe(Il) were rapidly oxidized in the
presence of O, to Fe(IIT) with a 8°Fe value around zero, and were transported in colloidal form by rivers to the
continental margin, forming thin Fe-bed layers in karst depressions via chemical precipitation; (c) the Fe-depleted
and Al-enriched soils were then transported as riverine SPM and deposited upon the iron bed forming karst baux-
ite bed that inherits the Fe isotopic composition of soils.

6. Conclusions and Implications

The high Al,O, and low Fe,O, contents of the studied bauxite samples indicate Fe loss during Carbonifer-
ous karst bauxite formation in central Guizhou, southwestern China. The relatively high bauxite §°Fe values
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around zero, and were transported in colloidal form by rivers to coastal forming iron bed. Deep ocean
(3) Fe-depleted and Al-enriched soils were then transported as riverine SPM and deposited
above the iron bed forming the karst bauxite bed that inherit Fe isotopic composition of soils.

Figure 9. A conceptual model to account for the Early Carboniferous bauxite formation in central Guizhou, SW China.

(=0.17%0 + 0.09-1.15%0 + 0.13%0, average 0.58%0 + 0.09%0) but low C,, contents and low Feyp/Fe;, Mo/Al,
U/Al, and V/Al ratios suggest oxic diagenetic but anoxic pedogenic conditions during karst bauxite formation.
The increasing bulk §°°Fe values with a decrease in logarithmic Fe,O, concentrations of bauxites indicate that the
incomplete reduction of Fe(Ill) during pedogenesis releases isotopically light dissolved Fe(Il), leaving heavier Fe
in the residual soils to eventually be recorded in bauxites. Most of the dissolved Fe(II) were rapidly oxidized to
Fe(IIT) with 83°Fe values around zero and transported toward the paleo-continental margin of the western South
China Plate, forming Fe ore and Fe-rich clay with §%Fe values of —0.13%o to +0.16%0) via chemical deposition.
Subsequently, Fe-depleted and Al-enriched soils were transported (mainly as riverine SPM) to the continental
margin forming bauxite beds overlying Fe beds.

This study documents the release of Fe into the ocean during the pedogenic stage of the bauxite mineralization
in the early Carboniferous period. The deposition of Fe beds prior to bauxite beds in central Guizhou further
strengthens our interpretation. The negative correlation between Al O, and Fe, O, in global karst bauxites suggests
that Fe loss during karst bauxite formation was a common effect and that the karst bauxite could act as a reliable
indicator of additional Fe to the ocean during continental weathering. Humid climate periods of extensive karst
bauxite formation would have been characterized by an additional efflux of Fe to the ocean, particularly during
the Carboniferous, Permian, Cretaceous periods, and Cenozoic eras. This additional Fe supply may have had a
critical impact on the oceanic Fe cycle and marine ecosystems in the early Carboniferous period.
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