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A B S T R A C T   

The Chitudian Pb-Zn-Ag deposit, located in the southern margin of the North China Craton (SNCC), is a typical 
magmatic-hydrothermal deposit, where sphalerite is the predominate ore mineral with significant concentrations 
of critical metals, including Ga, In, and Cd. However, previous studies paid little attention to the critical metals in 
the deposit. This study carried out in-suit elemental analysis on the sphalerite from the Chitudian deposit, aiming 
to constrain the spatial distribution and enrichment mechanism of critical metals. In the Chitudian deposit, five 
types of sphalerite were identified (Z-Sp, Y-Sp1, Y-Sp2, X-Sp1, and X-Sp2), which differ in color, texture, and 
chemical composition. The concentrations of Cd, Ga, and In of these sphalerites range from 1440 to 5145 ppm, 
0.53 to 528 ppm, and 0.75 to 2113 ppm, respectively. In detail, Cd is mainly concentrated in the sphalerites from 
the hydrothermal vein-type orebodies relative to skarn-type orebodies. Indium is progressively depleted from 
granite-proximal locations to granite-distal locations, and the Fe-rich sphalerite is an excellent host of In. Gallium 
enrichment is only observed in the tectonically deformed location of the sulfide ore vein, where the Ga-rich 
sphalerite is poor in Fe and shows a complex texture. Microanalysis conducted on the Ga-rich sphalerite sug
gested that Ga, together with In, Sn, and Cu, are removed from the deformed sphalerite by mineral-fluid 
interaction and subsequently sequestered by the late sphalerite cement. Considering that the Ga-rich sphal
erite is close to the Ga-bearing coal bed of the Meiyaogou Formation, it is likely that the coal bed could be a 
potential source for Ga. These results highlight that tectonic deformation followed by hydrothermal fluid 
overprinting is favorable for the enrichment of critical metals in sphalerite-rich deposits.   

1. Introduction 

Critical metals such as Ga, Ge, Cd, and In have irreplaceable and 
significant applications in emerging industries, e.g., new materials, 
“green” technologies, and information technologies (Werner et al., 
2017; European Commission, 2019). Due to their low abundance in 
continental crust, it is difficult to concentrate in large amounts, and 
there is no deposit dominated by Ga-, Ge-, Cd-, or In-minerals (Rudnick 
and Gao, 2014; Wen et al., 2019). Generally, these metals are associated 
with sphalerite-rich deposits, and most of them are extracted from zinc 
concentrates as byproducts (Frenzel et al., 2014; Werner et al., 2017; 
Mondillo et al., 2018a). Numerous studies have shown that the 

enrichment of In dominantly occurs in high-temperature Zn deposits 
formed in magmatic-hydrothermal systems, whereas Ga, Ge, and Cd 
tend to enrich in low-temperature Zn deposits without obvious 
magmatic contributions (Zhang et al., 1998; Murakami and Ishihara, 
2013; Belissont et al., 2014; Frenzel et al., 2016). Specifically, In is 
mainly derived from the granite-related Sn-Zn deposits, while Ga, Ge, 
and Cd are sourced from the MVT (Mississippi Valley-Type) or SEDEX 
(Sedimentary Exhalative) Pb-Zn deposits (Zhang, 1987; Cugerone et al., 
2018; Wei et al., 2019; Wen et al., 2019; Zhao et al., 2022). 

Recent work has demonstrated that the base-metal sulfide deposits 
formed in porphyry Cu/Mo systems have a great resource potential for 
critical metals such as Re, In, Ge, Ga, Se, and Te (John and Taylor, 2016; 

* Corresponding author at: 511 Kehua Street, Wushan, Tianhe District, Guangzhou 510640, China. 
E-mail address: tpzhao@gig.ac.cn (T. Zhao).  

Contents lists available at ScienceDirect 

Ore Geology Reviews 

journal homepage: www.elsevier.com/locate/oregeorev 

https://doi.org/10.1016/j.oregeorev.2023.105392 
Received 19 December 2022; Received in revised form 14 February 2023; Accepted 12 March 2023   

mailto:tpzhao@gig.ac.cn
www.sciencedirect.com/science/journal/01691368
https://www.elsevier.com/locate/oregeorev
https://doi.org/10.1016/j.oregeorev.2023.105392
https://doi.org/10.1016/j.oregeorev.2023.105392
https://doi.org/10.1016/j.oregeorev.2023.105392
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oregeorev.2023.105392&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ore Geology Reviews 156 (2023) 105392

2

Sahlström et al., 2017; Benites et al., 2021; Stergiou et al., 2021). The 
Luanchuan ore district, located on the southern margin of the North 
China Craton (SNCC) (Fig. 1a-b), is the most important Mo-polymetallic 
ore district in China for the presence of several large to super-large 
porphyry-skarn Mo–W deposits, such as Nannihu, Sandaozhuang, 
Zhongyuku, Shangfanggou, and Huoshenmiao deposits (Fig. 1c) (He 
et al., 2020; Wang et al., 2021). In the last two decades, numerous Pb–Zn 
(–Ag) polymetallic veins have been laterally discovered outside the 
Mo–W deposits (Fig. 1c), and >5 Mt Pb + Zn have been revealed in the 
Luanchuan ore district (Ye, 2006; Duan et al., 2011; Cao et al., 2015; 
Yang et al., 2017a). Sphalerite, as one of the most important economic 
minerals in these Pb–Zn(–Ag) polymetallic veins, has been proven to be 
a significant host mineral for Cd, Ga, and In (Yin and Hu, 2004; Cao 
et al., 2013; Tian et al., 2015; Xing et al., 2017). However, previous 
studies have predominantly focused on the genesis of the Pb–Zn(–Ag) 
polymetallic veins. The spatial distribution of Cd, Ga, and In and their 
enrichment mechanism is poorly constrained. 

The Chitudian Pb-Zn-Ag deposit, located in the Luanchuan ore dis
trict, consists of several Pb-Zn-Ag veins, which are laterally or vertically 
associated with a concealed porphyry-skarn Mo deposit (Fig. 2). Previ
ous studies suggested that the deposit is a distal product of porphyry Mo 
system, based on the C-H-O-S-Pb isotope, fluid inclusion, and geochro
nology data (Cao et al., 2015). Moreover, geochemical data of ore 
minerals indicated that the Chitudian deposit contains considerable Cd, 
Ga, and In resources in sphalerite (Cao et al., 2013; Tian et al., 2015), 
but up to now, there is no research on these critical metals. In this study, 
we investigate the textures and chemical compositions of different types 
of sphalerite from the Chitudian Pb-Zn-Ag deposit by using transmitted 
light, ultraviolet light, back-scattered electron imaging (BSE), electron 
microprobe analysis (EMPA), and laser ablation-inductively coupled 
plasma-mass spectrometry (LA-ICP-MS). These integrated datasets pre
sented here give us a better understanding of the enrichments of critical 
elements in the deposit. Meanwhile, a mechanism was proposed to 
explain the genesis of the sphalerite with a complex texture and 
abnormal concentrations of In and Ga. 

2. Geological setting 

2.1. Regional geology 

The SNCC is one of the most important molybdenum polymetallic 
metallogenic belts worldwide (Mao et al., 2011) and is bound by the 
Sanmenxia–Lushan Fault to the north and the Luanchuan Fault to the 
south (Fig. 1). It mainly consists of the Archean to Paleoproterozoic 
high-grade metamorphic basement variably overlain by the Meso
proterozoic to Late Paleozoic cover sequences (Zhao et al., 2004; Xu 
et al., 2009). During the Late Mesozoic, the SNCC recorded intensive 
tectonic-magmatic activity under the background of craton destruction 
and lithospheric thinning (Gao and Zhao, 2017). The widely distributed 
granitoids in this region are spatially and temporally associated with the 
large-scale Mo-W-Pb-Zn-Ag mineralization, including porphyry-skarn 
Mo-W deposit, skarn Zn(-Pb) deposit, and hydrothermal-vein Pb-Zn-Ag 
deposit (Mao et al., 2011; Zhao et al., 2018). Numerous studies sug
gested that different types of deposits in the SNCC were genetically 
related, and a regional Mo-W-Pb-Zn-Ag mineralization system has been 
established (Mao et al., 2009; Cao et al., 2015; Jin et al., 2019; Li et al., 
2017). 

The Luanchuan ore district contains total reserves of 6.31 Mt Mo, 
1.38 Mt WO3, >500 Mt Zn + Pb, and abundant Ag resources (Li et al., 
2015; He et al., 2020). Three different types of deposits were identified 
in this district, including porphyry-skarn type Mo–W deposit, skarn-type 
Zn(-Pb) deposit, and hydrothermal vein-type Pb-Zn-Ag deposit from 
granite-proximal location to granite-distal location. Most of these de
posits were hosted by the Paleozoic sedimentary rocks belonging to the 
Guandaokou, Luanchuan, and Taowan Groups (Fig. 1c) (Cao et al., 
2015). The Guandaokou Group includes the Baishugou, Fengjiawan, 

Duguan, Xunjiansi, Longjiayuan, and Gaoshanhe Formations and con
sists of dolomitic marble locally interlayered with terrigenous clastic 
rocks. The Luanchuan Group consists of the Sanchuan, Nannihu, 
Meiyaogou, Dahongkou, and Yuku Formations from bottom to top, 
which are mainly composed of clastic sediments, carbonates, and alka
line volcanic rocks. The Taowan Group is divided into three groups, 
including the Qiumugou, Fengmaimiao, and Sanchakou Formations, 
which are primarily siltstone, quartzite, phyllite, conglomerate, and 
argillaceous marble. In the Luanchuan ore district, the Luanchuan and 
Guandaokou groups are the most widely distributed ore-bearing strata 
with Mo, W, Pb, Zn, and Ag resources (Yang et al., 2017a, Yang et al., 
2017b). 

Complex faults and folds are developed in the Luanchuan district (Li, 
2014). The regional structures are defined by NWW-striking thrust 
faults, which are superimposed by subordinate NE-striking strike-slip 
faults (Fig. 1c). The distribution of granitic plutons and related deposits 
is controlled by the NWW-trending tectonic systems developed in the 
Luanchuan Group and Guandaokou Group (Duan et al., 2011; Yang 
et al., 2017b; Zhang et al., 2019). The Late Jurassic-Early Cretaceous 
granites (e.g., Nannihu, Huangbeilin, Dongyuku, and Shibaogou), clas
sified as highly differentiated I-type granitoids, are spatiotemporally 
related to the different types of deposits in this district (Figs. 1 and 2) 
(Bao et al., 2014; Wang et al., 2018; Xue et al., 2018; Zhang et al., 2018). 
These small granitic plutons that occurred on the surface were con
nected to a large concealed granite batholith with a volume of 96.96 
km3, which supplied sufficient mineralizing fluids and metals for the 
polymetallic mineralization (Zhang et al., 2019; He et al., 2020). 

2.2. Deposit geology 

The Chitudian deposit, approximately 15 km northwest of the 
Luanchuan County, Henan Province, has proven reserves of 1.69 Mt Pb 
+ Zn and 2407 t Ag (Tian et al, 2015). The exposed strata in the Chi
tudian deposit comprise the clastic sediments and carbonates belonging 
to the Luanchuan Group (Fig. 2). As the principal country rock of ore
bodies, the Meiyaogou and Sanchuan Formation are mainly composed of 
marble, schist, and quartzite. The magmatic intrusion in this area in
cludes the Huangbeiling (porphyritic monzogranite), Dongyuku (granite 
porphyry), and Shibaogou (porphyritic monzogranite) granites. 
Recently, a drilling program conducted in the Huangbeiling-Dongyuku 
area revealed a concealed granitic batholith (153–130 Ma) and a su
perlarge concealed Mo-W deposit with a molybdenite Re-Os age of 146 
Ma (Li et al., 2015; Guo et al., 2018; Zhang et al., 2019; He et al., 2020; 
Fig. 2b). According to previous studies, the Chitudian deposit (~137 
Ma) was interpreted to be associated with the Mesozoic granites in this 
district (Cao et al., 2015; Cao et al., 2016). 

In the Chitudian deposit, alteration types primarily include skarni
zation, silicification, and carbonatization. The deposit consists of several 
sulfide veins that are located at the core and flanks of the Huangbeiling- 
Shibaogou anticline and controlled by NW-striking faults (Fig. 2). Two 
types of Pb–Zn–Ag mineralization have been revealed in the Chitudian 
deposit, including skarn and hydrothermal-vein type mineralization. 
Field investigation suggested that the hydrothermal-vein type ores are 
more important than skarn-type ores volumetrically. Numerous studies 
indicated that these two types of Pb-Zn orebodies and the centered 
porphyry Mo deposit constitute a unified magmatic-hydrothermal 
mineralization system, and the skarn-type Pb-Zn orebodies are the 
proximal product of this system, while the hydrothermal-vein type 
orebodies are the distal product of this system (Mao et al, 2009; Li et al., 
2017; Jin et al., 2019). From proximal skarn-type Pb-Zn orebodies to 
distal hydrothermal vein-type Pb–Zn–Ag orebodies, the alteration, 
mineral association, and ore-forming fluid systematically change from 
high temperatures to low temperatures (Cao et al., 2015; Zhao et al., 
2018). 

The skarn-type orebodies are represented by S039 and S068 ore veins 
in the Zhongyuku ore block (ZOB) (Fig. 2), where Zn is the dominant 
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Fig. 1. (a) Tectonic map of China showing the major tectonic units surrounding the North China Craton. (b) Distribution of the deposits in the southern margin of the 
North China Craton. (c) Distribution of the Mesozoic granitoids and deposits in the Luanchuan ore district. Modified after Mao et al. (2011) and Zhang et al. (1996). 
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metal resource at a grade of 1.70–5.73 wt%. Based on cross-cutting re
lationships and microscopic observations, three alteration- 
mineralization stages have been recognized. Stage 1 (skarn stage) pre
dominantly consists of garnet and pyroxene, with minor tremolite, 
wollastonite, and epidote (Fig. 3a). Stage 2 (sulfide stage) is dominated 
by sulfides, such as sphalerite, pyrrhotite, pyrite, chalcopyrite, and 
galena (Fig. 3b and Fig. 4a-c). Stage 3 (carbonate stage) is composed of 
abundant quartz, calcite, and fine-grained pyrite, which crosscuts the 
early sulfides (Fig. 3c). 

The hydrothermal vein-type orebodies are mainly distributed in the 
west of Shibaogou granite, including S01, S204, and S206 ore veins in 
the Yindonggou ore block (YOB), and S130 and S139 ore veins in the 
Xigou ore block (XOB) (Fig. 2). These orebodies are main supplier of Zn, 
Pb, and Ag resources, with a grade of 4.18–11.38 wt%, 0.40–9.70 wt%, 
and 18.4–408 ppm, respectively. The mineral assemblages and field 
investigation indicate that the ore-forming processes can be divided into 
three stages. Stage 1(calcite-pyrite stage) is characterized by the for
mation of pyrite, calcite (yellow), and minor quartz (Fig. 3d). Stage 2 
(quartz-polymetallic sulfide stage) is marked by sphalerite, galena, py
rite, and arsenopyrite (Fig. 3f-g and 4 g). Stage 3 (quartz-calcite stage) is 
sulfide-barren, consisting of abundant calcite (white) and quartz 
(Fig. 3d). 

3. Samples and analytical methods 

All of the ores, in this study, were sampled from underground mines 
and surface outcrops of the ZOB (S068), YOB (S01), and XOB (S130). 
The sample locations shown in Fig. 2 correspond to a proximal to distal 
position, relative to the concealed granite. Samples from the ZOB are 
dominantly sphalerite-pyrrhotite-pyrite ores, and those from the YOB 
and XOB are sphalerite-galena ores. Each sample was first prepared as 
polished thin section and observed under optical microscope. Then, a 
total of fifteen representative samples were chosen for scanning electron 
microscopy (SEM) analysis, and only the sphalerite without noticeable 

mineral inclusions was prepared for EMPA and LA-ICP-MS analysis. 

3.1. SEM and EMPA analysis 

Quantitative analysis and element mapping of sphalerite were 
analyzed by JEOL JXA-8230 Electron Probe Micro Analyzer at the Key 
Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of 
Geochemistry, Chinese Academy of Sciences. Quantitative analyses 
were carried out at an accelerating voltage of 20 kV, with a beam current 
of 20nA and a beam diameter of 1 μm. In this study, the following 7 
elements were analyzed (with their detection limits in ppm): Fe (94.2), 
Zn (189), Cd (93.2), Cu (92.8), Mn (66.0), S (78.6), and Sn (140). 
Element mapping applied for sphalerite was conducted at an acceler
ating voltage of 20 kV, with a probe current of 100nA and a beam size of 
1 μm. Elements chosen for element mapping include Fe, Cu, Zn, and Sn. 
Iron and Cu were analyzed by using a LIFH crystal. Zinc and Cu were 
analyzed by using LIF and PETJ crystals, respectively. 

3.2. In-suit LA-ICP-MS trace element analysis 

Trace element concentrations in sphalerite were measured by Laser 
Ablation Inductively-Coupled Plasma Mass Spectrometry on polished 
samples at the In-situ Mineral Geochemistry Lab, Ore deposit and 
Exploration Centre (ODEC), Hefei University of Technology, China. The 
analyses were carried out on an Agilent 7900 Quadrupole ICP-MS 
coupled to a Photon Machines Analyte HE 193-nm ArF Excimer Laser 
Ablation system equipped. Argon was used as the make-up gas and 
mixed with the carrier gas via a T-connector before entering the ICP 
(Ning et al., 2017; Wang et al., 2017). Each analysis was performed by a 
uniform spot size diameter of 40 μm at 7 Hz with energy of ~ 2 J/cm2 
for 40 s after measuring the gas blank for 20 s. Standard reference ma
terials NIST 610, NIST 612, and BCR-2G were used as external standards 
to plot calibration curve. Sulfide standard MASS-1 was used for un
known sample to evaluate the sulfide element accuracy during analysis. 

Fig. 2. (a) Geological map of the Chitudian Pb-Zn-Ag deposit (modified after Tian et al. (2015)). (b) A sketch profile showing the spatial relationship between 
orebodies and granites. The sample locations were projected to this profile. 
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The isotopes measured were 55Mn, 57Fe, 59Co, 63Cu, 66Zn, 71Ga, 72Ge, 
75As, 77Se, 107Ag, 111Cd, 115In, 118Sn, 121Sb, and 208Pb. Indium concen
trations were corrected for the isobaric interference of 115In and 115Sn. 
The offline data processing was performed using a program called 
ICPMSDataCal (Liu et al., 2008). Trace element compositions of samples 
were calibrated against multiple-references materials with applying Zn 
values determined by EMPA as the internal normalization element. 

Element maps were created by ablating sets of parallel line rasters in 
a grid across the sample. A beam size of 15 µm and scan speeds of 15 µm/ 
s were chosen in this study. A laser repetition of 10 Hz was selected at a 
constant energy output of 50 mJ, resulting in an energy density of ~ 3 J/ 
cm2 at the target. A 20-s background acquisition was acquired at the 
start of scanning, and to allow for cell wash-out, gas stabilization, and 
computer processing, a delay of 20 s was used after ablation. Reference 
materials NIST 610 and GSE-1G at the start and end of each mapping 
were analyzed for data calibration. Images were compiled and processed 
using the program LIMS (Wang et al., 2017; Xiao et al., 2018). For each 
raster and every element, the average background was subtracted from 
its corresponding raster, and the rasters were compiled into a 2-D image 
displaying combined background/drift corrected intensity for each 
element (Xiao et al., 2018). 

3.3. Principal component analysis (PCA) 

Generally, the trace element dataset obtained by LA-ICP-MS contains 

multiple variables. The PCA, a multivariate statistical analysis method, 
can briefly reflect as much original information as possible by variables 
reduction, and the original data processed by PCA can be projected in 
two dimensions (Belissont et al., 2014; Frenzel et al., 2016; Bauer et al., 
2019a). These two dimensions, corresponding to the most important two 
principal components, are directly determined as the first two eigen
vectors of the correlation matrix with the highest eigenvalues. Conse
quently, the internal structure and variance of the original data can be 
extremely expressed by PCA. In this study, the dataset processed by PCA 
was log-transformed and filtered by the criteria suggested by Yuan et al. 
(2018). All the data were processed by the PCA module in OriginPro 9.0 
software. More details about PCA can refer to Koch (2012) and Frenzel 
et al (2016). 

4. Results 

4.1. Petrographic observation 

Sphalerite is the predominant ore mineral of the Zhongyuku (Z-Sp), 
Yindonggou (Y-Sp), and Xigou (X-Sp) ore blocks in the Chitudian de
posit. Five types of sphalerite (Z-Sp, Y-Sp1, Y-Sp2, X-Sp1, and X-Sp2) are 
distinguished in this deposit, based on petrographic observations and 
sample locations. 

In the ZOB, Z-Sp is abundant in the sulfide stage, showing black color 
and euhedral-subhedral crystals (Fig. 3b, c). It commonly coexists with 

Fig. 3. Photographs showing the occurrences and textures of ores from the Zhongyuku (a-c), Yindonggou (d-f), and Xigou (g-i) ore blocks in the Chitudian deposit. 
(a) Skarnized marble. (b) Massive sulfide ore consists of banded sphalerite (Z-Sp) and pyrrhotite. (c) Late-stage calcite-quartz vein crosscut the sphalerite aggregate. 
(d) Early-stage calcite (yellow)-pyrite assemblage was replaced by late-stage calcite and quartz (white). (e) Sphalerite (Y-Sp1) is intergrown with galena, pyrite, and 
calcite. (f) Abundant sphalerites (Y-Sp2) coexist with galena, calcite, and minor pyrite. (g) Sulfide ore within wall rock. (h) X-Sp1 is intergrown with abundant galena, 
calcite, and minor pyrite. (i) Massive ore dominated by sphalerite (X-Sp1), galena, and minor pyrite. Abbreviations: Sp = sphalerite; Gn = Galena; Py = pyrite; Ccp =
chalcopyrite; Po = pyrrhotite; Qz = quartz; Grt = garnet; Di = diopside; Cal = calcite. 
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pyrrhotite, pyrite, and chalcopyrite which occurs as separate grains or 
inclusions in sphalerite (Fig. 4a-c). 

Y-Sp1 and Y-Sp2 are identified in the YOB with different appear
ances. Y-Sp1 is mainly associated with coarse-grained calcite, galena, 
and pyrite with black color and euhedral crystals (Fig. 3e and 4d). It is 
also characterized by abundant inclusions of chalcopyrite (Fig. 4d). In 
contrast with Y-Sp1, Y-Sp2 shows a brown color in hand specimens and 
contains a few sulfide inclusions (Fig. 3f and 4e). This type is closely 
intergrown with quartz, calcite, pyrite, galena, and chalcopyrite 
(Fig. 4e). 

X-Sp1 and X-Sp2 were sampled from the 980 m and 900 m levels of 
the S130 ore vein, respectively (Fig. 5a). Both of them are associated 
with abundant galena and minor pyrite (Fig. 3g, h, and 4 g). X-Sp1 is 
dark brown (Fig. 3g, h), and the boundary between X-Sp1 and coexisted 
minerals is clear in hand specimens and photomicrographs (Fig. 3g, h, 
and 4f). In contrast to X-Sp1, X-Sp2 has a complex texture in hand 
specimens, in which dark sphalerite (X-Sp2a) is surrounded by brown 
sphalerite (X-Sp2b) (Fig. 4g). However, these two subtypes of sphalerite 
cannot be distinguished under reflected light (Fig. 4h) but are well 
presented under transmitted light in photomicrographs (Fig. 4i). The 
backscattered electron (BSE) images show that the fractured and zoned 
X-Sp2a was dissolved and replaced by X-Sp2b (Fig. 5f-k). Some stannite 
inclusions were observed along the margin and microfractures of X-Sp2a 
(Fig. 5h-k). Moreover, the sulfides from the same sample as X-Sp2 

(including X-Sp2a and X-Sp2b) also have abundant microfractures that 
are filled with X-Sp2b (Fig. 5b-c), and the zoning structures are revealed 
by BSE images (Fig. 5d-e). 

4.2. Major and trace elements in sphalerite 

A total of 118 spots were analyzed by EMPA and LA-ICP-MS, 
respectively. The contents of major and trace elements are summa
rized in Table 1 and detailed analytical data are given in Electronic 
Supplementary Materials (ESM), among which some elements with 
higher content are presented in Fig. 6 and discussed below. Trace ele
ments in sphalerite from skarn ores (Z-Sp) vary in a limited range 
compared with sphalerite from hydrothermal-vein ores (Y-Sp1, Y-Sp2, 
X-Sp1, X-Sp2a, and X-Sp2b). Generally, the composition of sphalerite 
varies systematically from skarn ores to hydrothermal-vein ores. 

The concentration of Fe in sphalerite decreases, whereas the con
centration of Zn increases gradually from Z-Sp to X-Sp2b (Fig. 6a, b). 
The concentration of Fe in sphalerite is closely related to the color of the 
studied sphalerite crystals. The brown sphalerite (X-Sp2b) found in XOB 
has the lowest Fe concentration (av. (average) = 4.19 wt%). However, 
the black sphalerite found in ZOB has the highest Fe concentration (Z- 
Sp; av. = 10.56 wt%). Although the concentration of Mn shows a similar 
distribution trend as Fe, a slight increase was observed in X-Sp2a and X- 
Sp2b (Fig. 6c). Both Fe and Mn tend to concentrate in sphalerite from 

Fig. 4. Photomicrographs showing the representative ore mineral assemblages from the Zhongyuku (a-c), Yindonggou (d-f), and Xigou (g-i) ore blocks in the 
Chitudian deposit. (a) Z-Sp is co-crystalized with pyrite and pyrrhotite. (b) Anhedral Z-Sp coexists with chalcopyrite, pyrrhotite, and pyrite. (c) Granular pyrite was 
replaced by Z-Sp. (d) Euhedral Y-Sp1 containing abundant sulfide inclusions was replaced by gangue minerals. (e) Y-Sp2 is co-crystalized with galena and pyrite was 
replaced by chalcopyrite. (f) X-Sp1 and pyrite were replaced and crosscut by galena. (g) Polished sulfide sample containing sphalerite, galena, arsenopyrite, and 
pyrite. X-Sp2 consists of X-Sp2a (black) and X-Sp2b (brown), and X-Sp2a is enclosed by X-Sp2b. (h) Reflected light photomicrographs of X-Sp2. The contours of the X- 
Sp2a were shown by the dotted line. (i) Transmitted light photomicrographs of X-Sp2 corresponding to (h). Abbreviations: Sp = sphalerite; Gn = Galena; Py = pyrite; 
Apy = arsenopyrite; Ccp = chalcopyrite; Po = pyrrhotite; Qz = quartz; Cal = calcite. 
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skarn ores rather than hydrothermal ores. In contrast to Mn and Fe, Cd 
and Ag are primarily concentrated in sphalerite from hydrothermal ores, 
in which sphalerites have an average concentration of 23.7 ppm for Ag 
and 3075 ppm for Cd (Fig. 6d, e). However, the average concentrations 
of Ag and Cd for Z-Sp are as low as 1.08 ppm and 1660 ppm, 
respectively. 

In terms of Ga, the lowest value occurs in Z-Sp (av. = 3.30 ppm), and 
the highest value occurs in X-Sp2a (av. = 179 ppm). Overall, the 

concentration of Ga shows an increasing trend from skarn ores to 
hydrothermal-vein ores (Fig. 6f). In Fig. 6g and h, Cu and Sn are found in 
abundant amounts in sphalerite from hydrothermal-vein ores (Table 1), 
particularly in X-Sp2a (av. = 3733 ppm for Cu and 3469 ppm for Sn). In 
contrast, the concentrations of Cu and Sn are relatively poor in skarn 
ores, in which their average values are 104 ppm for Cu and 0.15 ppm for 
Sn. Although the concentrations of Cu and Sn significantly vary in 
different types of sphalerite, their distribution trends are similar (Fig. 6g, 

Fig. 5. Textures of sulfide from the core of folded S130 vein. (a) Cross-section through the folded S130 vein of the Xigou ore block, Chitudian deposit. (b-c) Textures 
of arsenopyrite and pyrite under reflected light. (d-e) BSE image showing the zoning structure in arsenopyrite and pyrite. (f-g) Textures of X-Sp2 under transmitted 
light. (h-k) BSE image showing the textures of X-Sp2 (including X-Sp2a and X-Sp2b). Stannite inclusions were observed in microfractures of X-Sp2a. Abbreviations: 
Sp = sphalerite; Py = pyrite; Apy = arsenopyrite; Stn = stannite. 

Table 1 
Summary of element contents in sphalerite from the Chitudian deposit. Zinc and Fe are given in wt% (EPMA) and all other trace elements in ppm (LA-ICP-MS).  

Type  Zn Fe Mn Cd Cu In Ga Ge Ag Sn 

Z-Sp 
(n = 29) 

Min  53.7  9.14 2987 1441 60.6 103 0.53  0.28 0.49 0.06 
Max  56.7  11.3 8969 1997 197 322 9.18  0.78 3.22 0.51 
Average  54.8  10.6 5380 1660 104 155 3.30  0.46 1.08 0.15 

Y-Sp1 
(n = 19) 

Min  54.3  7.13 292 2861 49.2 31.9 6.96  0.30 3.69 2.15 
Max  59.3  11.5 3167 5145 4564 2114 52.4  2.07 154 132 
Average  56.2  9.71 1325 3902 752 561 21.0  0.62 50.7 39.0 

Y-Sp2 
(n = 17) 

Min  57.5  3.19 185 1727 79.5 2.63 15.3  0.31 5.76 44.5 
Max  64.4  7.93 764 3114 1026 47.4 37.3  0.95 101 949 
Average  60.6  5.75 387 2410 286 12.8 29.2  0.52 26.4 206 

X-Sp1 
(n = 19) 

Min  58.7  5.30 255 2395 16.6 0.75 5.77  0.29 2.27 0.66 
Max  60.7  7.03 421 4567 714 80.2 18.0  0.67 17.0 669 
Average  59.8  5.99 311 3177 201 15.4 12.3  0.42 8.32 169 

X-Sp2a 
(n = 17) 

Min  58.8  3.83 381 2271 716 3.41 85.2  0.52 5.36 396 
Max  62.7  5.55 834 4021 10,045 211 333  3.18 45.7 9893 
Average  61.7  4.29 589 2962 3733 29.6 179  1.79 24.8 3469 

X-Sp2b 
(n = 17) 

Min  61.4  3.84 400 2284 43.4 16.4 33.7  0.32 2.62 3.57 
Max  63.1  5.44 769 3869 755 422 528  0.46 16.6 89.7 
Average  62.3  4.17 548 2818 196 136 123  0.39 6.96 16.8  
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h). Different from other elements, the distribution trend of In is “U- 
shaped” (Fig. 6i). The most In-rich sphalerite is Y-Sp1 (av. = 561 ppm), 
followed by Z-Sp (av. = 155 ppm) and X-Sp2b (av. = 136 ppm). It is 
noteworthy that X-Sp2a is closely related to X-Sp2b in spatial (Fig. 5f-k), 
but the concentrations of Cu, Sn, and In are much different between 
them. X-Sp2a is generally characterized by higher Cu (av. = 3733 ppm), 
Sn (av. = 3469 ppm), and lower In (av. = 29.6 ppm), relative to X-Sp2b 
(av. = 196 ppm for Cu, 16.8 ppm for Sn, 136 ppm for In). Furthermore, 
the trace element variations between X-Sp2a and X-Sp2b are presented 
by element mapping results. 

4.3. Element mapping 

Distinct changes in the concentrations of Cu, Sn, and In may indicate 
a special mechanism that controls the element distribution pattern be
tween X-Sp2a and X-Sp2b. Thus, element mapping was conducted on X- 
Sp2 (Figs. 7 and 8). According to LA-ICP-MS element maps, Fe and Cd 
show relatively homogenous distributions (Fig. 7c, d). Gallium and Ag 
display erratic distributions between X-Sp2a and X-Sp2b, and weak 
zonation can be observed (Fig. 7e, f). Importantly, it seems that In 
prefers to concentrate in X-Sp2b (light part) rather than X-Sp2a (dark 
part) (Fig. 7g). In contrast to In, Sn, and Cu are spatially coupled in X- 
Sp2a (Fig. 7h, i). Furthermore, the EMPA element maps with higher 
resolution show that Sn and Cu are significantly enriched in the rhyth
mic bands of X-Sp2a (Fig. 8). Abundant stannite microinclusions (<10 
μm) are distributed along the microfractures of X-Sp2a. 

4.4. Principal component analysis of in situ datasets 

The results of the PCA applied to the sphalerite trace element dataset 
are shown in Fig. 9, where the first two principles capture about 70 % of 
element content variability (Fig. 9c). Principal Component 1 (PC1) is a 
measure of Sn, Ga, Ag, and Cd contents of all the sphalerite subtypes 
(Fig. 9a, d). Principal Component 2 (PC2) is a measure of Fe, Mn, Cu, Ge, 
and In contents (Fig. 9a, d). In detail, PC2 can be further divided into 
subgroups: PC2-1 (Fe, Mn, and In) and PC2-2 (Ge and Cu) (Fig. 9a and 
d). All of them are positively related and have positive signs (Fig. 9d). 
When all spots are projected on the PC1 vs. PC2 plane (Fig. 9b), sphal
erite samples can be classified into two groups: Fe-rich sphalerites and 
Fe-poor sphalerites, where the former is composed of Z-Sp and Y-Sp1 
and the latter is composed of Y-Sp2, X-Sp1, X-Sp2a, and X-Sp2b. 
Although all of the Fe-poor sphalerites are taken from hydrothermal- 
vein ores, X-Sp2a is independent of the others. 

PCA was further applied to X-Sp2a and X-Sp2b to investigate 
whether they were different in element correlation clusters (Fig. 10). 
The results highlight the variable behaviors of In and Ga in these two 
sphalerite subtypes. For X-Sp2a, Sn, Cu, and Ag are clustered, while Ga 
and In are independent of other elements (Fig. 10A). In contrast, In-Ga- 
Sn-Gu are clustered in X-Sp2b (Fig. 10B). 

Fig. 6. Box-whisker plots of the major and trace element compositions of sphalerite from the Chitudian deposit. The box for each element represents the 25% (lower 
margin) to 75% (upper margin) data ranges. The square and diamond symbols represent the mean and outlier, respectively. The median value is shown as horizontal 
line in each box. 
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5. Discussion 

5.1. Correlation trend and element substitution in sphalerite 

Element substitution within sphalerite has been extensively investi
gated in previous studies because it is of great significance to reveal the 
mineralization process and ore genesis (Cook et al., 2009, 2012; Belis
sont et al., 2014; Frenzel et al., 2016, 2020; Wei et al., 2021). However, 
the concentrations of trace elements in sphalerite are the results of 
lattice-bound solid solutions or mineral inclusions (Cook et al., 2009; 
George et al., 2016). Thus, it is necessary to first clarify the occurrence of 
trace elements in sphalerite. 

Time-resolved depth profiles are usually used to judge the occur
rence of trace elements in minerals (Cook et al., 2009; Belissont et al., 
2014). When a mineral contains microscopic inclusions, profiles exhibit 
ragged or spiky patterns. In contrast, flat profiles suggest that the ele
ments are probably present as solid solutions. Most analysis spots yield 
smooth element signals in our dataset, suggesting compositional ho
mogeneity within sphalerite grains and the occurrence of element as a 
solid solution (Fig. 11). However, some samples display ragged Cu, Pb, 
and Sn signals, indicating the existence of Cu-, Pb-, and Sn-bearing 
mineral inclusions in sphalerite (Yuan et al., 2018; Zhuang et al., 
2019) (Fig. 11b, d, f). These results have a good agreement with the 
petrographic observations (Figs. 4 and 5). 

Iron, Mn, and Cd are the most abundant trace elements in sphalerite 
from the Chitudian deposit (Fig. 6). Previous studies suggested that 
divalent cations, such as Fe2+, Mn2+, and Cd2+, are incorporated into 
sphalerite by substituting for Zn2+ directly because they have similar ion 

radii and oxidation states in tetrahedral coordination (Ye et al., 2011; 
Wei et al., 2018; Xing et al., 2021). In this study, Zn is negatively 
correlated with Fe, Mn, and Cd, suggesting a simple substitution: Zn2+ ↔ 
(Fe, Mn, Cd) 2+ (Fig. 12a). 

In addition, several more complicated substitution mechanisms that 
lead to the enrichment of mono-, tri-, and tetravalent cations (i.e., Ag+, 
Cu+, Ga3+, In3+, Ge4+, and Sn4+) were also proposed (Cook et al., 2009; 
Ye et al., 2011; Frenzel et al., 2016). For example, trivalent cations, such 
as In3+ and Ga3+, can be incorporated into sphalerite by a couple sub
stitution: (In, Ga)3+ + (Cu, Ag)+ ↔ 2Zn2+ (Murakami and Ishihara, 
2013), of which Cu+ and Ag+ are needed to balance charge in sphalerite 
structure. In this study, the concentration of Ag was significantly lower 
than that of Cu, making Cu the predominant monovalent cation (Fig. 6). 
Consequently, Cu is supposed to be positively correlated with the 
trivalent cations. As shown in Fig. 12b, a positive correlation between 
Cu and In was exhibited by Fe-rich sphalerite types (Z-Sp and Y-Sp1), 
indicating the couple substitution of In3+ + Cu+ ↔ 2Zn2+ (Xu et al., 
2021b). But the Cu-In correlation is obscure in Fe-poor sphalerite types 
(Y-Sp2, X-Sp1, X-Sp2a, and X-Sp2b) (Fig. 12b), where a strong positive 
correlation between Sn and Cu, with a ratio of (Cu:Sn) mol = 2, raises the 
substitution of 2Cu+ + Sn4+ ↔ 3Zn2+ (Fig. 12c) (Murakami and Ishi
hara, 2013). However, it should be emphasized that because stannite 
was found in X-Sp2 (Fig. 5h-k), we cannot exclude the effect of stannite 
(Cu2FeSnS4) on the atom ratio of Cu:Sn. The substitution of Sn within 
sphalerite requires further verification by using techniques (e.g., XANES 
and HRTEM) that are appropriate for accurate assessment of the 
oxidation state and occurrence of Sn. 

Previous works have suggested that In and Sn may be incorporated 

Fig. 7. LA-ICP-MS element maps of X-Sp2. (a) Photomicrograph of mapped sphalerite (X-Sp2) under transmitted light. (b–i) Element maps for Zn, Fe, Cd, Ag, Ga, In, 
Sn, and Cu respectively. 

C. Chen et al.                                                                                                                                                                                                                                    



Ore Geology Reviews 156 (2023) 105392

10

into sphalerite by couple substitutions as In3+ + Sn3+ + □ (vacancy) ↔ 
3Zn2+ or In3+ + Sn2+ + Ag+ /Cu+ ↔ 3Zn2+ (Belissont et al., 2014; 
Frenzel et al., 2016; Wei et al., 2018; Oyebamiji et al., 2020; Xu et al., 
2021a), but no evident correlation was observed between In and Sn in 
our dataset (Fig. 12d). A weak correlation between Ga and Cu could 
result from the low concentration of Ga in most sphalerite samples 
(Table 1) (Fig. 12e). However, the positive Ga-Cu correlation was 
observed in X-Sp2b, indicating the incorporation of Ga into X-Sp2b via a 
couple substitution of Ga3+ + Cu+ ↔ 2Zn2+ (Fig. 12e) (Frenzel et al., 
2016). 

Overall, the correlation between mono-, tri-, and tetravalent cations 
is further demonstrated by Fig. 12f. The concentrations of monovalent 
cations (Cu and Ag) are close to the sum of tri- and tetravalent cations 
(Ga, In, and Sn). Consequently, Cu (and Ag to a lesser extent) could be 
responsible for the incorporation of these trivalent/tetravalent cations. 
Several data that plot above the positive correlation trend could be 
attributed to abundant chalcopyrite inclusions in Y-Sp1 (Fig. 4d, 
Fig. 11b, and Fig. 12f). 

5.2. Distribution of Cd, Ga, and In in the Chitudian deposit 

It is generally accepted that Ga, Ge, and Cd have a preference for low- 
temperature deposits, while In is dominantly concentrated in granite- 
related deposits with higher mineralization temperatures (Zhang, 
1987; Tu, 2004; Cook et al., 2009; Wen et al., 2019; Zhou and Wen, 
2021). The Pb-Zn-Ag deposits in the Luanchuan ore district are consid
ered to be genetically associated with the Mesozoic granite, and the 
mineralization temperatures of main stage range from 200 ℃ to 350 ℃ 
(Duan et al., 2011; Cao et al., 2015; Xu, 2015). In this study, the Zn/Cd 
ratios of the sphalerite from the Chitudian deposit are almost always 

below 300, with an average value of 182, which is consistent with the 
Zn/Cd ratio of magmatic-hydrothermal sphalerite (<300) (Wen et al., 
2016). Therefore, it can be expected that the Chitudian deposit contains 
higher In and relatively lower Ga, Ge, and Cd. 

The LA-ICP-MS results show that the concentration of Ge (<4 ppm) is 
indeed low in sphalerite from the Chitudian deposit. As for Cd, it is the 
most important trace element in sphalerite, except for Fe and Mn, and it 
ranges from 1411 to 5145 ppm (Table 1). The average concentration of 
Cd is 2728 ppm, which is similar to high-temperature Pb-Zn deposits 
(~2000 ppm), but distinct from low-temperature Pb-Zn deposits 
(~6000 ppm) (Schwartz, 2000). In detail, Cd is mainly concentrated in 
the sphalerites from hydrothermal-vein ores (3075 ppm) rather than 
skarn ores (1660 ppm), indicating that the former contains more Cd 
metal than the latter. The spot analysis results also suggest that Cd is 
homogeneously distributed in the sphalerite grains, regardless of 
sphalerite types, because the concentration of Cd varies in a limited 
range for each sample (ESM: Table S1 and S2). 

In terms of Ga, 84 spots give an average value of 14.6 ppm. The 
enrichment of Ga was only noticed in X-Sp2a (179 ppm) and X-Sp2b 
(123 ppm) (Fig. 6f). Since the sphalerite formed in magmatic- 
hydrothermal systems is generally considered to be Ga-poor (<10 
ppm), a Ga-bearing source is needed to explain the enrichment of Ga in 
X-Sp2 (including X-Sp2a and X-Sp2b). In the Luanchuan ore district, the 
Meiyaogou Formation is an important ore-bearing stratum with 
numerous Pb-Zn-Ag veins, and this sedimentary unit contains several 
coal beds with a total thickness of > 150 m (Figs. 2 and 5). Chen et al. 
(1989) found that the Ga concentrations of the coal beds in the Luan
chuan ore district are higher than the minimum grade for industrial 
operation (30 ppm), and Ga can be extracted as byproduct from the coal 
beds. Moreover, Zuo (2016) systemically investigated the chemical 

Fig. 8. EMPA element maps of X-Sp2. (a) BSE image of X-Sp2. (b-e) Elemental maps for Zn, Fe, Sn, and Cu respectively.  
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Fig. 9. Principal component analysis of the trace element contents (log-transformed) in sphalerite. (a) Elements plotted on the PC1 vs. PC2 plane (explaining 70.0 % 
of element content variability). The framed groups of elements with similar behavior. (b) Spot analyses plotted on the PC1 vs. PC2 plane. (c) Eigenvalues of the 
principal components. (d) Loadings of the principal components. (e) Data legend and sample information. Note that the angles of the arrows in (a) correspond to the 
element correlations. If the angle between two arrows is either close to 0◦ or 180◦, they are positively or negatively correlated. If the angle between two arrows is 
close to 90◦, then they are uncorrelated. 

Fig. 10. Principal component analysis of the trace element contents (log-transformed) in X-Sp2a (A) and X-Sp2b (B). Upper part of (A): Elements plotted on the PC1 
vs. PC2 plane (explaining 73.2 % of element content variability). Lower part of (A): eigenvalues and loadings of the principal components. Upper part of (B): Elements 
plotted on the PC1 vs. PC2 plane (explaining 81.1 % of element content variability). Lower part of B: eigenvalues and loadings of the principal components. 
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composition of the black shales in the SNCC, and found that the highest 
Ga concentration (31.18 ppm) occurred in the coal samples from the 
Meiyaogou Formation. Considering that X-Sp2 is sampled from the 
strong deformed location of the folded S130 vein (Fig. 5a), the abrupt 
increases of Ga could be attributed to the Ga-bearing coal beds of the 

Meiyaogou Formation. When the coal beds and S130 vein suffered from 
folding, abundant cleavages developed at the strongly deformed loca
tions (such as the core of the fold), which provided permeable channels 
for hydrothermal fluid flow (Lee et al., 2019). As a result, Ga was 
leached from the coal beds by extensive water–rock interactions and 

Fig. 11. Representative time-resolved depth profiles for selected elements in sphalerite. Smooth signals for Ga, Cd, and In indicate that such critical metals are 
relatively homogeneous in the sphalerite analyzed in this study. 
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subsequently sequestered by X-Sp2. This hypothesis is further supported 
by previous isotope (C-H-O-S-Pb-Sr) data (Cao et al., 2015), which 
define an increasing contribution of wall rock-derived materials to the 
distal Pb–Zn–Ag mineralization in the Luanchuan ore district. 

Indium is a temperature-dependent element, and the concentrations 
of Fe, Mn, In, Ga, and Ge in sphalerite were applied to estimate the 
formation temperature of Zn-bearing ores (Frenzel et al., 2016). For 
instance, the higher concentrations of In and Fe in sphalerite generally 
imply higher formation temperatures. Previous microthermometry data 

of fluid inclusions show that the mineralization temperature succes
sively decreases from the ZOB, YOB, to XOB (Duan et al., 2011; Cao 
et al., 2015), corresponding to the increasing distance to magmatic 
intrusion (Fig. 2b). This understanding is reinforced by the decreasing 
contents of Fe from Z-Sp to X-Sp2b (Fig. 6b). Thus, In is expected to 
maintain a similar decreasing trend as Fe, but a slight increase in In was 
observed in X-Sp2a (av. = 29.6 ppm), and a distinct increase in In was 
observed in X-Sp2b (av. = 136 ppm) (Fig. 6i). When it comes to element 
correlation, In and Ga are expected to be positively correlated with Cu 

Fig. 12. Correlation plots of the major and trace element in sphalerite: (a) (Cd + Fe + Mn) vs. Zn; (b) Cu vs. In; (c) Cu vs. Sn; (d) In vs. Sn; (e) Cu vs. Ga; (f) (Ag + Cu) 
vs. (Ga + In + Sn). 
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(as discussed in section 5.1). The PCA results show that the In-Cu and In- 
Ga correlations are absent in X-Sp2a but occur in X-Sp2b (Fig. 10). These 
results may indicate an unknown mechanism that controls the abnormal 
element concentration and correlation in X-Sp2, as further discussed 
below. 

5.3. Trace element remobilization induced by tectonic deformation 

Sphalerite is widespread in the Chitudian deposit, but only the 
sphalerites (X-Sp2) from the deformed location (900 m level) of S130 
vein have a complex texture (Fig. 5). In photomicrographs, the frag
ments of X-Sp2a were cemented or cut through by X-Sp2b (Fig. 4i and 5f- 
k), and obvious dislocation was observed in the rhythm bands of X-Sp2a 
(Fig. 5f). The pyrite and arsenopyrite from the 900 m level of S130 vein 
also have abundant microfractures with a preferred orientation (Fig. 5b, 
c), and these micro-fractures are generally filled with X-Sp2b. All of 
these textural evidences suggest that the sulfide in the deformed location 
of S130 vein has experienced brittle-plastic deformation (Fig. 5). Actu
ally, the Vickers hardness of sphalerite (128–276 kg⋅mm− 2) is signifi
cantly lower than that of others, such as arsenopyrite (715–1354 
kg⋅mm− 2), pyrrhotite (230–390 kg⋅mm− 2), and pyrite (913–2056 
kg⋅mm− 2), resulting in a poor ability to resist tectonic modification 
(Shang et al., 2007). Various experimental deformation studies have 
confirmed that sphalerite is fragile at relatively low temperatures 
(<350 ◦C) (Clark and Kelly, 1973; Couderc et al., 1985; Cox, 1987; Gu 
et al., 2008; Cugerone et al., 2019). Because the sphalerite particles 
destroyed by tectonic activities have a larger surface area, the mineral- 
fluid interaction can proceed completely by the infiltration of late-stage 
fluids (Gu et al., 2005, 2008). As a result, trace elements with high 
solubility could be removed from primary sphalerite and highly recon
centrated in other minerals (Kampmann et al., 2018; Cave et al., 2020; 
Zhao et al., 2021; Ivashchenko, 2021). 

Recently, numerous studies suggested that trace elements hosted in 
sphalerite can be released, when sphalerite-rich orebody suffers from 
deformation, metamorphism, and fluid overprinting (Jonsson et al., 
2013; Kampmann et al., 2018; Carvalho et al., 2018; Bauer et al., 2019b; 
Cugerone et al., 2020). Carvalho et al. (2018) found that In was highly 
concentrated in the sphalerite exploited from the tectonically deformed 
location of the Neves-Corvo deposit, where the concentrations of Cu and 
In were enhanced by tectonic-metamorphic remobilization. A series of 
studies conducted by Cugerone et al. (2018, 2019, 2021) have also 
demonstrated that the tectonic deformation and low-grade meta
morphism can remobilize Ge (as well as Cu, Ga, and Sn) from the pri
mary sphalerite, which results in the formation of Ge-minerals in the Pb- 
Zn deposit of the Variscan Pyrenean Axial Zone. Consequently, trace 
element remobilization may be a ubiquitous process in sphalerite-rich 
deposits reworked by late-stage geological processes (George et al., 
2016; Reiser et al., 2011; Belissont et al., 2019; Cave et al., 2020). 
Furthermore, it can be deduced that the trace element characteristics of 
X-Sp2 are likely controlled by the tectonic deformation. 

The LA-ICP-MS maps show that Cu and Sn are highly concentrated in 
X-Sp2a (Fig. 7h, i) and In is mainly concentrated in X-Sp2b (Fig. 7g). 
However, higher In concentrations were observed in the relic core of X- 
Sp2a (Fig. 7g). Considering the high mobility of In during the chemical 
remobilization process (Shimizu and Morishita, 2012; Bauer et al., 
2019b; Zhao et al., 2021), it is possible that In was initially concentrated 
in X-Sp2a and then reincorporated into X-Sp2b, when the late-stage fluid 
interacted with the deformed X-Sp2a. This hypothesis was further sup
ported by the BSE images and EMPA maps (Fig. 5h-k and 8). As shown in 
Fig. 5h-k, the diffused and ragged margin of X-Sp2a indicates a disso
lution process (Wu et al., 2019), during which the trace elements in X- 
Sp2a could be released and subsequently reincorporated into X-Sp2b. 
Furthermore, high concentrations of Sn and Cu in X-Sp2a, revealed by 
EMPA maps (Fig. 8), suggest that X-Sp2a could be the source of Sn and 
Cu for stannite. These stannites, thus, can be regarded as the product of 
trace element remobilization that occurred in X-Sp2. 

The absence of Ga-Cu correlation in X-Sp2a also indicates the 
remobilization of Ga (Fig. 10A). Because Ga and In were removed from 
X-Sp2a, the interior correlations between monovalent ions (Cu+ and 
Ag+) and trivalent ions (Ga3+ and In3+) were erased (Fig. 10A), which 
resulted in the isolation of X-Sp2a relative to other Fe-poor sphalerites 
(Fig. 9b). In summary, we propose that the early sphalerite generation 
(X-Sp2a) was first crushed by tectonic activities and then dissolved by 
late-stage fluids (Fig. 13), which led to the release of trace elements in X- 
Sp2a. The relatively high solubility of Ga, In, Sn, and Cu would allow 
them to remain in the fluid during the precipitation of X-Sp2b. Finally, 
Sn and Cu were locally trapped and concentrated in the microfractures 
of X-Sp2a, resulting in the formation of stannite. Relatively high avail
ability of Cu, released from X-Sp2a, promotes the incorporations of In 
and Ga into X-Sp2b. 

5.4. Implication for exploration 

Understanding the distribution and enrichment mechanism of crit
ical metals in deposits is of both scientific significance and high eco
nomic interest (Mondillo et al., 2018b; Torró et al., 2019; Xu et al., 
2021a; Xu et al., 2021b). In this study, it can be concluded that the 
hydrothermal vein-type ores contain more Cd metal than skarn ores in 
the Chitudian deposit, and the best target for Ga is the orebodies close to 
the coal beds of the Meiyaogou Formation, especially for the strongly 
deformed locations. In terms of In, it is generally concentrated in the Fe- 
rich sphalerite proximal to the hydrothermal feeder (e.g., ore-related 
granite) (Wu, 2009; Li et al., 2015; Liu et al., 2018; Chen and Zhao, 
2021; Yang et al., 2022). Whereas, the present study also stressed that 
the tectonic deformation, assisted by fluid overprinting, may play an 
important role in In enrichment (Carvalho et al., 2018; Shimizu and 
Morishita, 2012; Bauer et al., 2019b). In the Chitudian deposit, four 
sphalerite-bearing ores from the deformed orebodies give an average In 
content of 64.4 ppm, which is significantly higher than three unde
formed ores (5.40 ppm in average) (the author’s unpublished data). 
These results suggest that the deformed orebodies are ideal exploration 
targets for In. Since most of the Pb-Zn-Ag deposits in the SNCC are 
structure-controlled, and multiple-stage deformations and mineraliza
tion events have been recognized in these deposits (Gao et al., 2010; Ye, 
2006; Li et al., 2013; Li et al., 2016), the Pb-Zn(-Ag) deposits in the SNCC 
likely have great resource potential for In. 

6. Conclusion  

(1) Five types of sphalerite were identified in the Chitudian deposit. 
LA-ICP-MS data suggested that Mn, Fe, In, Cd, Ge, Ga, and Ag are 
present as solid solutions, whereas Sn, Cu, and Pb occur in solid 
solutions or microscopic inclusions in these sphalerites.  

(2) Critical metals in the Chitudian deposit mainly include Cd, Ga, 
and In. Cadmium is preferentially concentrated in the sphalerite 
from the hydrothermal vein-type orebodies. Indium is mostly 
concentrated in the sphalerite from the granite-proximal ore
bodies and deformed orebodies. The enrichment of Ga is only 
found in the sphalerite from the strongly deformed locations of 
sulfide ore vein, where Ga is derived from the coal beds of the 
Meiyaogou Formation.  

(3) Textural and chemical observations show that trace element 
remobilization plays a significant role in the enrichment of crit
ical metals in the deformed sphalerite. The sphalerite-rich de
posits reworked by late-stage geological events are more 
potential to explore critical metals. 
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Reiser, F.K.M., Rosa, D.R.N., Pinto, Á.M.M., Carvalho, J.R.S., Matos, J.X., Guimarães, F. 
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