
1. Introduction
The Himalayas and Tibetan Plateau region (hereafter, the Himalaya-Tibet) (Figure 1) is home to an extremely 
remote, isolated, and fragile ecosystem (Yao et al., 2012). With an average altitude of more than 4,000 m a.s.l. 
and a sparse human population, much of the region has minimal to nonexistent industrial activities. Yet, the 
Himalaya-Tibet is susceptible to industrial contaminants via long-range atmospheric transport from other regions 
(Kang et  al.,  2019). One of the best examples is mercury (Hg), which is a highly toxic global contaminant 
(AMAP/UNEP,  2018). Rapid economic development in South Asian countries have resulted in considerable 
releases of Hg into the air (∼240 t/yr, or ∼10% of the global anthropogenic Hg emissions) (Burger Chakraborty 
et  al.,  2013; Mukherjee et  al.,  2009). The long life time of atmospheric Hg (0.5–1 year for gaseous elemen-
tal Hg (GEM); 1–2  weeks for gaseous oxidized Hg (GOM) and particulate bound Hg (HgP)) (Schroeder & 
Munthe, 1998) and the Indian monsoon make it possible for Hg pollution to be transported northwards to and 
deposited in the Himalaya-Tibet (Huang et al., 2012, 2015). Lake sediments and ice cores retrieved from high 
elevation of the Himalaya-Tibet could serve as natural archives for documenting the long-term changes of 
atmospheric Hg. Reconstruction of sediment and ice cores has shown that atmospheric Hg deposition over the 
Himalaya-Tibet began to rise at the onset of the Industrial Revolution, followed by a dramatic increase after World 
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remains unknown. In this study, a strong δ 202Hg signature overlapping was found between Lake Gokyo and 
Indian anthropogenic sources, which is an indicative of the Hg source regions from South Asia. Most of the 
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(mean = 0.44‰ ± 0.04‰) before decreased at Lake Qinghai that is under the influence of the westerlies. Our 
results suggest that transboundary atmospheric transport could transport Hg from South Asia northwards to at 
least the Tanglha Mountains in the northern Himalaya-Tibet.
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been suffering transboundary Hg pollution from South Asia. However, the northward extent of this transport 
of atmospheric Hg pollution remains poorly understood. In our study, sediment core Hg isotope compositions 
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least the Tanglha Mountains in the northern Himalaya-Tibet.
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War II (Kang et al., 2016), which could be largely attributed to the enhanced anthropogenic perturbations from 
South Asia (Kang et al., 2019).

Earlier studies have suggested that Indian monsoon intrusion is mainly responsible for the transboundary Hg 
pollution from South Asia to the Himalaya-Tibet (Huang et al., 2016, Huang, Kang, Yin, Lin, et al., 2020; Kang 
et al., 2016, 2019; Yu et al., 2022). However, the extent of Indian monsoon influence on atmospheric Hg transport 
remains unknown. With the breakthrough in Hg isotopic analysis (Bergquist & Blum, 2007), stable Hg isotope 
geochemistry provides a new tool to address this question, as biogeochemical processes fractionate Hg isotopes 
differently (both mass-dependent fractionation (MDF, typically measured as δ 202Hg) and mass-independent 
fractionation (MIF, typically measured as Δ 199Hg) (Blum & Johnson, 2017; Blum et al., 2014). Recent studies 
has reported historical changes in Hg isotope compositions from the Himalaya-Tibetan lake sediments (Gokyo 
(Huang, Kang, Yin, Lin, et al., 2020) Namco and Qinghai (Yin, Feng, et al., 2016)), and linked those changes to 
variations in Hg sources, pathways and processes (Huang, Kang, Yin, Lin, et al., 2020; Yin, Feng, et al., 2016). 
For example, δ 202Hg signature overprinting in the Lake Gokyo sediments indicate the Hg source regions from 
South Asia, and positive Δ 199Hg values in sediments imply that wet Hg deposition is the dominant pathway for 
sedimentary Hg accumulation (Huang, Kang, Yin, Lin, et al., 2020).

Building on these studies and the measured Hg isotope data from Lake Tanglha (Figure 1), here we explore sedi-
ment core Hg isotope compositions from four lakes along a southwest-northeast transect in the region to better 
understand the northward extent of atmospheric Hg pollution from South Asia. The main objective of our study 

Figure 1. A map of the Himalaya-Tibet, showing locations of Lakes (1) Gokyo, (2) Namco, (3) Tanglha, and (4) Qinghai along a transboundary southwest-northeast 
transect. Also shown are the general patterns of atmospheric circulation systems. The purple line shows the northern boundary of the India monsoon based on seasonal 
δ 18O changes in precipitation (Tian et al., 2007), which divides the Himalaya-Tibet into the monsoon-influenced region in the south and the westerlies-influenced region 
in the north.
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was to use Hg isotope signatures to constrain the northward extent of transboundary Hg pollution, which is criti-
cally needed for the assessment and management of air pollution in the Himalaya-Tibet. Such information could 
provide critical insights for more effective mitigation actions on transboundary Hg pollution from South Asia.

2. Materials and Methods
2.1. Study Area and Sediment Coring

The Himalaya-Tibet, known as the “roof of the world,” is one of the most imposing topographic features on 
Earth. The large-scale atmospheric circulation patterns over this region can be generally characterized by the 
monsoon-influenced region in the south and the westerlies-influenced region in the north (Figure 1).

Four high-altitude lakes were selected to study Hg transboundary transport along a 1,600-km-long transect 
over the Himalaya-Tibet (Figure 1). They include, from southwest to northeast, Lake Gokyo (4,750 m a.s.l.) in 
the Gokyo Valley of the Sagarmatha (Everest) National Park, Nepal, in central Himalayas, and Lakes Namco 
(4,710 m a.s.l.), Tanglha (5,152 m a.s.l.), and Qinghai (3,194 m a.s.l.) on the Tibetan Plateau in China (Table 
S1 in Supporting Information S1). The distance is ∼500 between Gokyo and Namco, ∼300 between Namco and 
Tanglha, and ∼800 km between Tanglha and Qinghai.

Sediment cores were retrieved from a deep site of the lakes (∼43, 90, 5, and 25 m for Gokyo (retrieved in 2008), 
Namco (2009), Tanglha (2011), and Qinghai (2006), respectively, using an HTH gravity corer fitted with an 
8.5 cm inner diameter polycarbonate tube. The Gokyo (core length: 18.5), Namco (∼21), Tanglha (∼15), and 
Qinghai (∼7 cm) cores were sectioned at a vertical resolution of 0.5 cm for the upper 1/3 portions and 1 cm for 
the lower 2/3 portions using a stainless steel slicer. The sediment chronology of the cores was constructed by 
measuring radionuclide  210Pb, using an ORTEC HPGe GWL series well-type coaxial low background intrinsic 
germanium detector; the dating results were reported earlier (Kang et al., 2016; X. Wang et al., 2010). A brief 
introduction of the lakes is provided in Text S1 in Supporting Information S1. More details about the study area, 
lake properties, and sediment coring can be found elsewhere (Kang et al., 2016; X. Wang et al., 2010; Yin, Feng, 
et al., 2016).

2.2. Measurement of Isotopic Composition

Hg concentrations and accumulation rates in all the sediment cores (Gokyo, Namco, Tanglha, Qinghai) are 
briefly presented in Figure S1 and Text S2 in Supporting Information S1 and in details in earlier publications 
(Kang et al., 2016; X. Wang et al., 2010). Hg isotope compositions of the sediment cores from three of the lakes 
were also reported earlier: Gokyo (Huang, Kang, Yin, Lin, et al., 2020), and Namco and Qinghai (Yin, Feng, 
et al., 2016). In this study, Hg isotope compositions of the sediments from Lake Tanglha were analyzed following 
the methodology described in Yin, Krabbenhoft, et al. (2016). In brief, about 0.2–0.5 g of a freeze-dried sediment 
sample was digested by 5 mL aqua regia (HCl:HNO3 = 3:1, v:v) at 95°C for 6 hr in a digestion block. The digested 
samples were diluted to 0.3–0.5 ng mL −1 Hg in 10%–20% aqua regia before isotope analysis on a Neptune-Plus 
Multi-collector inductively coupled plasma-mass spectrometer (MC-ICP-MS). The certified reference sediment 
material MESS-1 from National Research Council Canada were digested in the same way and analyzed for qual-
ity assurance.

The δ 202Hg, Δ 199Hg, Δ 200Hg, and Δ 201Hg values were calculated relative to the Hg standard solution of NIST SRM 
3133 (Bergquist & Blum, 2007). For Lake Tanglha, we also analyzed the UM-Almadén as a secondary standard. 
The results for MESS-1-referenced values (δ 202Hg: −1.86‰ ± 0.08‰ (mean ± 2SD); Δ 199Hg: 0.01‰ ± 0.04‰; 
Δ 200Hg: 0.01‰ ± 0.02‰; Δ 201Hg: −0.02‰ ± 0.04‰; n = 3) and UM-Almadén-referenced values (δ 202Hg: 
−0.52‰ ± 0.08‰; Δ 199Hg: −0.01‰ ± 0.03‰; Δ 200Hg: 0.00‰ ± 0.02‰; Δ 201Hg: −0.02‰ ± 0.03‰; n = 9) 
were consistent with previous reported values for Lakes Gokyo, Namco, and Qinghai sediments (Huang, Kang, 
Yin, Lin, et al., 2020; Yin, Feng, et al., 2016).

3. Results and Discussion
3.1. Hg Concentration and Accumulation Rate

The average of Hg concentrations and accumulation rates for the four lake sediment cores are shown in Table 
S1 in Supporting Information S1. Average Hg concentrations in the lake sediments (range: 18.8–30.5 ng g −1; 
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Table S1 in Supporting Information S1) are comparable to those observed in topsoils of the Tibetan Plateau 
(∼37 ng g −1) (Sheng et al., 2012). Averages of sedimentary Hg accumulation rate measured varied from 9.2 ± 7.0 
(Qinghai) to 21.9 ± 12.2 μg m −2 yr −1 (Gokyo), generally decreasing from the southwest (21.9 μg m −2 yr −1 in Lake 
Gokyo) that is in close proximity to South Asian Hg source regions to the northeast (9.2 μg m −2 yr −1 in Qinghai).

3.2. Hg Isotopic Compositions: MDF Records

As shown in Figure 2, sediment samples from the four lakes were generally characterized by negative δ 202Hg 
values (means = −0.42‰ to −3.84‰, n = 4), with large variations among the lakes. The δ 202Hg values at Gokyo 
(mean = −0.42‰ ± 0.57‰, 2SD, n = 25) were much higher than those at Namco (mean = −3.58‰ ± 0.69‰, 
2SD, n = 34), Tanglha (mean = −2.77‰ ± 0.78‰, 2SD, n = 19), and Qinghai (mean = −3.84‰ ± 0.46‰, 
2SD, n = 11). In general, the fractionation of anthropogenic Hg isotopes are expected to be less affected during 
long-range transport from the source regions of South Asia to Lake Gokyo (linear distance ∼50  km) when 
compared to those of Lakes Namco (>500), Tanglha (>800), and Qinghai (>1,600 km) (Figure 1), which have 
traveled far away from the upwind anthropogenic sources. Therefore, a δ 202Hg signature overlapping was found 
between Lake Gokyo and Indian anthropogenic sources due to its very close proximity to Lake Gokyo (Figure 2), 
most likely implying the direct input of atmospheric Hg pollution from South Asia.

In contrast, the δ 202Hg signatures of Lakes Namco, Tanglha, and Qinghai are markedly different from those 
of the South Asian sources (Figure  2). The δ 202Hg signatures among these three lakes are indistinguishable 

Figure 2. The extent of Hg mass-independent fraction (expressed as Δ 199Hg) plotted against that of mass-dependent 
fractionation (expressed as δ 202Hg) in the sediments from Lakes Gokyo (Huang, Kang, Yin, Lin, et al., 2020), Namco (Yin, 
Feng, et al., 2016), Tanglha (this study), and Qinghai (Yin, Feng, et al., 2016). Hg isotopic compositions in the Tibetan 
precipitation (Yuan et al., 2015) and soil (X. Wang et al., 2017), and from Indian anthropogenic sources (Das et al., 2016; R. 
Sun et al., 2014) are also plotted for comparison.
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without spatial distribution differences (Figure 2). This could be attributed to 
the fact that δ 202Hg signatures from anthropogenic sources are known to be 
greatly shifted by many environmental processes during long-range transport 
including reduction/oxidation, evaporation, volatilization and sorption (Blum 
et al., 2014). These complicated processes would have resulted in a combined 
effect on the δ 202Hg spatial variations in the sediments of Lakes Namco, 
Tanglha, and Qinghai (Figure 2). This also makes it difficult to discern the 
major factors driving the observed differences of δ 202Hg variations in our 
studied lakes at this time.

3.3. Hg Isotopic Compositions: MIF Records

In contrast to Hg-MDF signatures, MIF Hg isotopes are thought to be trig-
gered by photochemical reactions only (Bergquist & Blum, 2007; J. Chen 
et  al.,  2012; G. Sun et  al.,  2016), thus providing a powerful tool to trace 
atmospheric Hg transport processes. As seen in Figure 2, most of the sedi-
ment samples from the four lakes were characterized by positive Δ 199Hg 
values (mean = 0.07‰–0.44‰, n = 4). As discussed in the previous studies 
(Huang, Kang, Yin, Lin, et  al.,  2020; Yin, Feng, et  al.,  2016), Hg enters 

the high-altitude lakes over the Himalaya-Tibet mainly through atmospheric deposition and watershed input of 
terrestrial soils. Terrestrial soils, which primarily accumulate Hg(0) through litterfall and/or direct deposition of 
Hg(0), are generally characterized by negative Δ 199Hg values (Obrist et al., 2017; X. Wang et al., 2017), while 
wet scavenging of oxidized/aerosol Hg species from the atmosphere is generally characterized by positive Δ 199Hg 
values (J. Chen et al., 2012; Z. Wang et al., 2015; Yuan et al., 2015). The geogenic Hg sources such as chemical 
weathering are generally characterized by zero Δ 199Hg value due to the lack of photochemical reactions (Blum 
et al., 2014). As most sediment samples are characterized by positive Δ 199Hg values (Figure 2), it is deduced 
that atmospheric Hg deposition through precipitation appears to play a more important pathway for sedimentary 
Hg accumulation. Our earlier studies have implied that Hg in sediments from Gokyo, Namco, and Qinghai is 
derived predominantly from atmospheric wet Hg deposition with positive Δ 199Hg values (Huang, Kang, Yin, 
Lin, et al., 2020; Yin, Feng, et al., 2016). Large positive Δ 199Hg values were also observed in the sediments 
of Lake Tanglha in this study (Figure 2), confirming the important role of atmospheric Hg deposition through 
precipitation. MIF of even-mass Hg isotopes has been widely observed in environmental samples generally with 
positive Δ 200Hg in precipitation (J. Chen et al., 2012; Gratz et al., 2010), though the mechanism for MIF of  200Hg 
remains unclear (Blum et al., 2014; Cai & Chen, 2016). Most of the Δ 200Hg in sediment samples were charac-
terized by small positive values (Gokyo, mean = 0.03‰ ± 0.04‰; Namco, mean = 0.06‰ ± 0.01‰; Tanglha, 
mean = 0.04‰ ± 0.02‰; Qinghai, mean = 0.08‰ ± 0.01‰), further supporting the importance of wet Hg 
deposition in our study area.

More importantly, our results show large variations of Hg-MIF signatures along the transboundary 
southwest-northeast transect. As shown in Figure 3, there is an increasing trend of positive Δ 199Hg values from 
Gokyo (mean = 0.07‰ ± 0.06‰, 2SD, n = 25) to Tanglha (mean = 0.44‰ ± 0.04‰, 2SD, n = 19) except for 
Qinghai (mean = 0.25‰ ± 0.04‰, 2SD, n = 11) (more discussion below). A recent compilation of Hg isotopic 
signatures has demonstrated that atmospheric Hg emitted from anthropogenic sources worldwide is generally 
characterized by average Δ 199Hg values of −0.06‰ to −0.04‰ (R. Y. Sun et al., 2016). Similarly, a previous 
study in industrialized and urbanized Kolkata in Northeastern India has reported near zero Δ 199Hg values in 
air (Das et al., 2016). This is consistent with the observed Δ 199Hg (mean = 0.07‰) in the Gokyo sediments 
(Figure 2), indicating that strong anthropogenic emissions from South Asia drive Hg isotopic composition toward 
low Δ 199Hg values. In contrast, Δ 199Hg values of most sediment samples in the other three lakes (mean = 0.29‰, 
2SD, n = 64) are more largely positive than anthropogenic emissions (close to zero Δ 199Hg value) (Figures 2 
and 3) (Das et al., 2016; R. Sun et al., 2014), indicating important roles of atmospheric transformations.

Atmospheric HgP could be derived from anthropogenic emission sources and/or produced from the oxidation of 
GEM on particulate surfaces and in gas phase followed by gas-particle partitioning (Amos et al., 2012; Ariya 
et  al.,  2015). In the monsoon-influenced region, the latter is expected to have a lesser effect on atmospheric 
HgP concentrations for several reasons: (a) increased precipitation during the monsoon period could effectively 

Figure 3. Spatial variations of mean Δ 199Hg values in the four lake sediment 
cores along a transboundary southwest-northeast transect. Data of Hg isotope 
compositions are available through Huang, Kang, Yin, Lin et al. (2020) 
(Gokyo sediment core) and Yin, Feng et al. (2016) (Namco and Qinghai 
sediment cores).
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remove atmospheric particulates, resulting in lower concentrations of particulate matter in the air; (b) the wide-
spread glacier and snow cover exist in the monsoon-influenced region (Yao et al., 2019) may hamper particulate 
emissions from the surface soil, and the formations of snow or ice crystals in the cryospheric environments could 
facilitate the scavenging of atmospheric Hg (Douglas & Blum, 2019; Douglas et al., 2008); and (c) the monsoon 
climate in cold Himalaya-Tibet could further restrict particulate emissions from the cold and wet surface (Yao 
et al., 2019). This is supported by the extremely low dust emissions (∼29 Tg yr −1, S. Chen et al., 2014) in the 
Himalaya-Tibet, which is about ∼8% of natural dust emissions from arid desert areas in the westerlies-influenced 
region (∼367  Tg  yr −1, S. Chen et  al.,  2017). The extremely high atmospheric HgP concentrations have been 
reported in South Asia (e.g., 159–408 pg m −3, Kolkata, India (Das et al., 2016); 120–1,855 pg m −3, Kathmandu, 
Nepal (Guo et al., 2017, 2021)), supporting anthropogenic emissions from South Asia could be the main sources 
of atmospheric HgP to the Himalaya-Tibet.

Numerous studies from the Himalaya-Tibet have suggested that atmospheric Hg deposition is primarily associ-
ated with particulate matter (Loewen et al., 2007; Q. Zhang et al., 2012), and HgP is the dominant form of Hg 
in precipitation (∼78.4%, Huang et al., 2022). Below-cloud scavenging of HgP is thus an important mechanism 
contributing atmospheric Hg to wet deposition (Huang et al., 2012, 2013). These findings further support that the 
transboundary-transported HgP could be the primary source to our studied lake sediments. As shown in Figure 
S2 in Supporting Information S1, sediments from the four lakes yield a slope of 0.99 for the Δ 199Hg/Δ 201Hg ratio, 
which is consistent with the value reported during aqueous Hg(II) photoreduction (Blum et al., 2014). Photore-
duction of Hg(II) in atmospheric particulate matter is thus most likely responsible for the positive Δ 199Hg values 
at our study sites (Bergquist & Blum, 2007; K. Zhang et al., 2022; Zheng & Hintelmann, 2009).

Previous studies have demonstrated that anthropogenic pollution plumes from South Asia need to travel a long 
time (several days) before arriving to northern part of the Himalaya-Tibet (Lüthi et al., 2015; Xia et al., 2011), and 
a significant fraction of atmospheric HgP is lost via photoreductions during long-range transport (Fu et al., 2019). 
These processes would have facilitated atmospheric HgP transformations with a significant positive shift of 
Δ 199Hg in atmospheric HgP, given the dramatic MIF factors induced by photochemical reduction as determined 
by previous experiments (Bergquist & Blum, 2007). Thus, atmospheric HgP to the northwest would have under-
gone more extensive photochemical reduction before being scavenged in wet precipitation (Figure  2), which 
could explain the more positive Δ 199Hg values in northern lake sediments (Figure 3).

It should be noted, however, that atmospheric HgP in our study area might also be affected by atmospheric 
transport processes that could affect the Hg MIF signatures (e.g., photoreduction of gas-phase Hg(II)), the 
mechanisms of which remain poorly understood (Cai & Chen, 2016; Fu et al., 2019; Saiz-Lopez et al., 2018). 
Moreover, several important environmental processes within the lake could also influence the Δ 199Hg isotopic 
compositions in the lake sediment. Some of these processes include transformations of Hg in water column 
(e.g., Kurz et al., 2019; Motta et al., 2019), bioaccumulation and biomass depositions in aquatic system (Kwon 
et al., 2020; Tsui et al., 2020), biologically influenced Hg morphological transformation (Ridley & Stetson, 2006; 
Yin et  al., 2014) as well as formation and melting of the seasonal lake ice cover in aquatic system (Masbou 
et al., 2015; Point et al., 2011) and the isotopic compositions of legacy of Hg through remobilization in lake 
catchment (Janssen et al., 2021; R. Sun et al., 2022). For example, the transformations of Hg in water column may 
be expected to have less effect on our MIF-Hg signatures because of the shallow lake water depths (e.g., ∼5 m 
in Lake Tanglha) in our lake deposits. This could facilitate a rapid settlement of atmospheric HgP deposition and 
conservation of the Δ 199Hg isotopic compositions from atmospheric Hg source (Lepak et al., 2015). Unfortu-
nately, the extent and relative importance of most of these environmental processes on the isotopic compositions 
are unknown at this time due to the lack of data, and more studies on potential processes affecting the MIF-Hg 
isotopes in lake sediment are needed.

3.4. Northward Extent of Atmospheric Hg Transboundary Transport

On the basis of the presumed lack of Δ 199Hg fractionation during above-mentioned environmental processing, 
Δ 199Hg values in lake sediments may provide a new tool to determine the northward extent of atmospheric Hg 
transboundary transport from South Asia. As shown in Figure 3, the Δ 199Hg values in lake sediments increase 
progressively with distance from southwest to northeast, peaked at Lake Tanglha, before at Lake Qinghai. Previ-
ous studies based on seasonal δ 18O changes have suggested that the Tanglha Mountains (∼34°–35°N) in the 
northern Himalaya-Tibet Plateau is the northward maximum extent of Indian monsoon penetration (Figure 1) 
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(Tian et al., 2007). As Lake Tangla is located at ∼33°N, and Lake Qinghai 
∼36.5°N, our results not only support this northward maximum extent of 
Indian monsoon, but also establish that Hg originated from South Asia can 
be transported northwards up to the Tanglha Mountains.

The decrease in Δ 199Hg values in sediments of Lake Qinghai is due to the 
influence of the westerlies instead of the Indian monsoon. The upwind 
anthropogenic Hg source of Lake Qinghai are in European and Central Asian 
countries that have shown a significant decreasing trend of anthropogenic Hg 
emissions during the past several decades (Muntean et al., 2018; J. M. Pacyna 
et al., 2009). Its impact on the Δ 199Hg values of Lake Qinghai sediments is 
thus much smaller than that of the South Asian Hg sources on the other three 
lakes. Instead, the lower Δ 199Hg values in sediments of Lake Qinghai suggest 
the dominance of natural Hg sources from the vast desert and semidesert 
areas to its west (Figure 1). This region produces enormous amount of dust 
(∼367  Tg/yr, S. Chen et  al.,  2017) which is characterized by high atmos-
pheric HgP concentrations (e.g., ∼250  pg  m −3 in the Taklimakan Desert; 
Huang, Kang, Yin, Ram, et al., 2020), resulting in a total atmospheric HgP 
flux of ∼60 Mg/yr (Huang, Kang, Yin, Ram, et al., 2020). Dust-sourced HgP 
is known to have lower Δ 199Hg values (Fu et al., 2019), which would explain 
the drop in Δ 199Hg values in the sediments from Lake Qinghai. Whereas 
a significant correlation is found between Hg concentrations and Δ 199Hg 
values in sediments from Lakes Gokyo, Namco, and Tanglha (p < 0.05), the 
correlation is insignificant in Lake Qinghai (p = 0.15) (Figure S3 in Support-
ing Information S1), further supporting that Lake Qinghai is influenced by 
different Hg sources and processes than the other three lakes.

3.5. Summary and Implications

It has been shown that Indian monsoon intrusion drives intensive anthro-
pogenic Hg emissions from South Asia to the Himalaya-Tibet (Kang 

et al., 2016, 2019), and that wet scavenging of atmospheric Hg by monsoon precipitation is an important pathway 
for Hg accumulation in lake sediments in the region (Huang, Kang, Yin, Lin, et al., 2020). By examining Hg 
isotopic compositions in lake sediments, our study shows that the northward extent of transboundary Hg pollution 
from South Asia could reach the Tanglha Mountains in the northern Himalaya-Tibet (Figure S4 in Supporting 
Information S1). Moreover, positive shifts of Hg-MIF signatures along this transect appeared since the Industrial 
Revolution (Figure  4), indicating that such transboundary Hg pollution has been operating since then. Since 
anthropogenic Hg emissions from South Asia are projected to increase despite the Minamata Convention (E. 
G. Pacyna et al., 2010; Streets et al., 2009), and precipitation in the monsoon-influenced region is projected to 
increase (by ∼10% in 2015–2050 relative to 1961–1990; D. Chen et al., 2015), the loadings of Hg to the southern 
Himalaya-Tibet region will likely further increase. Although our study suggests that the Himalaya-Tibet region 
acts as a receptor site for the transboundary Hg pollution from South Asia through Indian monsoon, several 
important environmental processes such as bioaccumulation, biomass depositions and transformations of Hg 
within the water column as well as weathering of soil and their isotopic compositions can significantly influ-
ence Hg budget in the lake sediments. Therefore, more Hg isotope data are required to establish our preliminary 
findings on transboundary transport in southwest-northeast transect and to better understand the sources and 
processes affecting isotopic compositions and Hg budget in the lake sediments. Further studies are also needed to 
better assess how the fragile alpine and cryospheric ecosystems would respond to such increases in transboundary 
transport of Hg from South Asia in a changing climate.

Data Availability Statement
Supporting data for Hg isotope compositions in the Lake Tanglha sediment core available from https://doi.
org/10.7910/DVN/9YFDML.

Figure 4. Historical changes of Δ 199Hg values in the profiles of the sediment 
cores from the Lakes Gokyo, Namco, Tanglha, and Qinghai. Gray bar 
represents the Industrial Revolution period. Data of Hg isotope compositions 
are available through Huang, Kang, Yin, Lin et al. (2020) (Gokyo sediment 
core) and Yin, Feng et al. (2016) (Namco and Qinghai sediment cores).
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