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Abstract To investigate the role of sulfuric acid-based

carbonate weathering in global CO2 sequestration of cli-

mate changes, we systematically discussed the pathway of

sulfuric acid in rock chemical weathering and its feedback

mechanism for global warming. We showed the methods

used to determine the accurate amount of sulfate flux,

accounting for the sulfuric acid resulted from sulfide oxi-

dation. Finally, we pointed out some prospects for further

detailed work on the exact calculation of the sulfate fluxes

for the CO2 net-release.
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1 Pathway

The level of atmospheric CO2 is an important issue for global

warming. The atmospheric/soil CO2 consumption by rock

chemical weathering causes negative feedback (Walker et al.

1981). On geological time scales (Multimillion years, Ma),

chemical weathering of silicate rocks has a key role in reg-

ulating the level of atmospheric CO2 (Hartmann et al. 2009).

Atmospheric/soil CO2 consumption by rock weathering is

estimated to be 258–288 Mt C a-1 at present day of which

silicate weathering proportions range from 49% to 60%

(Amiotte Suchet et al. 2003; Gaillardet et al. 1999).

There are two distinctive pathways of rock chemical

weathering associated with atmospheric/soil CO2 seques-

tration (Beaulieu et al. 2011; Calmels et al.et al. 2007; Li

et al. 2008; Spence and Telmer 2005).

1.1 Carbonic acid-based weathering

CO2 # þH2Oþ CaCO3 ! 2HCO�
3 þ Ca2þ ð1Þ

2CO2 # þCaSiO3 þ 3H2O ! 2HCO�
3 þ Ca2þ þ H4SiO4

ð2Þ

2NaAlSi3O8 þ 2CO2 # þ11H2O

! Al2Si2O5 OHð Þ4þ2Naþ þ 2HCO�
3

þ 4H4SiO4

ð3Þ

1.2 Sulfuric acid-based weathering

4FeS2 þ 15O2 þ 8H2O ! 2Fe2O3 þ 8H2SO4 ð4Þ

8H2SO4 þ 16CaCO3 ! 8SO2�
4 þ 16HCO�

3 þ 16Ca2þ

ð5Þ

8H2SO4 þ 8CaSiO3 þ 8H2O ! 8SO2�
4 þ 8Ca2þ

þ 8H4SiO4 ð6Þ

When dissolved constituents of these reactions are

transported to the oceans by river water, carbonate minerals

will be precipitated along with the release of CO2 as shown

in Eq. 7:

2HCO�
3 þ Ca2þ ! CO2 " þH2Oþ CaCO3 # ð7Þ

Because the residence time of bicarbonate (HCO3
-) in

the ocean is estimated to be 0.083 Ma, carbonate
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weathering and deposition must be balanced on roughly the

same time scale (*105 year) (Hartmann et al. 2009). Over

this time scale, carbonic acid-based weathering of car-

bonate rocks has no net-sink of consumed atmospheric CO2

(Eqs. 1 and 7). However, calcium feldspar and albite have

nearly 50% and 100% net-sink of consumed atmospheric

CO2 (Eqs. 2, 3 and 7), respectively (Hartmann et al. 2009).

The marine residence time of SO4
2- (10 Ma), (Beaulieu

et al. 2011) is two orders of magnitude greater than that of

HCO3
- (0.1 Ma). Therefore, the rate of removal of SO4

2-

is slow compared to the rate of removal of HCO3
- and

sulfuric acid-based weathering of carbonate rocks has a

net-release of CO2 into the atmosphere (Eqs. 5 and 7)

(Beaulieu et al. 2011). However, sulfuric acid-base

weathering of calcium feldspar and albite has no effect on

the balance of atmospheric CO2 sequestration (Eq. 6).

Therefore, sulfuric acid-based weathering of carbonate

rocks has a long-term effect on the amount of atmospheric

CO2 and has an important role in global warming. Con-

sidering this aspect, many researchers have conducted

studies to illustrate the mechanism of this process by lab-

oratory and field experiments (Beaulieu et al. 2011; Cal-

mels et al. 2007; Han et al. 2010; Li et al. 2008, 2011).

2 Methods

To accurately define this sulfuric acid-based weathering and

determine the consequence for global CO2 sequestration,

two key methods have often been used to identify the source

of sulfuric acid in river water and calculate the proportion of

sulfuric acid responsible for the net-release of CO2.

2.1 Forward modeling

The initial purpose of forward modeling is to calculate the

accurate contribution of silicate weathering in atmospheric

CO2 sequestration (Gaillardet et al. 1999), but we can also

use this modeling to obtain the ratio of sulfate from sulfuric

acid in river water. The principle of forward modeling is

that dissolved components in river water are all derived

from dissolution of carbonate rocks, silicate rocks, atmo-

spheric wet deposition, sulfide oxidation, gypsum, and

anthropogenic effluents as described in Eq. (8):

X½ �River ¼ X½ �Carbonateþ X½ �Silicateþ X½ �Sulfideþ X½ �Gypsum
þ X½ �Anthropogenþ X½ �Atmosphere

ð8Þ

where [X] represents the dissolved components in river

water. Atmospheric wet deposition constituents should be

confirmed first to calculate the other components. After we

obtained the actual rainwater chemical compositions in

background station, we calculated the exact ratios of

respective component concentrations in rainwater to chlo-

ride (Cl-) concentration because of its conservative

behavior. The ratios were chosen to quantify the contri-

bution of rainwater into river water as discussed below.

It was assumed that chloride in river water was totally

derived from atmospheric deposition, halite, and anthro-

pogenic activities. The head stream of river water had less

anthropogenic activities, so if there was no obvious halite

existing, chloride could be assumed to only be derived

from atmospheric wet deposition. Other components from

atmospheric deposition in river water could be calculated

by the ratios to chloride (Table 1). After calculating the

contribution of atmospheric deposition, other contributions

could similarly be determined by ratios within different

sources (see below Table 1).

It is worth to note that atmospheric deposition has dif-

ferent ion ratios at different stations due to variable geol-

ogy and climate (Table 1), so only the local rainwater

ratios could be used to verify the contribution of rainwater

to river water. Based on different ratios of dissolved sulfate

compared to sodium (Na) in different sources, contribu-

tions of sulfate ions in river water from atmospheric

deposition, sulfide, and gypsum could be obtained. There-

fore, the net-release of CO2 could be calculated as Eq. (9):

CO2�Sulf�carb ¼ 0:5½HCO3�Sulf�carb ¼ ½SO4�Sulf ð9Þ

2.2 Dual sulfate isotopes

The dual sulfate isotope method is very beneficial in identi-

fying the sources of sulfate in river water and is valid in many

rivers in the world (Brenot et al. 2007; Calmels et al. 2007; Li

et al. 2011, 2013, 2015; Otero et al. 2008; Yuan and Mayer

2012). To exactly determine contributions of sulfuric acid

from oxidation of sulfide minerals and SO2, the sulfate from

dissolution of gypsum and agriculture fertilizers must be

excluded. Sulfur and oxygen isotopes of gypsum usually have

values from ?10% to ?30% and from ?10% to ?20%,

respectively (Calmels et al. 2007). Agriculture fertilizers have

wide sulfur and oxygen isotope values due to the application

of sulfide and gypsumminerals (Zhang et al. 2015a), so local

fertilizers must be sampled to know the range of dual sulfate

isotope values. Sulfide minerals also have a wide range of

sulfur isotope compositions from -20% to ?10% (Calmels

et al. 2007) but obviously different from those of gypsum,

which allows us to calculate the contribution of sulfide oxi-

dation as in the following equations:

½SO4�River ¼ a � ½SO4�Atmosphere þ b � ½SO4�Sulfide
þ c � ½SO4�Gypsum

ð10Þ

d34SRiver ¼ a � d34SAtmosphere þ b � d34SSulfide
þ c � d34SGypsum

ð11Þ
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1 ¼ aþ bþ c ð12Þ

where a, b, c parameters are individual proportions of

atmospheric, sulfide and gypsum sulfate, and the sum of a,

b, c is equal to 1. The sulfate concentration and the dual

isotope compositions of atmospheric deposition could be

determined by annual sampling or references from nearby

meteorological stations. Dual isotope compositions of

gypsum often fall into a narrow range scale (e.g. ?16%
and ?12% for sulfur and oxygen isotopic values of gyp-

sum in Yalong River Basin, (Li et al. 2014)). It is worth

noting that sulfide oxidation has two distinctive pathways

illustrated as Eqs. 13 and 14 (Calmels et al. 2007; Li et al.

2014):

FeS2 þ
7

2
O2 þ H2O ! Fe2þ þ 2SO2�

4 þ 2Hþ ð13Þ

FeS2 þ 14Fe3þ þ 8H2O ! 15Fe2þ þ 2SO2�
4 þ 16Hþ

ð14Þ

Sulfate derived from Eq. 13 was expected to have

heavier oxygen isotope values, but those from Eq. 14

tended to have lighter oxygen isotope values due to d18O of

O2 being generally heavier than that of H2O.

With the above equations, we could calculate the

accurate proportion of sulfate from sulfide oxidation, and

then the CO2 net-release from carbonate weathering by

sulfuric acid could also be obtained by Eq. 9.

3 Results

We have summarized the calculations of CO2 net-release

into atmosphere by sulfuric acid in carbonate wreathing

and compared it to the CO2 consumed by carbonate and

silicate weathering by carbonic acid (Table 2).

From Table 2, it was found that in some river basins the

amount of CO2 net-released from carbonate weathering by

sulfuric acid exceeded the amount of CO2 consumed by

silicate weathering by carbonic acid, e.g. Qin River,

Wuyang River, Nanpan River, Jinshajiang, Lancangjiang

and Nujiang. In some silicate-dominated areas, the amount

of CO2 net- released from sulfuric acid-based carbonated

weathering was less than the amount of CO2 consumed by

carbonic acid-based silicate weathering due to the lack of

carbonate rocks. Although most of the results in Table 2

were calculated by forward modeling and the results may

have some uncertainties, it still could be believed that the

amount of CO2 net-released from carbonate weathering by

sulfuric acid was considerable and should be seriously

reassessed when balancing the global CO2 sequestration.

3.1 Prospect

It is a vital step to accurately identify sulfuric acid derived

from sulfide oxidation by forward modeling or dual sulfate

isotope for global CO2 sequestration. However, sulfate

behaviors are very complicated in river systems, and sev-

eral important aspects are not well understood yet and more

attention must be paid to:

3.1.1 Spatial and temporal variations of dissolved sulfate

sources in river water

Dissolved sulfate has different sources in different seasons

during which the atmospheric deposition and groundwater

supply appear to have significantly variable characteristics.

Detailed sampling should be considered, e.g. once a month,

to more accurately determine the sulfate flux derived from

sulfide oxidation to the ocean.

3.1.2 Further study on the behavior of DIC during sulfuric

acid-based carbonate weathering

Many studies have used the carbon isotope of DIC to

determine the process of sulfuric acid in carbonate

weathering. If the carbon in DIC was derived from car-

bonate rocks, carbon isotope values of DIC should show

more positive than the average value of DIC derived from

carbonic acid and carbonate. However, variations of carbon

Table 1 Common used ratios

for different sources during

forward modeling

Ratios Evaporitesa Carbonatesa Silicatesa Anthropogenica Atmospherica Atmosphericb

Ca/Na 0.17 ± 0.09 50 ± 20 0.35 ± 0.5 0.00 2 ± 1 4.18 ± 2.58

Mg/Na 0.02 ± 0.01 20 ± 12 0.2 ± 0.1 0.00 0.7 ± 0.3 0.69 ± 2.58

K/Na 0.00 0.00 0.17 ± 1 0.2 ± 1 0.4 ± 1 0.44 ± 0.23

Cl/Na 1.00 0.00 0.00 2 ± 2 1 ± 1 0.92 ± 0.52

NO3
-/Na 0.00 0.00 0.00 4 ± 1 1 ± 0.5 0.94 ± 0.43

SO4
2-/Ca 1.00 0.00 0.00 0.00 / /

SO4
2-/Na 0.00 0.00 0.00 5.95 / 3.03 ± 2.04

a From Li et al. (2014)
b From Zhang et al. (2015b)
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isotope values of DIC in river are very complicated and the

positive changes could be induced by many factors, e.g.

CO2 outgassing from over-saturation of carbonate, CO2

outgassing from oxidation of organic carbon, and CO2

releasing from organic acid-based weathering. As we found

in the Qin River Basin, river water mixed with much

sewage water often had more positive carbon isotope val-

ues because of organic acid-based weathering not because

of sulfuric acid-based carbonate weathering (see Zhang

et al. 2015a, b).

3.1.3 More detailed work on sulfide oxidation pathways

As shown in Eqs. 13 and 14, two distinctive pathways hap-

pened during sulfide oxidationwhich resulted in different dual

sulfate isotope values of produced sulfate. The variable dual

sulfate isotope values from sulfide oxidation result in some

difficulties in obtaining the accurate contribution of sulfide

oxidation to dissolved sulfate in riverwater.Which pathway is

dominated and what percent of this pathway accounts for the

sulfate in river water? Sometimes, dual sulfate isotope values

did not workwell, triple oxygen isotopes of sulfate seem to be

used to differentiate themechanismof these twopathwaysdue

to the different capital oxygen-17 isotope values (D17O�SO4

¼ d18O0
�SO4

� 0:5305 � d17O0
�SO4

; where d18O0
�SO4

¼ Ln

ðd18O�SO4
=1000 þ 1Þ, similar with d17O0

�SO4
) in O2 and

H2O. But in fact, the sulfur and oxygen isotope fractionations

occurred during the sulfide oxidation, making it more difficult

to exactly determine the sulfate amount produced by sulfide

oxidation.
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