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A B S T R A C T

To obtain the equation of state of liquid bismuth and its melting curve, ultrasonic velocity measurements were
performed in a multi-anvil apparatus. Using a series of thermodynamic relationships, we extract the volume of
liquid bismuth as functions of pressure and temperature up to 973 K and 4.3 GPa. We also introduce a
calculation process to build the thermal equations of state of each phase of solid bismuth based on their phase
transition boundaries. Combining the thermodynamic parameters of liquid and solid bismuth, we employ the
Gibbs equation and the Clausius-Clapeyron equation and finally derive the melting curve up to 8 GPa, which
shows excellent consistency with most previous theoretical and experimental results. These results not only
demonstrate the accuracy of our experimental and theoretical methods, but also demonstrate the feasibility of
the thermodynamic method for obtaining unknown melting curves.

1. Introduction

Accurate melting curves and high-temperature and high-pressure
(HTHP) equations of state (EOS) of metals have proven to be quite
significant in condensed matter physics and geological research [1–3].
In geophysics and planetary science, it is important to obtain the
behavior especially of iron but also those elements that might alloy with
iron under extreme conditions [4–6]. For instance, thermodynamic
parameters of these metals are used not only to constrain the chemical
composition of the Earth's core, but also to estimate phase boundaries
and thereby infer the temperature and energy budget of the interior of
the Earth [7–9].

Although not directly relevant to geological sciences, a commonly
studied analogue metal for HTHP property research is Bismuth (Bi).
Bismuth is a post-transition metal with a complex phase diagram in the
low temperature and pressure range (including the five solid phases
referred to as I, II, III, IV, and V), which makes it useful both as a
pressure calibrate and as a model system for other metals whose phase
diagrams are less amenable to detailed study [10,11]. Based on
compression in a hydrostatic gas pressure apparatus, Bridgman
originally defined the phase transition pressure for Bi up to ~ 3 GPa

[12]. Incorporating the piston cylinder data of Kennedy and Newton
[13], Klement [10] extended the phase diagram for the solid phase
transitions of Bi to ~ 7 GPa using a double-stage compression device
and differential thermal analysis. Synthesizing this phase diagram and
later studies [14,15], Chen [16] provided a more complete version
which has an accurate III-V boundary.

Following the development of experimental methods that can
achieve more extreme conditions, researchers have begun to concen-
trate on the equation of state (EOS) and the melting curve of Bi over a
wider range of temperature and pressure. For example, the elastic
properties of bcc (body centered cubic) Bi (phase V) have been
measured up to a maximum of 222 GPa [17] with multiple techniques
[17–20]. In parallel, although the crystal structures along the Hugoniot
have not been positively identified, shock compression data define the
shock-induced melting temperature [21–23].

As a supplement to direct experimental determinations, theoretical
calculation is another commonly-used method to determine or extra-
polate equations of state and melting curves. In 1975, Johnson et al.
introduced a method based on the criterion of equal Gibbs energy of
coexisting phases along their phase boundaries [24]. This approach
was used by Cox [25] and Bai et al. [26] to calculate the Bi melting
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curve to 220 GPa. On the other hand, using the semi-empirical
Lindemann melting rule, Mukherjee at al [27] provide the melting
curve of Bi up to the same pressure, but the estimated melting
temperature is lower than that given by Cox.

Overall, previous studies yield an overview of the Bi phase diagram
and behavior across a range of conditions. However, the quantity of
precise data for liquid bismuth, in particular, is surprisingly small.
Most studies of liquid Bi to date have been restricted to either high
temperature at ambient pressure [28–30] or, conversely, to high
pressure but ambient temperature [17,18,20]. In fact, the only
reference for static determinations of parameters of liquid Bi at
simultaneous high temperature and high pressure is Spetzler1l et al.
[31] in 1975, and this study was limited to pressures below 1 GPa. We
note that Umnov et al. [32] observed anomalies in the electrical
conductivity and volume compression of liquid Bi that were attributed
to liquid-liquid phase transitions, but this report has not been
confirmed.

In 1967, Davis and Gordon [33] introduced the analysis of the EOS
based on classical thermodynamic relationships, allowing accurate
determination of volume of a liquid as a function of pressure and
temperature from experimental adiabatic sound velocity. The method
is independent of any knowledge about compression in solid phases.
This EOS analysis has been widely used on various materials. Recently,
its validity in liquid metals was proved by Ayrinhac [34,35], who
showed that the sound velocity as a function of density follows a scaling
law valid across the entire metallic state regime.

In this paper, we report ultrasonic measurements of sound velocity
of liquid bismuth conducted in a multi-anvil apparatus (MAA) at
conditions up to 4.3 GPa and 973 K. Using the experimental data and
the sound velocity analysis method, we deduce the EOS of liquid
bismuth in the measured pressure range and make comparisons with
previous work. Next, given that the solid-solid phase transition
boundaries are well-known, we present a means to derive the thermal
EOS of the solid phases based on their phase boundaries. Finally, we
utilized the EOS of both liquid and solids to calculate the melting curve
of bismuth up to 8 GPa based on equality of the thermodynamic
potential. We find rather good agreement between the calculated result
and available data in the literature, confirming the internal consistency
of the method and parameters.

2. Experimental method

The experiments were performed on a MAA (YL-800 t Guilin
Guiyue Heavy Industries Co. Ltd., China) at the China Academy of
Engineering Physics [36], which has the capability to generate hydro-
static pressure up to approximately 6 GPa. The details of the sample
assembly, given in Fig. 1, were described along with the data recording
method by Song [37] and Xu [36].

The sample we used in this work is a block of bismuth with 99.99%
purity (Alfa). The metal block was cut into small pieces (~
8.5*3.5*2 mm) using diamond wire cutting, then ground to the size
that fits the cavity (3 mm in width, 1.5 mm in depth) in the tungsten

carbide sample holder (8 mm in diameter, 6 mm in length). The cavity
reminds rigid and keeps the liquid sample thickness effectively con-
stant [36], but NaCl pressure medium is able to push on the lateral
ends of the Bi liquid and transmit a hydrostatic pressure to it. The
Alumina buffer (8 mm in diameter, 12 mm in length) and Sodium
chloride tube (8 mm in inner diameter, 10 mm in outer diameter and
18 mm in length) prevent the sample from leaking.

The other parts of the pulse-echo technique measurement system
included a longitudinal wave ultrasonic transducer with 10 MHz center
frequency and a digital oscilloscope (Wave Runner HRO 66Zi, 12-bit,
Teledyne Lecroy, USA), which were used for acoustic signal generation
and recording, respectively. When the ultrasonic wave travels along the
axis, it will be reflected at each interface, so the reflected signals at the
upper and lower interface of the sample could be recorded by the
digital oscilloscope. The time delay between the two echoes, ∆t, is twice
the travel time of the acoustic wave in the sample. The uncertainty in
the travel time measurement is less than 1%. As the sample is confined
between rigid and nearly incompressible tungsten carbide and alumina
parts, the sample thickness ∆x remains effectively constant, and the
velocity of sound in liquid bismuth is given by v = (2 × ∆x)/∆t.

As with all multi-anvil type pressure devices, the calibration of
sample pressure as a function of hydraulic oil pressure and of the offset
between the thermocouple reading and the sample temperature in our
apparatus are critical steps. For that purpose, we measured the
adiabatic sound velocities of liquid bismuth during slow heating at
constant hydraulic oil pressures up to 510 kg/cm2 in 40 kg/cm2

intervals. In order to calibrate the temperature and the pressure,
following the method proposed by Z. Wang [11], we located the melting
temperature at each oil pressures by locating a discontinuity in sound
velocity of bismuth upon heating. Furthermore, at a hydraulic load of
510 kg/cm2, we observed two transitions: the solid-solid transition
from phase IV to V at thermocouple reading 530 K and then melting
from phase V to liquid at 612 K. These two observations provide the
information needed to calibration the thermocouple offset. The tem-
perature difference between the two measured transitions was 82 K.
According to the phase diagram of bismuth given by Chen [16], at
4.26 GPa the IV-V and V-liquid transition temperatures are 525 K and
608 K, respectively, and the temperature interval between them is
82 K. In a steady-state temperature field the thermal gradient between
any two points should be approximately proportional to the tempera-
ture; hence, we assume that the difference between the actual
temperature of the sample (T) and the temperature reading at the
thermocouple (Tthermo) should increase linearly with temperature [11].
Thus, the relationship between T and Tthermo is estimated as
T(K) = 1.012×T (K) − 11.463thermo with a maximum misfit of 1 K. Next,
given the corrected melting temperature data and the phase diagram
from Chen [16], we examined the relationship between the hydraulic
oil pressure (Poil in kg/cm2) and the actual pressure of the sample
(P in GPa) based on the nine observations shown in Table 1. The fitted
regression equation is P = − 2.45×10 × P +0.0101×P −0.15−6

oil
2

oil with a

Fig. 1. Schematic diagram of the pressure assembly in the multi-anvil apparatus.

Table 1
Data used to define thermocouple offset and pressure calibration: melting temperature of
Bi from sound-speed discontinuity, measured by thermocouple at various hydraulic oil
pressure loads, and the corrected temperature and pressure estimates.

Poil Tthermo T P
kg/cm2 K K GPa

130 496 490 1.12
150 488 482 1.31
270 486 480 2.40
310 506 500 2.75
350 531 525 3.08
390 541 536 3.42
430 572 567 3.74
470 604 599 4.06
510 627 623 4.36
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maximum misfit of 0.1 GPa. For the uncertainty of sound velocity, we
have to consider the length change in tungsten carbide groove.
According to the thermal expansion and bulk modulus of tungsten
carbide [38], in our experimental pressure and temperature range, the
length change is less than 1.15%.

3. Results and discussion

3.1. EOS and parameters of liquid Bi under HTHP

The adiabatic sound velocities of liquid bismuth as a function of
pressure along five different isotherms are presented in Table 2 and
Fig. 2. The values of temperature have been corrected using our
thermocouple offset calibration and the pressures are based on the
calibration polynomial derived above. Literature data for sound
velocity of liquid bismuth up to 1 GPa pressure, from Spetzler [31],
are also shown in Fig. 2.

The experimental sound velocity data (93 observations, Table 2)
determined in this study were fitted to a polynomial function along
with zero pressure values from Greenberg [30] (temperature range
544–1000 K):

∑v P T a T P( , ) = ( −273) .
i j ij

i j
, (1)

The coefficients are shown in Table 3. The regression gives
R > 0.9992 and the maximum difference between the original data in
Table 2 and the fitted data using Eq. (1) is less than 0.018 km/s with a
reduced χ = 5.962 , which is similar to the experimental uncertainties in
the original sound velocity data (Table 2). The five coefficients retained
in the fit are the only ones found to be significantly different from zero.

To extract the density of liquid bismuth as a function of tempera-
ture and pressure from our experimental sound velocity data, we follow
the procedure of Ayrinhac [34,35]. The sound velocity v is related to
density ρ through the thermodynamic relationships:
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where ρ is the density, v is the sound velocity, α is the isobaric thermal
expansion, and CP is the isobaric heat capacity per unit mass. To start,
we fit density data at zero pressure between 544 K and 1000 K given by
Stankus [29] to get the expression of density as a function of
temperature at zero pressure ρ P T( , )0 and hence the thermal expansion
at zero pressure using Eq. (2). The values of C P T( , )P 0 from Gronvold
[28] are fitted to a third order polynomial
C T T T= 15.049 + 8.191×10 −1.393×10 + 7.212×10P

−2 −4 2 −8 3 with T in K
and CP in Jmol K−1 −1. Then we can derive the approximate density at an
arbitrary reference pressure using Eq. (3) and the resulting density is
used to update the value of αP and CP at the same pressure with Eqs. (2)
and (4). Iteration of this loop leads to converged values of ρ, αP and CP
at high pressure conditions.

Furthermore, the adiabatic bulk modulus KS and isothermal bulk
modulus KT can be derived as well, using:

K ρv=S
2 (5)

K
K
αγT

=
(1+ )

,T
S

(6)

Table 2
Experimental adiabatic sound velocities of liquid bismuth.

568 K 669 K 770 K 872 K 973 K

P v ± P v ± P v ± P v ± P v ±
GPa km/s GPa km/s GPa km/s GPa km/s GPa km/s

1.12 1.891 0.004 1.12 1.882 0.008 1.12 1.873 0.012 1.12 1.859 0.016 1.12 1.835 0.021
1.31 1.930 0.004 1.31 1.921 0.008 1.31 1.914 0.012 1.31 1.902 0.016 1.31 1.883 0.021
1.50 1.962 0.004 1.50 1.956 0.007 1.50 1.949 0.012 1.50 1.937 0.016 1.50 1.923 0.022
1.68 1.979 0.004 1.68 1.976 0.007 1.68 1.974 0.011 1.68 1.964 0.016 1.68 1.942 0.022
1.86 2.026 0.003 1.86 2.021 0.007 1.86 2.017 0.011 1.86 2.007 0.016 1.86 1.995 0.022
2.04 2.039 0.003 2.04 2.039 0.007 2.04 2.043 0.011 2.04 2.035 0.016 2.04 2.027 0.022
2.22 2.071 0.003 2.22 2.066 0.007 2.22 2.063 0.011 2.22 2.054 0.016 2.22 2.043 0.022
2.40 2.097 0.003 2.40 2.088 0.006 2.40 2.083 0.011 2.40 2.078 0.016 2.40 2.065 0.022
2.57 2.124 0.002 2.57 2.120 0.006 2.57 2.118 0.011 2.57 2.109 0.016 2.57 2.099 0.022
2.75 2.132 0.002 2.75 2.125 0.006 2.75 2.126 0.010 2.75 2.112 0.016 2.75 2.114 0.022
2.92 2.160 0.002 2.92 2.155 0.006 2.92 2.153 0.010 2.92 2.145 0.016 2.92 2.135 0.021
3.08 2.175 0.001 3.08 2.170 0.005 3.08 2.175 0.010 3.08 2.165 0.015 3.08 2.158 0.021
3.25 2.192 0.001 3.25 2.186 0.005 3.25 2.184 0.010 3.25 2.175 0.015 3.25 2.167 0.021
3.42 2.211 0.001 3.42 2.219 0.005 3.42 2.214 0.010 3.42 2.200 0.015 3.42 2.193 0.021
3.58 2.229 0.001 3.58 2.233 0.005 3.58 2.212 0.009 3.58 2.201 0.015 3.58 2.192 0.021

3.74 2.238 0.004 3.74 2.229 0.009 3.74 2.212 0.014 3.74 2.210 0.021
3.90 2.243 0.004 3.90 2.241 0.009 3.90 2.229 0.014 3.90 2.220 0.020
4.06 2.251 0.004 4.06 2.244 0.008 4.06 2.239 0.014 4.06 2.231 0.020
4.21 2.262 0.003 4.21 2.256 0.008 4.21 2.250 0.014 4.21 2.239 0.020
4.36 2.273 0.003 4.36 2.269 0.008

Fig. 2. Adiabatic sound velocity of liquid bismuth along isotherms vs. pressure.
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where γ is the Grüneisen parameter

γ
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2

(7)

Once the relationship between density, temperature and pressure is
obtained, an equation for the molar volume (simply the reciprocal of
density times the atomic weight) can be fitted to a polynomial form

∑V P T b T P( , ) = ( −273) ,
i j ij

i j
, (8)

with R > 0.9992 . The coefficients of this fit are listed in Table 4; again
the six parameters shown are the only ones significantly different from
zero. A tabulated set of all the liquid thermodynamic parameters
obtained is given in Table 5.

To test the validity of the polynomial EOS of liquid bismuth, Eq. (8),
we also fit our results to the third-order Birch-Murnaghan equation of
state (3BM-EOS):
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where R V V= /T P T0, , , with V T0, is the volume at temperature T and zero
pressure andVP T, is the volume at temperature T and pressure P. K T0, is
the isothermal bulk modulus and K ′0 its pressure derivative, both
evaluated at zero pressure. The 3BM-EOS is derived from the finite
strain theory of solids, but it has proven to be a reliable and appropriate
form for interpolating the volume of liquid metals at high pressure as
well [7].

According to Angel [39], K T0, can be approximated as a linear
function of temperature up to 1000 K. Coupling the experimental and
calculated results above, K T0, can be approximated by:

K T= −1.3005×10 +31.0930,T0,
−2

(10)

with a maximum difference of 0.3 GPa at 1000 K. Then, with Eqs. (5)–
(7), the pressure derivative of KT can be written:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟K

K
P

ρ v v
P

K
K

′ =
∂
∂

= 2 ∂
∂

+ ,T

T
T

T

S

T
0 0 0,

0,

0, (11)

where v T0, is the sound velocity as a function of temperature at ambient
pressure and K S0, is the adiabatic bulk modulus at ambient pressure.

In Fig. 3, Spetzler's nine data points [31] were transformed to
calculate density at fit to a model of the same form as Eq. (8) using the
method described above. Up to 1 GPa, the agreement with the fit to our
data using Eq. (8) is exceptionally good, which confirms the accuracy of
our data and the consistency with Spetzler [31]. The agreement
between Eq. (8) and the fitted 3rd-order Birch-Murnaghan EOS is also
reasonably good, with differences from the Spetzler data less than
0.67%, but the two fitting methods diverge somewhat with increasing
pressure and temperature. The polynomial form is preferred for fitting
our data above 2 GPa or 770 K.

There is no evidence in our data for anomalous compressibility as
reported by Umnov et al. [32]. We suspect that their method of
thermobaroanalysis did not yield reliable results in this instance, or
that our data do not reach sufficient P and T to see the putative liquid
structure transition region.

3.2. Calculation of the melting curve of Bi

3.2.1. The melting curve up to 5 GPa
The melting curve of bismuth up to ~ 5 GPa has been report by

various of investigators using both experimental [10,12,13,16,40] and
theoretical methods [25,26]. Here, combining the data from this study
and previous work, we tried to derive the melting curve using a
thermodynamic method and to compare to former results. We note
that our pressure calibration assumed the melting curve of Bi in
advance, so we treat this as a consistency check rather than a primary
or absolute measurement of the melting curve.

The fundamental thermodynamic principles of phase equilibrium
show that equality of Gibbs free energy is the essential criterion for
locating first-order phase transitions such as melting curves in (P, T)
space [41,42], and that from an accurate and differentiable free energy
function all the thermodynamic properties of a system can be derived.
However, the free energy approach requires precise values of thermo-
dynamic parameters; small errors in the relative free energy of two
phases can sometimes translate into large errors in the position of
phase boundaries. Conversely, accurate phase boundaries translate into
precise constraints for estimating free energy functions. Since most of
the accurate data reported on bismuth have been obtained at ambient
pressure and high temperature [28–30], it is a useful consistency test
to calculate the melting curve of phase I. The equation we employ is
[43]

⎛
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where Tf is the fusion temperature of solid bismuth at 1 bar. H∆ Tf
and

S∆ Tf
are the equilibrium enthalpy and entropy of fusion of Bi at 1 bar.

C T∆ ( )P is the specific heat of the liquid minus that of the solid at 1 bar
and elevated temperature. V P∆ ( )T is the specific volume of the liquid
minus that of the solid, evaluated iteratively along the fusion curve. It is
reasonable to use this equation over the pressure range where phase I
and liquid are both at least metastable and their ambient pressure heat
capacities can be extrapolated beyond their stability fields.

To calculate the volume of phase I along its melting curve, we
employ the Murnaghan EOS [44]:
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Table 3
aij coefficients for v P T a T P( , ) = ∑ ( − 273)i j ij

i j
, with v in km/s, T in K and P in GPa.

i/j 0 1 2

0 1.668 ± 0.021 0.247 ± 0.006 (− 2.431 ± 0.090) × 10−2

1 – (1.442 ± 0.809) × 10−5 –

2 (− 1.157 ± 0.759) × 10−7 – –

Table 4
bij coefficients for V P T b T P( , ) = ∑ ( − 273)i j ij

i j
, with V in m3 mol−1, T in K and P in GPa.

i/j 0 1 2

0 (2.016 ± 0.001) × 10−5 (−7.021 ± 0.023) × 10−7 (6.336 ± 0.035) × 10−8

1 (2.266 ± 0.042) × 10−9 (−2.643 ± 0.034) × 10−10 –

2 (9.035 ± 4.148) × 10–14 – –
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Stankus [29] and Gronvold [28] reported H , S, CP and V of both
liquid and solid bismuth as a function of temperature at ambient
pressure. Moreover, Degtyareva [18] and Li [45] provide values of KT 0
and K ′0 (referenced to zero pressure) for each solid phase. Thus, with
Eq. (8) representing the fit to density of liquid Bi based on our new
sound speed data, the literature data on solid phase I and ambient P
properties of liquid Bi, and Eqs. (12) and (13), we can derive the
melting curve of phase I.

To continue calculating the melting curve beyond the first triple
point, the parameters of the other solid phases are needed. Only a few
of experiments have been performed on these phases, so we have to
build the EOS of each solid phase. Therefore, we introduce an approach
to obtain the thermal EOS of each subsequent phase at high pressure
by making use of the known solid-solid phase boundaries and the
Clausius-Clapeyron relation [46]:

P
T

S
V

d
d

= ∆
∆

,
(14)

where dP/dT is the slope at a point along a coexistence curve and ΔV
and ΔS are respectively the specific volume change and entropy change
of the phase transition at that point. Although this equation only yields
the ratio of entropy change to volume change between two coexisting
phases when the phase transition boundary is known, it provides in
many cases the necessary extra constraint to sequentially construct an
EOS for each high-pressure phase.

Previous data on the melting curve of bismuth are mainly grouped
into two categories: studies that focus on the lower pressure range (~

Table 5
Various thermodynamic properties of liquid bismuth up to 973 K, 4.3 GPa.

T P ρ α γ KS KT
K GPa kg/m3 × 10−5 K−1 GPa GPa

573 0.0 10,015.77 1.185 2.263 27.27 23.64
573 0.5 10,215.08 1.074 2.336 31.55 27.59
573 1.0 10,390.22 0.992 2.438 36.13 31.73
573 1.5 10,546.01 0.930 2.535 40.62 35.79
573 2.0 10,688.37 0.882 2.590 44.31 39.18
573 2.5 10,820.10 0.838 2.657 48.36 42.89
573 3.0 10,943.25 0.797 2.661 51.44 45.87
573 3.5 11,059.82 0.763 2.679 54.63 48.90
623 0.0 9956.41 1.192 2.284 26.87 22.97
623 0.5 10,160.03 1.078 2.359 31.16 26.90
623 1.0 10,338.43 0.994 2.461 35.77 31.04
623 1.5 10,496.77 0.930 2.561 40.31 35.11
623 2.0 10,641.06 0.880 2.620 44.09 38.55
623 2.5 10,774.54 0.837 2.682 48.03 42.14
623 3.0 10,899.34 0.797 2.689 51.12 45.10
623 3.5 11,017.21 0.762 2.719 54.55 48.32
623 4.0 11,129.41 0.726 2.661 56.60 50.52
673 0.0 9897.06 1.199 2.307 26.46 22.31
673 0.5 10,105.15 1.082 2.383 30.78 26.23
673 1.0 10,286.94 0.995 2.487 35.41 30.35
673 1.5 10,447.91 0.929 2.590 40.01 34.43
673 2.0 10,594.19 0.879 2.653 43.88 37.93
673 2.5 10,729.45 0.836 2.710 47.70 41.40
673 3.0 10,855.91 0.796 2.720 50.81 44.35
673 3.5 10,975.14 0.761 2.760 54.44 47.70
673 4.0 11,088.65 0.725 2.684 56.09 49.60
673 4.3 11,155.09 0.705 2.659 57.48 51.05
723 0.0 9837.70 1.207 2.324 26.02 21.63
723 0.5 10,050.63 1.085 2.404 30.37 25.55
723 1.0 10,235.96 0.996 2.510 35.04 29.68
723 1.5 10,399.55 0.929 2.615 39.68 33.75
723 2.0 10,547.79 0.877 2.688 43.73 37.36
723 2.5 10,684.68 0.834 2.739 47.44 40.71
723 3.0 10,812.60 0.795 2.758 50.66 43.73
723 3.5 10,933.19 0.760 2.776 53.87 46.74
723 4.0 11,048.33 0.725 2.713 55.74 48.81
723 4.3 11,115.61 0.705 2.691 57.17 50.27
773 0.0 9778.35 1.214 2.335 25.58 20.98
773 0.5 9996.17 1.089 2.417 29.96 24.90
773 1.0 10,185.06 0.997 2.526 34.68 29.03
773 1.5 10,351.29 0.929 2.633 39.36 33.10
773 2.0 10,501.48 0.876 2.715 43.57 36.81
773 2.5 10,639.99 0.833 2.761 47.17 40.05
773 3.0 10,769.38 0.794 2.786 50.48 43.11
773 3.5 10,891.32 0.759 2.784 53.31 45.82
773 4.0 11,008.09 0.724 2.733 55.39 48.04
773 4.3 11,076.19 0.705 2.716 56.84 49.51
823 0.0 9719.00 1.221 2.330 25.10 20.34
823 0.5 9941.97 1.093 2.414 29.50 24.24
823 1.0 10,134.68 0.999 2.523 34.24 28.36
823 1.5 10,303.78 0.928 2.631 38.94 32.43
823 2.0 10,456.23 0.874 2.715 43.21 36.15
823 2.5 10,596.58 0.831 2.762 46.81 39.37
823 3.0 10,727.80 0.793 2.788 50.08 42.37
823 3.5 10,851.44 0.758 2.781 52.83 45.02
823 4.0 10,969.88 0.723 2.739 55.05 47.33
823 4.3 11,038.77 0.705 2.716 56.30 48.64
873 0.0 9659.65 1.229 2.309 24.63 19.74
873 0.5 9887.61 1.097 2.395 29.04 23.62
873 1.0 10,083.98 1.000 2.503 33.80 27.74
873 1.5 10,255.78 0.928 2.612 38.53 31.80
873 2.0 10,410.33 0.873 2.697 42.84 35.54
873 2.5 10,552.37 0.830 2.745 46.45 38.74
873 3.0 10,685.27 0.792 2.771 49.68 41.69
873 3.5 10,810.49 0.756 2.760 52.35 44.28
873 4.0 10,930.47 0.723 2.727 54.69 46.67
873 4.3 11,000.11 0.705 2.697 55.76 47.82
923 0.0 9600.30 1.236 2.265 24.12 19.17
923 0.5 9833.42 1.101 2.346 28.49 23.00
923 1.0 10,033.83 1.001 2.449 33.19 27.07
923 1.5 10,208.63 0.928 2.566 38.07 31.21
923 2.0 10,365.40 0.871 2.654 42.47 35.00
923 2.5 10,509.07 0.829 2.699 46.01 38.14

Table 5 (continued)

T P ρ α γ KS KT
K GPa kg/m3 × 10−5 K−1 GPa GPa

923 3.0 10,643.23 0.791 2.730 49.29 41.10
923 3.5 10,769.68 0.755 2.718 51.96 43.68
923 4.0 10,890.77 0.722 2.688 54.30 46.05
923 4.3 10,961.13 0.705 2.659 55.30 47.14
973 0.0 9540.96 1.244 2.198 23.62 18.66
973 0.5 9778.79 1.106 2.275 27.94 22.44
973 1.0 9982.87 1.002 2.371 32.60 26.47
973 1.5 10,160.33 0.927 2.495 37.61 30.70
973 2.0 10,319.00 0.870 2.585 42.10 34.54
973 2.5 10,464.02 0.827 2.627 45.58 37.62
973 3.0 10,599.16 0.790 2.662 48.90 40.59
973 3.5 10,726.61 0.754 2.650 51.56 43.16
973 4.0 10,848.58 0.721 2.623 53.89 45.51
973 4.3 10,919.54 0.705 2.594 54.82 46.54

Fig. 3. Fitted isothermal curves for density of liquid bismuth vs. pressure, from the
polynomial and Birch-Murnaghan expressions, compared to points representing a
similar fit to the data of Spetzler [31].
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5 GPa) where several phase transitions occur, and those that focus on
higher pressures along the phase V melting curve. First, we will try to
calculate the melting curve up to ~ 5 GPa for comparison to studies in
the first category.

Considering that the melting curves in this pressure range are
restricted to a temperature range of only a few hundred K, it should be
an adequate approximation to treat the zero-pressure volume of each
solid phase as linear in temperature. For phase II, for example, we
assume

V T m T m(0, ) = +II
1 2 (15)

where m1 and m2 are constants, T is the temperature in K, and V is the
molar volume in m mol3 −1. With the two P-V-T data and the KT 0 and K ′0
given in the first row of Table 6, Eqs. (13) and (15) lead to two linear
equations with unknowns m1 and m2, which are easily solved. The
results are listed in Table 7.

Next, given the phase boundary I-II from the internally consistent
phase diagram of Chen [16], which synthesizes a number of previous
studies [10,14,15], we can estimate the value of dP/dT along the phase
boundary curve. Using the data from references [18,28,29], and [44];
Eqs. (13) and (15); and a Maxwell relation between thermal expansion
and the pressure derivative of entropy, we have everything we need to
estimateVP T

I
, , SP T

I
, andVP T

II
, at any (P,T) point along the phase boundary,

so the only unknown in a re-arranged Clausius-Clapeyron equation is
the entropy of phase II:

S P T dP
dT

V P T V P T S P T( , ) = ( ( , ) − ( , )) + ( , ).II II I I
(16)

The resulting estimates of entropy at high pressure are brought
back down to ambient pressure, again using the Maxwell relation, to
obtain a series of values of entropy of phase II at zero pressure and
various temperatures

⎛
⎝⎜

⎞
⎠⎟∫S T S P T V

T
dP(0, ) = ( , ) − − ∂

∂
,

P

P0 (17)

which can be fit to a polynomial. We find that the entropy of phase II as
a function of temperature at zero pressure is adequately represented
with three terms

S T n T n T n(0, ) = + + ,II
1

2
2 3 (18)

where n1, n2, n3 are constants; T is temperature in K; and S is the
entropy in J mol K−1 −1. Sequential application of the same method using
data on the other phase boundaries and the values of K T0, and K ′0 for
phases I, II, III and IV from Li [45] and Degtyareva [18] leads in turn
to fit parameters for V T0, and S T0, for each solid phase in the order of I-
II-III-V-IV, see Table 7.

Once we have obtained thermodynamic parameters for each phase,
we return to Eq. (14) to estimate the initial slope dP/dT of the
(metastable) melting curve of each phase at ambient pressure [16]
from our equations for V0,T

I , S0,T
I , VP,T

Liq and S0,T
Liq. The resulting slope is

used to obtain the next melting point at a small increment of pressure.
Using the ambient pressure stable melting point of phase I as an initial
condition for integration, this method allows us to construct the
melting curve of phase I up to its intersection with the extension of
the I-II phase transition boundary. At this point we replace V0,T

I , S0,T
I

with V0,T
II , S0,T

II and continue the integration to derive the melting curve
of phase II. Making use of the volume and entropy equations of each
solid phase and the solid-solid phase boundaries that intersect the
liquidus in turn, we construct the complete melting curve of bismuth
up to 5 GPa.

The calculated equilibrium boundary between solid phase and
liquid bismuth is shown in Figs. 4 and 5. In Fig. 4, results using both
Gibbs and Clausius-Clapeyron equations are presented, together with
direct experimental constraints. Both of our calculation results agree
well with the data from the static work [10,12,13] and the deviation in
temperature is less than 5 K compared with the work done by Klement
[10]. At the I-II-liquid triple point pressure (1.67 GPa), the tempera-
ture difference between these two calculation results is ~ 4.2 K. This
agreement not only establishes the accuracy of the liquid volume
deduced from Eq. (8), but also demonstrates the feasibility of our
calculation process. It is worth noting that the experiments of Bundy
[40], which were performed under non-hydrostatic pressure condi-
tions, suggest a concave-upwards phase boundary between solid I and
liquid. On the other hand, the thermodynamic calculation and static
data from hydrostatic experiments agree on a convex-upwards melting
curve, suggesting that hydrostatic pressure experiments are more
reliable. Fig. 5 presents a comparison of our work with previous
experimental data and theoretical calculation results [26]. Overall,
the melting curves are fully consistent in the stability fields of phases I
and II, up to 2.5 GPa, with the differences among estimated melting
temperatures no larger than 8 K. Discrepancies in the placement of the
liquid-II-IV triple point then lead to a separation in melting tempera-
tures of up to 23 K from 2.5 to 4 GPa. The accumulation of difference in
estimated properties leads to even larger differences above 4 GPa. Our

Table 6
Data and parameters used in the calculation of each solid phase, with references.

Phase P T VP,T Ref. K0,T K ′0 Ref. Phase Ref.

GPa K m3/mol GPa boundary

II 1.73 456 1.954 × 10−5 [26] 44.5 4.7 [45] I-II [16]
2.7 298 1.888 × 10−5 [18]

III 1.7 456 1.844 × 10−5 [26] 55 4 [18] II-III [16]
3.6 298 1.784 × 10−5 [18]

V 5.26 447 1.732 × 10−5 [26] 56 4.5 [18] III-V [16]
8.5 298 1.651 × 10−5 [18]

IV 1.7 456 1.844 × 10−5 [26] 55 4.8 [45] V-IV [16]
3.9 503 1.813 × 10−5 [16]

Table 7
Fit coefficients of Eqs. (15) and (18).

Coefficients

phase T-V0 T-S0

m1 m2 n1 n2 n3

Solid-Ⅱ 2.1208 × 10−9 1.9283 × 10−5 − 6.5325 × 10−5 0.1172 − 23.2778
Solid-Ⅲ 3.8101 × 10−10 1.8831 × 10−5 − 5.2076 × 10−5 0.1031 − 15.1952
Solid-Ⅳ 6.2064 × 10−9 1.6149 × 10−5 − 11.9416 × 10−5 0.0949 2.7681
Solid-Ⅴ 1.3195 × 10−9 1.8142 × 10−5 − 4.8251 × 10−5 0.0906 − 8.1731

Fig. 4. The transition boundary between phase I and liquid phase.
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calculated result is most similar overall to the melting curve of Pélissier
[47], from which the largest difference in temperature is 22 K at
3.9 GPa. Because the calculation order we followed is I-II-III-V-IV,
uncertainty in the phase diagram leads to the largest deviations in the
slope of the melting curve of phase IV.

3.2.2. The melting curve beyond 5 GPa
Published estimates of the melting curve of Bi at higher pressures

and temperatures have mainly been derived from theoretical consid-
erations. Based on a self-consistent Einstein approximation, Pélissier
&Wetta [47,48] first calculated the melting curve of bcc bismuth
(phase V) up to 60 GPa, an estimate frequently cited by later papers
[22,23,47,49]. Then in 2007, Cox [25] provided an empirical model
which made modifications to a previous study by Johnson et al. [24]
and gave the EOS of each phase of bismuth including liquid, as well as
the melting curve up to 50 GPa. Recently, Mukherjee [27] used first-
principles calculations and a Lindemann melting rule to estimate a
melting temperature of 902 K at pressure ~ 8 GPa.

Experimental data on high-pressure melting of Bi are limited to
shock experiments along the principal Hugoniot and releases from
such Hugoniot states, which only constrain the melting curve in a
narrow pressure range. A sharp increase in short-wavelength optical
emissivity from a shocked Bi-LiF interface and a region of low P-T
slope along the Hugoniot were interpreted to reveal onset of partial
melting along the Hugoniot at about 30 GPa and 2300 K, followed by
complete melting at 45 GPa and ~ 2600 K [21]. On the other hand,
Partouche-Sebban et al. [22] noted that these observations of a Bi-LiF
interface do not constrain melting along the Bi Hugoniot but rather in
partial release states; they suggested instead that the shock melting
temperatures are lower, ~ 1250–1700K, and that melting is achieved at
lower pressures, from ~ 18–28 GPa, which is in agreement with the
theoretical calculation by Pélissier &Wetta [48].

To compare these results to our method of calculation, first we must
verify whether the fits to the ambient-pressure volume and entropy of
phase V (bcc bismuth) in Table 7 remain valid up to the higher
temperature range required to model melting at higher pressures. For
the ambient pressure entropy, unfortunately, the quadratic polynomial
fit with negative T2 coefficient, given in Table 7, leads to a maximum in
the entropy of phase V at 939 K, followed by decrease in entropy with
increasing temperature beyond that point. This is an unphysical result,
contrary to the thermodynamic stability criterion that requires the heat
capacity to be strictly positive and entropy to always increase with
temperature. By coincidence, perhaps, the entropy of liquid bismuth
was calibrated by Gronvold [28] up to a maximum temperature of
940 K. From these two limits, we estimate that we can define the

entropy of fusion of phase V well up to ~ 900 K. It is also challenging to
estimate the temperature range over which our linear estimate for the
ambient pressure volume of bcc bismuth is valid. However, Stankus
[29] showed that the ambient pressure volume of liquid bismuth is
linear with temperature up to at least 1600 K. Hence, we will
conservatively assume that the volume of phase V (bcc bismuth)
remains linear with temperature up to at least 900 K. We will therefore
limit our calculation of the fusion curve of phase V to the interval from
the triple point of phases IV, V and liquid (3.75 GPa, 565 K, from Chen
[18]) up to the pressure where the melting curve reaches 900 K. Using
the same procedure as described above to integrate the Clausius-
Clapeyron equation, the melting curve up to 900 K is shown in Fig. 6
alongside previous theoretical estimates.

In fact, the equation of state of bcc (phase V) bismuth remains
somewhat uncertain. Table 8 gives several published pairs of K T0, and
K ′0 [17,19,20,27] for bcc Bi and the pressure limits up to which each
EOS estimate was constrained. In the inset to Fig. 6, we demonstrate
the sensitivity of our melting point estimate to the EOS of the solid
phase by showing the calculated melting curves using each of these K T0,
and K ′0 pairs. The effect is significant; the melting curve might cross
900 K at a pressure anywhere from 6.5 to 8 GPa, depending on the EOS
of phase V.

As Fig. 6 shows, our preferred melting curve passes through ~
8 GPa at ~ 900 K, close to the result given by Mukherjee et al. [27]. For
this calculation, we adopted the values of K T0, and K ′0 from Degtyareva
[18], the same as we used in calculating the melting curve up to ~
5 GPa. This curve, while very similar to that of Mukherjee et al. [27], is
notably lower in slope than the estimate from Pélissier &Wetta44. A
different choice of K T0, and K ′0 can yield a slope more comparable to
that of Pélissier &Wetta44, though offset because their curve does not
pass through the triple point from Chen18 used to anchor our curve. We
do not find a plausible set of parameters that yields a melting curve
similar to that of Cox22. Although our ultrasonic data contribute

Fig. 5. The melting curve of bismuth calculated using the Clausius-Clapeyron equation.
Solid-solid phase transition boundaries follow those adopted by Chen [16].

Fig. 6. Calculated melting curve of Phase V (bcc) Bi in the high-pressure range,
alongside previous theoretical estimates. The inset shows the results using each K T0,

and K ′0 pair from Table 8.

Table 8
Zero-pressure bulk modulus and its pressure derivative for bcc bismuth from various
estimates.

K0,T K ′0 Pressure range Reference

GPa GPa

54.7 4.9 ~ 222 Akayama et al. [17]
52 4.6 ~ 191 Gutiérrez et al. [19]
42.7 5.3 ~ 55 Liu et al. [20]
58.9 4.49 ~ 220 Mukherjee et al. [27]
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significant constraints to our ability to estimate high pressure melting
curves, it remains challenging to extrapolate this result very far. The
challenge partly lies in the significant contribution of solid compres-
sibility to volumes of fusion at high pressure, and partly in the need to
estimate ambient pressure properties at temperatures above the
measurable stability range of the phases of interest. Nevertheless, our
success up to ~ 900 K and 8 GPa confirms that the thermodynamic
method and the analysis of sound speed to define the liquid equation of
state are reliable approaches when sufficient data are available.

4. Conclusion

In this work, we demonstrate a thermodynamic method for
calculating the melting curve of bismuth using available data and
new ultrasonic measurements of the liquid phase. The sound velocity of
liquid Bi up to 4.3 GPa and 973 K was determined by the ultrasonic
pulse echo technique in a multi-anvil apparatus. The sound velocity
data are used to derive the equation of state parameters of liquid
bismuth at high pressure and temperature, including density, molar
volume, thermal expansion and isothermal bulk modulus. The preci-
sion of the data is sufficient to constrain a linear relation between
isothermal bulk modulus and temperature, and to estimate the
pressure derivative of the isothermal bulk modulus. Armed with this
liquid equation of state, we attempt a thermodynamic calculation of the
phase diagram of Bi. We make use of well-measured solid-solid phase
transition boundaries to construct, in sequence, the thermal EOS of
each solid phase. This combination yields an internally consistent
melting curve that, up to 5 GPa, accurately reproduces direct measure-
ments from static experiments. In the less certain higher pressure
range, we extrapolate our melting curve of the bcc phase V up to 8 GPa
for comparison to estimates from shock wave experiments and find
reasonable agreement, depending on the adopted equation of state of
the bcc phase. This work not only confirms the stringent self-
consistency required to match the experimental phase diagram of
bismuth, but also proves the feasibility of the thermodynamic method
once the sound velocity of the liquid at elevated temperature and
pressure is known with sufficient precision.
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