黔北务正道铝土矿含矿岩系中 REE 分布特征

林贵生1,谷静2,王洪23,金中国1,黄智龙2*

(1. 贵州省有色金属和核工业地质勘查局地质矿产勘查院,贵州 贵阳 550005; 2. 中国科学院 地球化学研究所 矿床地球化学国家重点实验室,贵州 贵阳 550002; 3. 中国科学院大学,北京 100049)

贵州省近年找矿最大突破之一是在黔北务(川)-正(安)-道(真)地区找到规模巨大的铝土矿,目前已在该区探明超大型矿床 2 个(大竹园和旦坪)、大型矿床 8 个(大塘、新民、瓦厂坪、沙坝、马鬃岭、东山、张家院和新木-宴溪),控制各类别铝土矿资源量超过 7 亿吨。稀土元素(REE)在铝土矿含矿岩系中富集是一种普遍现象,铝土矿区伴生 REE 矿床也有先例(王银喜等, 2000;李中明等, 2007)。从前人分析资料看(李沛刚等,2012;Li et al., 2013;Wang et al., 2013;黄智龙等,2014;谷静等,2015),务正道地区铝土矿含矿岩系也有部分样品富集 REE,稀土总量(Σ REE)最高达 6399×10⁻⁶(黄智龙等, 2014;谷静等, 2015),Ge et al. (2013)和 Wang et al. (2013)在本区富 REE 样岩相继发现氟菱钙铈矿[Ce₂Ca(CO₃)₃F₂]、氟碳钙铈矿[CeLaCa(CO₃)₃F₂]和磷钇矿[Y(PO)₄]等稀土矿物。本次工作根据务正道地区瓦厂坪、新民和新木-宴溪等 3 个大型铝土矿主量和微量元素分析资料,探讨了本区含矿岩系中 REE 分布特征。

务正道铝土矿严格受向斜控制,目前发现的矿床、矿点和矿化点均分布在道真、龙桥、鹿池、桃园、平木山、安场、浣溪、青坪、旦坪和张家院等 10 个规模不等的向斜内(黄智龙等,2014),本次工作的瓦厂坪、新民和新木-宴溪铝土矿床分别分布于鹿池、龙桥和旦坪向斜内。本区铝土矿含矿岩系均为中二叠统梁山组(P_2 1),上覆地层为中二叠统栖霞组(P_2 q)灰岩,下伏地层主要为中下志留统寒家店组(S_{1-2} hj)沙页岩、少量为中石炭统黄龙组(C_2 h)薄层灰岩。3 个铝土矿床含矿岩系分布连续,厚度从 $1.5\sim17.0$ m不等,岩性特征相似,顶部为薄层碳质页岩(C_2 Ms),向下依次为上部铝土岩(ARU)、铝土矿层(AO)和下部铝土岩(ARL),铝土矿和铝土岩根据边界品位($Al_2O_3 \geqslant 40$ wt%、 $A/S \geqslant 1.8$;矿产资源工业要求手册委员会,2010)确定。根据矿石结构构造,3 个铝土矿床均可划分为土状-半土状(AOE)、碎屑状(AOC)、豆鲕状(AOPO) 和块状(AOB) 等 4 种矿石类型。

表 1 为务正道地区 3 个铝土矿床含矿岩系 REE 含量统计结果,可见 3 个矿床 C-Ms、ARU 以及 AOE、AOC、AOPO 和 AOB 等各种类型矿石的 REE 含量具有较宽的变化范围,且含量范围相互重叠。这些岩(矿)石的 Σ REE (包括 Y,下同)相对较低,最高不超过 500×10^{-6} ,大部分样品 REE 富集系数(实测值/克拉克值,下同)<1 或在 $1\sim2$ 之间,少量样品 REE 富集系数在 $2\sim5$ 之间。3 个矿床均具有以下特征:同一含矿岩系的矿层中, Σ REE 随 Λ 1 $_2$ O $_3$ 和 Λ 1S增加、总体逐渐减少。

3 个矿床含矿岩系中 ARL 的 REE 含量也具有很宽的变化范围,但明显高于其他岩(矿)石的 REE 含量, Σ REE 最高达 6399×10⁻⁶。根据配分模式(图略),3 个矿床 ARL 均可分为两组,即 LREE 富集型组和 HREE 富集型组,其中 HREE 富集型组 ARL 约占所分析样品的 40%,REE 含量特征与含矿岩系其他岩(矿)石相似, Σ REE:71.9×10⁻⁶~333×10⁻⁶、LREE:23.7×10⁻⁶~276×10⁻⁶、HREE:10.2×10⁻⁶~32.8×10⁻⁶,LREE/HREE:0.84~14.69。LREE 富集型组ARL 约占所分析样品的 60%, Σ REE 在 152×10⁻⁶~6399×10⁻⁶之间,所分析的 15 件样品中,10 件大于离子吸附型稀土矿边界品位 500×10⁻⁶、7 件大于工业品位1000×10⁻⁶(矿产资源工业要求手册编委会,2010),最高达 6399×10⁻⁶;LREE 和 HREE 分别为 114×10⁻⁶~6197×10⁻⁶和 15.6×10⁻⁶~209×10⁻⁶,LREE/HREE 在 7.24~43.50 之间。

值得强调的是,务正道铝土矿含矿岩系中的矿层并不富集 REE,只有矿层下部铝土岩局部富集 REE。 本次工作获得的 10 件高 REE 样品(ΣREE>500×10⁻⁶)在瓦厂坪、新民和新木-宴溪 3 个大型铝土矿床含矿 岩系下部铝土岩中均有分布,暗示"矿层下部铝土岩局部富集 REE"在务正道铝土矿普遍存在。从主量元

基金项目: 国家自然科学基金项目 (批准号: 41503014)

作者简介: 林贵生,男,1964 生,高级工程师,主要从事地质矿产勘查工作. E-mail: 984201670@qq.com

^{*} 通讯作者,E-mail: huangzhilong@vip.guig.ac.cn

素看,本区高 REE 样品的 SiO_2 和 Al_2O_3 分别为 $24.79\sim47.39$ wt%和 $25.03\sim37.16$ wt%,A/S 在 $0.72\sim1.05$ 之间,达不到铝土矿工业要求(矿产资源工业要求手册委员会,2010)。

表 1	务正道铝土矿	含矿岩系	REE 含统计结果
1	7 4 4 4 4	P 1 1 1 1	

统	计对象	样数	Al_2O_3	SiO_2	A/S	Σ REE	LREE	HREE	LREE/HREE
全部样口	C-Ms	4	1.81~8.90	40.29~60.07	0.04~0.20	19.2~266	15.0~176	1.59~35.5	4.94~13.01
	ARU	8	34.20~40.20	40.42~47.30	$0.79 \sim 0.92$	28.9~229	14.7~175	4.58~23.1	1.56~7.57
	ARL	29	25.03~38.43	13.42~47.37	$0.63 \sim 2.20$	71.9~6399	23.7~6197	10.2~209	$0.84 \sim 43.50$
	AOPO	8	40.00~53.63	15.02~30.29	$1.69 \sim 2.86$	57.3~462	14.0~389	11.4~48.9	$0.46 \sim 15.43$
	AOB	12	40.15~53.02	23.70~37.79	$1.06 \sim 2.02$	58.6~398	19.9~248	12.9~71.6	$0.77 \sim 4.14$
品	AOC	14	55.32~71.50	$9.41 \sim 21.38$	$2.59 \sim 7.07$	29.5~223	$8.71 \sim 159$	8.11~46.9	$1.07 \sim 10.86$
	AOE	21	66.07~77.50	1.60~9.56	7.37~44.41	25.8~299	5.28~235	6.63~42.2	$0.63 \sim 10.91$
	C-Ms	1	2.80	60.07	0.05	32.0	27.5	2.11	13.01
瓦	ARU	5	35.40~40.20	$40.42 \sim 47.30$	$0.79 \sim 0.92$	37.5~229	20.4~175	$7.41 \sim 23.1$	1.56~7.57
厂	ARL	11	25.03~38.39	24.79~43.60	$0.72 \sim 1.05$	130~2227	71.5~1668	15.6~209	$2.80 \sim 25.45$
坪	AOPO	4	40.00~53.63	$21.82 \sim 24.86$	$1.83 \sim 2.36$	66.5~412	14.0~344	17.3~48.9	$0.46 \sim 11.49$
矿	AOB	5	$47.41 \sim 51.40$	$27.04 \sim 33.20$	$1.55 \sim 1.84$	58.6~113	19.9~65.4	12.9~20.4	$1.11 \sim 3.21$
床	AOC	3	58.32~65.68	$10.72 \sim 20.92$	$2.79 \sim 6.09$	$125 \sim 180$	63.6~104	22.8~27.3	2.36~3.80
	AOE	4	70.23~75.86	4.10~6.69	10.50~18.47	49.2~199	18.7~107	9.00~38.9	$0.98{\sim}2.88$
新	C-Ms								
	ARU	2	34.20~38.17	$42.35 \sim 43.56$	$0.81 \sim 0.88$	28.9~103	16.6~76.3	$4.58 \sim 10.7$	$3.63 \sim 7.11$
民	ARL	9	$27.25 \sim 37.36$	$13.42 \sim 47.37$	$0.64 \sim 2.20$	76.0~6399	32.2~6197	12.4~142	$1.59 \sim 43.50$
矿	AOPO	3	$42.89 \sim 51.28$	$15.02 \sim 30.29$	$1.69 \sim 2.86$	57.3~462	26.6~389	11.4~36.3	$2.34 \sim 10.73$
床	AOB	6	$40.15 \sim 53.02$	$23.70 \sim 37.79$	$1.06 \sim 2.02$	62.4~398	24.3~248	$14.9 \sim 71.6$	$1.63 \sim 4.14$
<i>1</i> /K	AOC	5	55.32~67.70	$9.41 \sim 21.38$	$2.59 \sim 7.07$	$29.5 \sim 205$	$8.71 \sim 137$	$8.11 \sim 30.4$	$1.07 \sim 6.78$
	AOE	7	70.41~76.35	4.19~9.56	7.37~18.22	25.8~299	5.28~235	6.63~42.2	0.63~7.18
新	C-Ms	3	$1.81 \sim 8.90$	$40.29 \sim 49.76$	$0.04{\sim}0.20$	19.2~266	15.0~176	1.59~35.5	$4.94 \sim 9.45$
木	ARU	2	$34.52 \sim 36.56$	$33.72 \sim 43.96$	$0.83 \sim 1.02$	32.2	14.7	6.68	2.19
	ARL	8	26.20~38.43	24.89~43.85	$0.63 \sim 1.05$	$71.9 \sim 1787$	23.7~1713	10.2~55.2	$0.84 \sim 42.35$
晏	AOPO	1	44.75	21.42	2.09	371	322	20.9	15.43
溪	AOB	1	51.00	26.63	1.92	129	29.4	38.3	0.77
矿	AOC	6	$58.23 \sim 71.50$	$12.08 \sim 18.02$	$3.23 \sim 5.92$	63.6~223	36.1~159	10.2~46.9	$1.47 \sim 10.86$
床	AOE	10	$66.07 \sim 77.50$	1.60~8.69	$8.31 \sim 44.41$	52.0~199	17.3~161	11.1~25.1	$0.95 \sim 10.91$

注:原始数据由本次工作分析;Al₂O₃和 SiO₂单位为 wt%,REE 单位为×10⁶;C-Ms-炭质泥岩(含矿岩系顶部标志层),ARU-上部铝土岩,ARL-下部铝土岩,AOB-致密块状铝土矿,AOPO-豆鲕状铝土矿,AOC-碎屑状铝土矿,AOE-土状-半土状铝土矿.

参考文献:

- Gu J, Huang Z L, Fan H P, et al. 2013. Mineralogy, geochemistry, and genesis of lateritic bauxite deposits in the Wuchuan–Zheng'an–Daozhen area, Northern Guizhou Province, China. Journal of Geochemical Exploration, 130: 44-59.
- Li Z H, Din J, Xu J S, et al. 2013. Discovery of the REE minerals in the Wulong–Nanchuan bauxite deposits, Chongqing, China: Insights on conditions of formation and processes. Journal of Geochemical Exploration, 133: 88-102.
- Wang X M, Jiao Y Q, Du Y S, et al. 2013. REE mobility and Ce anomaly in bauxite deposit of WZD area, Northern Guizhou, China. Journal of Geochemical Exploration, 133: 103-117.

谷静,黄智龙,金中国. 2015. 务川瓦厂坪铝土矿稀土元素地球化学特征及其对成矿过程的指示. 矿物学报, 35(2): 433-443.

黄智龙, 金中国, 向贤礼, 等. 2014. 黔北务正道铝土矿成矿理论及预测. 北京: 科学出版社.

矿产资源工业要求手册编委会. 2010. 矿产资源工业要求手册. 北京: 地质出版社.

李沛刚,王登红,雷志远,等. 2012. 贵州大竹园大型铝土矿稀土元素地球化学特征及其意义. 地球科学与环境学报, 34(2): 31-40.

李中明, 赵建敏, 冯辉, 等. 2007. 河南省郁山古风化壳型稀土矿层的首次发现及意义. 矿产与地质, (2): 177-180.

王银喜,李惠民,杨杰东,等. 2000. 华北古风化壳型稀有稀土矿床的发现及意义. 高校地质学报,6(4):605-606.