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Abstract

Animal manure application as organic fertilizer does not only sustain agricultural productivity and increase soil

organic carbon (SOC) stocks, but also affects soil nitrogen cycling and nitrous oxide (N2O) emissions. However, given

that the sign and magnitude of manure effects on soil N2O emissions is uncertain, the net climatic impact of manure

application in arable land is unknown. Here, we performed a global meta-analysis using field experimental data pub-

lished in peer-reviewed journals prior to December 2015. In this meta-analysis, we quantified the responses of N2O

emissions to manure application relative to synthetic N fertilizer application from individual studies and analyzed

manure characteristics, experimental duration, climate, and soil properties as explanatory factors. Manure application

significantly increased N2O emissions by an average 32.7% (95% confidence interval: 5.1–58.2%) compared to applica-

tion of synthetic N fertilizer alone. The significant stimulation of N2O emissions occurred following cattle and poultry

manure applications, subsurface manure application, and raw manure application. Furthermore, the significant stim-

ulatory effects on N2O emissions were also observed for warm temperate climate, acid soils (pH < 6.5), and soil tex-

ture classes of sandy loam and clay loam. Average direct N2O emission factors (EFs) of 1.87% and 0.24% were

estimated for upland soils and rice paddy soils receiving manure application, respectively. Although manure applica-

tion increased SOC stocks, our study suggested that the benefit of increasing SOC stocks as GHG sinks could be lar-

gely offset by stimulation of soil N2O emissions and aggravated by CH4 emissions if, particularly for rice paddy soils,

the stimulation of CH4 emissions by manure application was taken into account.
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Introduction

Agricultural production generates seven billion tons of

animal manure per year globally (Thangarajan et al.,

2013), which is approximately two times greater than

the global crop residue production (Lal, 2005). Applica-

tion of these animal manures to arable land creates a

great potential for sustaining crop productivity (Steiner

et al., 2007), improving soil fertility (Diacono & Monte-

murro, 2010), mitigating environmental N loss (Smith

et al., 2001; Bouwman et al., 2010; Zhou et al., 2016a),

and enhancing soil C sequestration (Maillard & Angers,

2014). The enhanced agricultural soil C sequestration

following manure application is urgently needed for

mitigating climate change, as agricultural greenhouse

gas (GHG) emissions contribute more than 13% to glo-

bal anthropogenic GHG emissions (IPCC 2013). A

recent global meta-analysis estimated that manure

application could sequester an average of 5.6

Mg C ha�1 more organic C in the topsoil (0–22 cm) rel-

ative to synthetic N fertilizer over 18 years (Maillard &

Angers, 2014). Therefore, substituting synthetic N fertil-

izer with animal manure has been suggested as a way

to mitigate climate change while sustaining productiv-

ity in agricultural systems (Smith et al., 2008).

Soil N2O emissions can determine the overall GHG

balance of agricultural production systems for a given

agricultural practice, as N2O is a potent GHG with a

global warming potential (GWP) 265 times greater than
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CO2 based on a 100-year time horizon (IPCC 2013).

Both field experiments and process-based modeling

have consistently indicated that agricultural practices

that increase soil C sequestration (e.g., no tillage and/

or reduced tillage, crop straw return) may induce addi-

tional N2O emissions, which can offset the benefits of C

sequestration (Six et al., 2004; Li et al., 2005; Zhou et al.,

2014; Owen et al., 2015; Tian et al., 2016). For example,

Li et al. (2005) estimated that soil N2O emissions follow-

ing reduced tillage and crop residue return practices

offset 75% and 103% of the sequestered C, respectively.

Therefore, it is necessary to determine the overall effect

of manuring on N2O emissions compared to synthetic

N fertilizer if one aims to mitigate climate change in

agricultural systems by substituting synthetic N fertiliz-

ers with animal manures.

Soil N2O is mainly produced by microbial nitrifica-

tion or denitrification, which are dependent on multiple

factors, including the availability of carbon and nitro-

gen substrate as well as oxygen, soil properties (texture

and pH), and environmental conditions (Firestone &

Davidson, 1989; Groffman & Tiedje, 1991). Manure

application by mediating the availability of soil inor-

ganic N and bioavailable organic C as substrates for

microbial N2O production and consumption may affect

N2O emissions in agricultural soils (Baggs et al., 2000;

Ball et al., 2004; Rochette et al., 2004; Aguilera et al.,

2013; Thangarajan et al., 2013; Chen et al., 2014; Zhou

et al., 2016a). In addition to direct effects, manure appli-

cation could indirectly regulate soil N2O emissions by

changing soil aeration, specifically oxygen availability

at microsites with the decomposition of organic matter

(Xu et al., 2008). Furthermore, manure application can-

not only increase soil pH (Whalen et al., 2000) but can

also result in increased soil porosity, aggregation, and

hydraulic conductivity (Haynes & Naidu, 1998), which

can regulate various abiotic and biotic processes gov-

erning N2O production in agricultural soils (Butter-

bach-Bahl et al., 2013; Heil et al., 2016, Zhou et al.,

2016b).

Highly complex mechanisms associated with manur-

ing regulate soil N2O production and consumption.

However, the available research results on the impact

of manuring on N2O emissions relative to synthetic N

fertilizer have been contradictory (Akiyama & Tsuruta,

2003; Velthof et al., 2003; Ball et al., 2004; Rochette et al.,

2004; Meijide et al., 2007; Ding et al., 2013; Zhou et al.,

2014). For example, several previous studies have

reported that manure application increased N2O emis-

sions in agricultural soils compared to synthetic N fer-

tilizers (Baggs et al., 2000; Rochette et al., 2004; Zhou

et al., 2014). In these studies, the enhancement of N2O

emissions following manure application was probably

a result of an increased availability of labile organic C

because soil labile organic C compounds often serve as

an energy source for denitrifiers, thereby increasing

N2O production via denitrification (Ju et al., 2011). In

contrast, some studies reported that manure applica-

tion decreased N2O emissions compared to synthetic N

fertilizers (Ball et al., 2004; Meijide et al., 2007; Ding

et al., 2013). The decrease in N2O emission was likely a

result of additions of organic C compounds that did

not only enhance microbial inorganic N immobilization

and competition for NH4
+ for nitrification and NO3

- for

denitrification (Burger & Jackson, 2003; Zhou et al.,

2016a), but also stimulated complete denitrification

with further reduction of N2O to N2 (Ball et al., 2004;

Meijide et al., 2007). Furthermore, some studies found

no significant differences in N2O emissions between

manure and synthetic N fertilizer applications

(Akiyama & Tsuruta, 2003; Vallejo et al., 2006). The sign

and magnitude of the response of N2O emissions to

manure application relative to synthetic N fertilizer

have been found dependent on manure characteristics,

soil properties, and climate conditions (Velthof et al.,

2003; Snyder et al., 2009; Chantigny et al., 2010). How-

ever, although many individual field studies have been

conducted to investigate the effects of manuring on soil

N2O emissions, general conclusions have not been

made due to the high variation of manuring effects

across different experimental sites.

Detailed knowledge about how manure application

affects soil N2O emissions is critical to evaluating the

potential of manure application to agricultural soils for

climate change mitigation on a global scale. However, a

quantitative synthesis of the overall response of N2O

emissions to manure application relative to synthetic N

fertilizer is still lacking. Therefore, we conducted a

meta-analysis to quantitatively estimate the overall sign

and magnitude of manuring effects on N2O emissions

relative to synthetic N fertilizers in agricultural soils by

integrating worldwide available measurements to eval-

uate the role of manure characteristics (e.g., animal spe-

cies and manure management methods), climate, and

soil properties as explanatory factors for N2O emis-

sions, as well as to evaluate the underlying mecha-

nisms.

Materials and methods

Data collection

A comprehensive literature search was conducted of peer-

reviewed articles that reported N2O emissions following ani-

mal manure applications in agricultural soils in the Web of

ScienceTM (Thomson Reuters, Philadelphia, PA, USA). ‘Man-

ure’, ‘nitrous oxide’, ‘N2O’, ‘nitrogen’, and ‘N’ were used as

keywords to search for studies published prior to December
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of 2015. We only included studies that compared soil N2O

emissions between manure applications, and synthetic N fer-

tilization and/or no fertilization treatments in the same agri-

cultural system and at the same experimental site. Soil N2O

emissions from the unfertilized treatment were collected to

estimate the direct N2O emission factor with manure applica-

tion. Studies included in the data pool had to meet the follow-

ing criteria: a) replicated field experimental design; b) soil

N2O emissions measured under field conditions for at least a

full crop season, with greenhouse and laboratory incubation

experiments excluded; and c) field experiments that included

at least one comparison of N2O emissions between manure

application and synthetic N fertilizer and/or no fertilization

treatments. Furthermore, because of the positive response of

N2O emissions to N application rate, we only included com-

parisons of manure and synthetic N fertilizer applications if

their differences in N application rate were <30 kg N ha�1.

Due to great temporal variations in N2O emissions, only sea-

sonal or annual cumulative N2O emissions were considered,

and one dataset of seasonal or annual cumulative N2O emis-

sions from one site was considered as one observation in this

analysis. If a study was repeated for multiple growing seasons

and/or years, the average value of the full experimental dura-

tion was considered as one observation. In total, 341 observa-

tions from 41 peer-reviewed articles were selected (Table 1;

Data S1).

From each study, we extracted the cumulative N2O emis-

sions (kg N2O-N ha�1) and N application rate (kg N ha�1) for

manure and/or synthetic N fertilizer application treatment,

with unit conversions performed where necessary. We also

collected sample sizes and standard deviations for each treat-

ment. If studies only reported standard errors, the correspond-

ing standard deviations were converted from standard errors.

GetData Graph Digitizer software (version 2.26: http://www.

getdata-graph-digitizer.com/download) was used to extract

data from graphs when data were presented with figures in

the original publications. Other information from each of the

selected studies that was compiled in the dataset included the

following: geographic location, climatic conditions, soil prop-

erties (texture, total nitrogen [TN], SOC, C:N ratio, pH, and

bulk density), synthetic N fertilizer type, manure characteris-

tics, duration of fertilization treatment, crop yield, and N

uptake. As some studies (30% of the selected studies) did not

include soil texture and soil pH data, we obtained the missing

data from the Harmonized World Soil Database v1.2 (FAO,

2012) in accordance with geographic locations (Data S1). As

only 3% of experimental treatments were a combination of

manure and synthetic N fertilizer application, the comparison

of mixed application of manure and synthetic N fertilizer rela-

tive to pure synthetic N fertilizer was not considered in this

study. Further, as there were only 25% and 20% of the selected

studies presenting datasets of crop yield and N uptake,

respectively, direct comparisons of crop yield and N uptake

were not performed in the present analysis.

Seven categorical factors (three animal characteristics [ani-

mal species, manure preparation method, manure application

method], duration of fertilization treatment, climate zone, soil

texture, and soil pH), and six continuous factors (N rate, soil

clay content, SOC, soil C:N ratio, soil pH, and manure C:N

ratio) were retained for the analysis. Specifically, regarding

manure characteristics, animal species were grouped in cate-

gories of cattle manure (n = 47 comparisons [same in the fol-

lowing in this section]), pig manure (n = 78), poultry manure

(n = 9), and farmyard manure (FYM, n = 3); the manure

preparation methods were grouped as raw (n = 80) and pre-

treated (composted or digested) manures (n = 57), and the

manure application methods were grouped as surface (n = 59)

and subsurface (n = 78) manure applications. The durations of

fertilization treatment were grouped into short-term

(<10 years, n = 120) and long-term (>10 years, n = 17) fertil-

ization experiments. The precipitation and temperature at

each experimental site were used to determine the climate

zone from the world map of IPCC climate zones. In accor-

dance with the generalized climate classification scheme of the

IPCC climate zone (European Commission, 2012, Maillard &

Angers, 2014), climate conditions at the experimental sites

were grouped into three climate zones: cool temperate

(n = 73), warm temperate (n = 61), and tropical (n = 3). Soil

textures were grouped as sand (n = 4), sandy loam (n = 24),

loam (n = 41), silt loam (n = 16), clay loam (n = 17), silt clay

(n = 12), and clay (n = 23). The soil pH levels were grouped as

<6.5 (acid, n = 84), 6.5–7.3 (neutral, n = 32), and >7.3 (alkaline,

n = 21) based on the definitions recommended by the USDA

(source: http://www.nrcs.usda.gov/).

Data analysis

We used the natural logarithm of the response ratio (ln RR) as

the effect size of the comparisons of soil N2O emissions

between manure application and synthetic N fertilizer treat-

ment in this meta-analysis (Hedges et al., 1999).

ln RR ¼ ln
Xt

Xc

� �
¼ ln Xt

� �� lnðXcÞ ð1Þ

where Xt is the mean value of the manure application treat-

ment and Xc is the mean value of the synthetic N fertilizer

treatment.

The variance of ln RR (v) for each study was estimated by

the Eqn (2) (Hedges et al., 1999).

V ¼ ðs2t =ntXt
2Þ þ ðs2c=ncXc

2Þ ð2Þ
where st and sc are the standard deviations for all comparisons

in the treatment and control groups, respectively; nt and nc are

the sample sizes for the treatment and control groups, respec-

tively.

This meta-analysis was performed using a nonparametric

weighting function, and the weighting factor w was calculated

as the inverse of the pooled variance (1/v). When multiple

observations were extracted from the same study, we adjusted

the weights by the total number of observations (n) per site.

The final weight (w0) was calculated by the Eqn (3):

w0 ¼ w=n ð3Þ
The weighted effect size ln RR0 and mean effect size ln RR0

for all observations were calculated with the Eqns (4) and (5):
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ln RR0
i ¼ w0

i � ln RRi ð4Þ

ln RR
0 ¼

X
i

ln RR0
i=
X
i

w0
i ð5Þ

where ln RR0
i and w0

i are ln RR0 and wi of the ith observation,

respectively.

In addition to the weighted mean effect sizes, confidence

intervals (CIs, 95%) were generated using bootstrapping of

4999 iterations (Rosenberg et al., 2000). The results were con-

sidered significant if the 95% confidence intervals did not

overlap with zero and the randomization tests yielded P val-

ues <0.05. For improved explanatory power, the mean effect

size was transformed back to the percentage change for man-

ure application relative to the synthetic N fertilizer treatments.

For the variables of N2O emission, we conducted a categorical

randomized-effects meta-analysis model to compare the effect

sizes among the categorical groups through a framework simi-

lar to ANOVA. In other words, for each variable, the total hetero-

geneity (QT) in the categorical group was partitioned into

within-group (QW) heterogeneity and between-group hetero-

geneity (QB) using chi-square distributions. The significance of

QB represents mean effect sizes that are significantly different

between various levels of the categorical group (Rosenberg,

2000). We also applied a continuous randomized-effects meta-

analysis model to test the relationships between the effect

sizes of N2O emissions and the N application rate, soil clay

content, SOC, soil C:N ratio, soil pH, and manure C:N ratio.

The statistical results have been reported as the total hetero-

geneity (QT), the difference in the among-group cumulative

sizes (QM), the residual error (QE), the slope, and the P values.

The relationships were considered significant if P < 0.05. All

of the meta-analysis procedures were conducted using Meta-

Win 2.1 software (Sinauer Associates, Inc., Sunderland, MA,

USA).

We also calculated the direct N2O emissions factors (EF, %)

following the manure applications to estimate the net manur-

ing effects on soil N2O emissions if studies included a control

(no fertilizer treatment):

EFð%Þ ¼ ðFN � FcÞ=N � 100 ð6Þ
where FN is the cumulative N2O emissions (kg N2O-N ha�1)

from each N addition treatment, FC is the cumulative N2O

emissions (kg N2O-N ha�1) from the control, and N is the N

application rate (kg N ha�1).

To estimate the climatic effects of N2O emission changes

by manure application, we calculated the GHG balance of

soil N2O emissions and soil C sequestration following

manure application relative to synthetic N fertilizer. Here,

the global mean N application rate of 115.7 kg N ha�1 yr�1

for arable land in 2014 that was estimated from the report

of Food and Agriculture Organization of the United

Nations (FAO, 2016) was applied in the estimation. The

changes in soil C sequestration by manure application

compared to synthetic N fertilizer were adopted from the

newest global meta-analysis study, which estimated the

average soil C sequestration of 5600 � 2800 kg C ha�1 in

the top 22-cm soil layer over 18 years (i.e.,

311 kg C ha�1 yr�1) following manure application relative

to synthetic N fertilizer (Maillard & Angers, 2014). Soil

N2O emissions were converted into CO2 equivalents by

taking into account the specific radiative forcing potential

of 265 relative to CO2 on a 100-year time horizon (IPCC

2013).

Results

Effects of manure application on N2O emissions
compared to synthetic N fertilizer

On average, manure application significantly increased

soil N2O emissions by 32.7% (95% CI: 5.1–58.2%) com-

pared to synthetic N fertilizers (Fig. 1). The continuous

randomized-effects model analysis showed that the

effect sizes of manure application on N2O emissions

were negatively correlated with soil clay content and

soil pH (P < 0.01) but not with soil C:N ratio, SOC, N

addition rate, or manure C:N ratio (Table 2). Regarding

the duration of manure application treatment, relative

to synthetic N fertilizer, soil N2O emissions on average

were increased by 22.9% (95% CI: 2.6–45.9%) and 70.7%

(95% CI: �8.5 to 164.7%) from manure applications dur-

ing short-term and long-term fertilization treatments,

respectively, while the effect of long-term manure

application treatment was not statistically significant

(Fig. 1a).

The effect sizes were also dependent on the manure

origin, that is, animal species, indicated by the margin-

ally significant differences in effect size among animal

species (Fig. 1b, P = 0.087). Compared to synthetic N

fertilizer, cattle and poultry manure applications signif-

icantly increased soil N2O emissions by an average

28.7% (95% CI: 5.2–67.2%) and 45.4% (95% CI: 7.8–
159.2%), respectively. Furthermore, soil N2O emissions

increased by 41.6% (95% CI: �10.3 to 83.8%) for pig

manure application and decreased by 21.4% (95% CI: –
37.2–16.8%) for FYM application relative to synthetic N

fertilizer while both effects were not statistically

significant.

Compared with synthetic N fertilizer application,

subsurface manure application significantly increased

soil N2O emissions by 74.8% (95% CI: 6.0–104.2%),

whereas no significant increase was found for surface

manure application (mean: 17.4%, 95% CI: �7.8 to

47.9%) (Fig. 2a). The categorical group analysis indi-

cated that manure preparation methods also signifi-

cantly affected the effect sizes of manure application on

N2O emissions relative to synthetic N fertilizer (Fig. 2b,

P = 0.0386). The application of raw manure signifi-

cantly increased soil N2O emissions by an average of

46.9% (95% CI: 8.5–81.5%), whereas the pretreated man-

ure application increased N2O emissions, statistically
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not significantly, only by an average of 2.8% (95% CI:

�18.5 to 30.3%).

Regarding climate zones, manure application signifi-

cantly increased soil N2O emissions relative to synthetic

N fertilizer in the warm temperate climate zone (mean:

34.3%, 95% CI: 6.8–64.7%). By contrast, significant

effects were not observed in cool temperate (mean:

32.2%, 95% CI: �8.7 to 33.8%) and tropical (mean:

�4.8%, 95% CI: �43.3 to 3.9%) climate zones (Fig. 3).

Soil texture significantly affected manure applica-

tion-induced N2O emissions relative to synthetic N fer-

tilizer-induced N2O emissions (Fig. 4, P < 0.0001). On

average, manure application significantly increased soil

N2O emissions by 40.0% (95% CI: 3.4–50.4%) in sandy

loam soils, 63.8% (95% CI: 41.7–134.8%) in loam soils,

and 17.4% (95% CI: 10.2–61.5%) in clay loam soils.

However, manure application significantly decreased

N2O emissions by 15.9% (95% CI: �54.0 to �4.3%) in

silt clay soils. However, the manuring effects were not

statistically significant in the other three soil types, that

is, clay, silt loam, and sandy soils (mean values: 13.6%

[95% CI: �40.8 to 25.8%], �15.2% [95% CI: �51.0 to

28.8%], and 1.1% [95% CI: �35.9 to 6.6%], respectively).

Similarly, soil pH significantly affected N2O emis-

sions induced by manure application relative to syn-

thetic N fertilizer application (Fig. 5, P = 0.0025).

Manure application, on average, significantly increased

N2O emissions by 64.8% (95% CI: 14.0–70.8%) in acid

soils. However, significant effects were not observed in

pH neutral soils (mean: 7.3%, 95% CI: �28.6 to 25.4%)

or alkaline soils (mean: �8.2%, 95% CI: �22.8 to 1.2%).

Fig. 1 Comparison of soil N2O emission in manure vs. synthetic N fertilizer applications for the entire dataset (overall) and for subcate-

gories of the duration of fertilization treatment (a, long-term or short-term fertilization treatment) and animal species (b). FYM repre-

sents farmyard manure. The number of observations included in each category is shown next to the error bars. Error bars represent

95% confidence intervals. The effect of manure application was considered significant if the 95% CI of the mean effect did not cover

zero. The P value of the difference between subcategories is shown in the panel.

Table 2 Relationships between the effect sizes of manure

application on soil N2O emissions relative to synthetic N fertil-

izer application and N addition rate, soil clay content, soil

organic carbon (SOC), soil C:N ratio, soil pH, and manure C:N

ratio. Statistical results were reported as total heterogeneity in

effect sizes among studies (QT), the difference among groups

cumulative effect sizes (QM), and the residual error (QE) from

continuous randomized-effects model meta-analysis. The rela-

tionship is significant if P < 0.05

QT QM QE Slope P n

N rate 201.1 2.1 199.0 0.002 0.1444 137

Clay content 139.5 34.3 105.2 �0.019 0.0000 90

SOC 146.3 2.3 144.0 �0.007 0.1259 101

Soil C:N ratio 138.9 0.1 138.8 0.008 0.7516 93

Soil pH 183.1 10.7 172.4 �0.243 0.0011 100

Manure C:N ratio 145.7 0.1 145.6 0.004 0.7427 113
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Fig. 2 Comparison of soil N2O emission in manure vs. synthetic N fertilizer applications for application method (a) and manure prepa-

ration (b). The number of observations included in each category is shown next to the error bars. Error bars represent 95% confidence

intervals. The effect of manure application was considered significant if the 95% CI of the mean effect did not cover zero. The P value

of the difference between subcategories is shown in the panel.

Fig. 3 Comparison of soil N2O emission in manure vs. synthetic N fertilizer applications for subcategories of climate zone. The number

of observations included in each category is shown next to the error bars. Error bars represent 95% confidence intervals. The effect of

manure application was considered significant if the 95% CI of the mean effect did not cover zero. The P value of the difference

between subcategories is shown in the panel.
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N2O emission factors

Overall, the average N2O emissions factor (EF) for man-

ure applications was 1.83 � 0.30% (n = 146) and signif-

icantly higher than zero across different experimental

sites (Fig. 6). The mean EF following manure applica-

tion was 1.87 � 0.30% in upland soils (n = 143) and

0.24 � 0.60% in rice paddy soils (n = 3). Pig manure

applications had the highest mean EF (1.70 � 0.21%),

followed by cattle manure (1.35 � 0.25%) and poultry

manure (1.07 � 0.39%) (Fig. 6). Applications of raw

and pretreated manures were associated with mean

EFs of 1.43 � 0.21% and 1.66 � 0.19%, respectively. On

average, subsurface manure application induced a sig-

nificantly higher EF (1.74 � 0.22%) compared to sur-

face manure applications (1.28 � 0.20%). The manure

application-induced EF in the warm temperate climate

zone (0.79 � 0.12%) was significantly lower than in

cool temperate (1.95 � 0.23%) and tropical

(3.57 � 1.04%) climate.

Global warming potentials

Our estimation showed that the average net change of

GWP of soil organic C sequestration by manure

application relative to synthetic N fertilizer was

1140.7 kg CO2-eq ha�1 yr�1 (Table 3). However, due to

changes of N2O emissions, manure application induced

a great increase in GWP of 419.2 kg CO2-eq ha�1 yr�1

in upland soils and a slight decrease in GWP of 30.4 kg

CO2-eq ha�1 yr�1 in rice paddy soils. Overall, our cal-

culations suggested that the increase in soil organic C

sequestration as a CO2 sink by manure application

could be largely offset by at least 36.7% due to stimula-

tion of N2O emission in upland soils, but not in rice

paddy soils.

Discussion

Effects of manure application on N2O emissions

There has been an ongoing debate on whether manure

application can increase N2O emissions compared to

synthetic N fertilizer (Petersen et al., 1996; Van Groeni-

gen et al., 2005; Meijide et al., 2007; Aguilera et al., 2013;

Zhou et al., 2014). Our global meta-analysis showed

that manure application significantly increased soil

N2O emissions an average of 32.7% (95% CI: 5.1–
58.2%), relative to synthetic N fertilizer (Fig. 1). In this

context, changes in quantity and quality of soil C and N

Fig. 4 Comparison of soil N2O emission in manure vs. mineral nitrogen fertilizer applications for the entire dataset (overall) and for

soil texture subcategories of sand, sandy loam, loam, silt loam, clay loam, silt clay, and clay soils. The number of observations included

in each category is shown next to the error bars. Error bars represent 95% confidence intervals. The effect of manure application was

considered significant if the 95% CI of the mean effect did not cover zero. P values represent significant differences between subcate-

gories if P < 0.05.
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substrate and environmental condition from manure

applications may favor N2O production and emission

because soil N2O emissions are moderated by multiple

factors such as soil inorganic N and organic C availabil-

ity, soil oxygen (O2) availability, soil temperature, and

soil moisture (Butterbach-Bahl et al., 2013). First,

Fig. 5 Comparison of soil N2O emission in manure vs. mineral nitrogen fertilizer applications for the entire dataset (overall) and for

soil pH subcategories of <6.5 (acid), 6.5–7.3 (neutral) and >7.3 (alkaline). The number of observations included in each category is

shown next to the error bars. Error bars represent 95% confidence intervals. The effect of manure application was considered significant

if the 95% CI of the mean effect did not cover zero. P values represent significant differences between subcategories if P < 0.05.

Fig. 6 Boxplots illustrating the soil nitrous oxide emission factors (EFs, %) for manure applications regarding different land use (a),

animal species (b), manure preparations (c), manure application methods (d), and climate zones (e). Black circles represent outliers.

Black solid lines in the boxes represent medium values.
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relative to synthetic N fertilizer alone, manure applica-

tion provides more labile organic C compounds as

energy for microbial activity, thereby stimulating N2O

production of nitrifiers and denitrifiers (Firestone &

Davidson, 1989). Second, the increase in availability of

C and N substrates by manure application could

enhance microbial activity and O2 consumption, and

hence create anoxic conditions in the soil due to O2

depletion and facilitate denitrification, thereby increas-

ing N2O emissions (Petersen et al., 1996; Van Groenigen

et al., 2005).

However, it should be noted that the magnitude of

soil N2O emission is related to the ratio of gaseous end

products of denitrification (i.e., N2O / (N2 + N2O). This

is one mechanism to explain the decrease in N2O emis-

sions by manure application compared to synthetic N

fertilizer (Meijide et al., 2007; Aguilera et al., 2013). For

example, Meijide et al. (2007) observed that manure

applications decreased N2O emissions from a maize

system in Mediterranean climate by increasing the ten-

dency to complete denitrification with reduction of

N2O to N2, in particular after irrigation and rainfall

events (Meijide et al., 2007). Owing to the presence of a

number of studies reporting the inhibitory effects of

manure application on N2O emissions relative to syn-

thetic N fertilizer (Meijide et al., 2007; Zhou et al., 2014),

the present analysis revealed the overall sign and mag-

nitude of manuring effects on N2O emissions relative to

synthetic N fertilizers (Fig. 1), which were dependent

on manure characteristics (Figs 1 and 2), climate

(Fig. 3), soil texture (Fig. 4), and soil pH (Fig. 5).

Manure characteristics. Compared to synthetic N fertil-

izer, N2O emissions increased due to applications of

cattle (mean: 28.7%, 95% CI: 5.2–67.2%) and poultry

(mean: 45.4%, 95% CI: 7.8–159.2%) manures (Fig. 1b).

These variations in the effect of animal-specific manure

on N2O emissions were likely attributable to the differ-

ent manure compositions (Chadwick et al., 2000; Bell

et al., 2016). For example, effect sizes for poultry (mean

45.4%, 95% CI: 7.8–159.2%) manure were greater than

those for cattle manure (mean: 28.7%, 95% CI: 5.2–
67.2%) (Fig. 1b), although cattle manure contained a

relatively larger inorganic N pool than poultry manure

per unit (Chen et al., 2014). The significantly greater

N2O emissions by application of poultry manure were

likely due to their higher content of easily decompos-

able organic C (e.g., DOC and volatile fatty acids) rela-

tive to cattle manure (Kirchmann, 1991; Kirchmann &

Lundvall, 1993; Chadwick et al., 2000; Velthof et al.,

2003). First, application of manure with a larger content

of easily degradable organic C substrates tended to alle-

viate efficiently the inhibition of denitrification by lim-

ited organic C substrate supply and to generate higher

N2O emissions than those with more resistant organic

C (e.g., Velthof et al., 2003; Mori & Hojito, 2012). Sec-

ond, application of manure with more labile organic C

could create a more anoxic soil environment that favors

denitrification and N2O emissions (Cayuela et al., 2010;

Aguilera et al., 2013).

Besides animal species, manure effects on soil N2O

emissions could be also dependent on manure applica-

tion methods (Webb et al., 2010). The present study

found that subsurface manure application significantly

increased N2O emissions by an average of 74.8% (95%

CI: 6.0–104.2%), relative to synthetic N fertilizers, while

there were no significant effects for surface manure

application (17.4%, 95% CI: �7.8 to 47.9%, Fig. 2a).

Some previous studies also observed greater soil N2O

emissions following subsurface manure application

compared to surface manure application (Wulf et al.,

2002; Velthof et al., 2003). First, subsurface manure

Table 3 Summary of manure application and synthetic N fertilizer application induced changes in SOC stocks (FSOC, kg C kg N

ha�1 yr�1 for synthetic N fertilizer and kg C ha�1 yr�1 for manure applications) and soil N2O emission factor (F N2O, kg N2O-N

ha�1 kg N�1)

Upland soils Rice paddy soils References

N2O emission factor (F N2O, kg N2O-N ha�1 kg N�1)

Synthetic N fertilizer 0.01 0.003 IPCC (2006)

Animal manure 0.0187 � 0.003 0.0024 � 0.0064 This study

Changes in global warming potential (GWP, kg CO2 eq ha�1 yr�1) by manure application relative to synthetic N fertilizer

N2O emission 419.2 �30.4 This study

SOC �1140.7 �1140.7 Maillard & Angers (2014)

Percentage of the increases in SOC stocks offset by N2O emissions following manure application

Animal manure 36.7% �2.7%

Estimated on basis of global average N application rate for agricultural soils in 2014: 115.7 kg N ha�1 (Food and Agriculture Orga-

nization of the United Nations (FAO), 2016).
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application could enhance the contact between soil and

added C and N compounds, which may intensify

microbial O2 consumption and induce strong O2 deple-

tion that facilitates denitrification and N2O emission

(Zhu et al., 2015). Second, subsurface manure applica-

tion could decrease NH3 volatilization and retain more

N in soil, thereby increasing the supply of N substrate

for N2O production (Webb et al., 2010). However, pre-

vious studies have demonstrated that subsurface man-

ure application could also decrease or have no effect on

N2O emissions compared to surface manure applica-

tion (Velthof et al., 2003; Mkhabela et al., 2008). This

phenomenon was likely because subsurface manure

application might increase the length of N2O diffusion

path from the microsites of denitrification into the

atmosphere and hence increase the potential for reduc-

tion of N2O to N2. It should be noted that subsurface

manure application is widely recommended to mitigate

NH3 volatilization in agricultural soils (Webb et al.,

2010). The trade-offs between N2O emission and NH3

volatilization by manure application have not been well

considered to date. In this context, the overall effect of

subsurface manure application on N2O emission may

change if both indirect N2O emission due to NH3

volatilization (IPCC 2006) and direct N2O emission

were taken into account.

Our analysis found that N2O emissions significantly

increased by 46.9% (95% CI: 8.5–81.5%) by application

of raw manure but not for pretreated manure (mean:

2.8%, 95% CI: �18.5 to 30.3%) relative to synthetic N

fertilizer (Fig. 2b). The results indicate that application

of pretreated manure may be effective to mitigate N2O

emissions in manure-amended agricultural systems. In

general, compared to pretreated manure raw manure

has a higher availability of easily degradable organic C

and inorganic N compounds that may enhance the

microbial nitrification–denitrification processes and

N2O production in soils (Zhou et al., 2016a). By con-

trast, pretreated manure has a greater C:N ratio than

raw manure (Bernal et al., 2009). In addition, several

studies reported that pretreated manure with a greater

C:N ratio (>15) could enhance microbial N immobiliza-

tion (Widmer et al., 2002; Velthof et al., 2003; Moosham-

mer et al., 2014), which leads to a decrease in

availability of inorganic N substrate for nitrification

and/or denitrification and inhibition of N2O emissions.

Nevertheless, one caveat is that N2O emission during

manure pretreatment (e.g., composting) may substan-

tially offset the benefit of pretreated manure application

in agricultural soils (Hou et al., 2015).

Climate. Climate, through regulating soil moisture and

temperature regimes, may affect the microbial nitrifica-

tion–denitrification process and N2O emissions

(Barnard et al., 2006; Xu et al., 2012). Relative to syn-

thetic N fertilizer, manure application significantly

increased N2O emission by an average of 34.3% (95%

CI: 6.8–64.7%) in warm temperate climate but not in

cool temperate climate (Fig. 3). First, the warmer cli-

mate may directly enhance microbial nitrogen turnover

rate coefficients and increase availability of C and N

substrate in soils; second, the warmer climate could

stimulate microbial decomposition of organic matter

and increase soil respiration which favors the develop-

ment of soil anoxic conditions. Thus, the warmer cli-

mate may favor microbial nitrification–denitrification
associated with N2O production, and hence increase

soil N2O emissions (Barnard et al., 2005; Xu et al., 2012).

It is noteworthy that soil N2O emissions may not con-

sistently increase with increasing temperature as the

increase in denitrification could stimulate the produc-

tion of N2, the gaseous end product of denitrification,

thereby outweighing the effect on N2O production

(Smith, 1997). For example, previous studies have

demonstrated that addition of organic C substrate by

manure application may lead to complete denitrifica-

tion, with higher production of the gaseous end pro-

duct N2 than N2O, and hence a decrease in N2O

emission under warm and wet environmental condi-

tions (Dalal et al., 2010; Das & Adhya, 2014). It still

remains an open question how climatic condition (i.e.,

temperature and precipitation regime) affects N2O

emissions in agricultural soils and further studies are

therefore highly recommended in particular for tropical

region.

Soil texture. Soil texture significantly affected effect

sizes of manure application on N2O emissions

(P < 0.0001, Fig. 4). In coarser-textured sandy soils,

nitrification is the dominant process of N2O emissions

(Mctaggart et al., 2002; Zhou et al., 2013). The air-filled

porosity of sandy soils frequently results in low denitri-

fication activity (Groffman & Tiedje, 1991); in this con-

text, manure application may not appear to increase

nitrification and N2O emissions compared to synthetic

N fertilizer (Fig. 4), which is consistent with the general

understanding of soil texture serving as an important

control on soil N2O emissions (Mctaggart et al., 2002;

Skiba & Ball, 2002; Gu et al., 2013). Soil texture regulates

soil N2O emissions through moderating soil O2 avail-

ability (Corre et al., 1999), as soil texture has a strong

impact on the size and distribution of soil pores. By

contrast, manure applications significantly increased

soil N2O emissions in the sandy loam, loam, and clay

loam soils (Fig. 4). The fine-textured soils can fre-

quently develop anoxic microsites and favor denitrifica-

tion, perhaps due to clay particles that hold water

tightly in the soil aggregates (Gu et al., 2013). Thus,
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manure application with a sufficient supply of organic

C substrate could stimulate denitrification and hence

increase N2O emissions. However, relative to synthetic

N fertilizer, manure application significantly decreased

N2O emissions in silt clay soil (Fig. 4) that contains over

40% clay particles. First, the silt clay soil with high clay

content (>40%) generally has low gas diffusivity, which

could promote reduction of N2O produced in the soil

profile to N2 through complete denitrification before

being emitted to the atmosphere (Weitz et al., 2001),

particularly after manure amendment with sufficient

easily degradable organic C substrates. Second, the silt

clay soil with high clay content (>40%) has great cation-

exchange capacity (CEC) and can increase NH4
+

adsorption by clay particles, which in turn decreases

soil NH4
+ availability and constrains nitrification and

denitrification, thereby decreasing N2O emissions (Jar-

ecki et al., 2008).

Soil pH. Soil pH has been identified as another key reg-

ulator of soil N2O emissions (e.g., reviewed by Butter-

bach-Bahl et al., 2013). The present analysis indicated

that, compared with synthetic N fertilizer, manure

application significantly increased N2O emissions in

acid soils (pH < 6.5, Fig. 5) but not in neutral and alka-

line soils. As low soil pH generally prevents the assem-

bly of functional N2O reductase (N2OR) and inhibits

the reduction of N2O to N2 by this enzyme during deni-

trification (e.g., Bakken et al., 2012), the mole fraction of

N2O/(N2O + N2) during denitrification was greater in

acid soils (Stevens et al., 1998). Therefore, in acid soils

manure application could promote greater production

of N2O than N2 by denitrification and subsequently

increase soil N2O emissions. It is noteworthy that there

may be potential uncertainties in effect sizes of manure

application on N2O emissions as a function of soil pH.

Because the missing soil pH values in the selected pub-

lications were extracted from the Harmonized World

Soil Database v1.2 of the FAO in accordance with the

geographic locations, these extracted data may not

accurately represent the true values of the experimental

sites thereby inducing uncertainty. Moreover, as

reviewed by Butterbach-Bahl et al. (2013), there is still a

lack of knowledge on how soil pH regulates soil N2O

emission. In addition, manure application tends to neu-

tralize soil acidity and raise soil pH (Thangarajan et al.,

2013), which may increase the complexity of the mecha-

nism of manure application effects on soil N2O emis-

sions across various soil pH levels.

N2O emissions factors of manure application

The present analysis, including various land uses, man-

ure characteristics, climate, and soil characteristics,

estimated an average EF of 1.83% for manure applica-

tion (Fig. 6), which was higher than the current IPCC

default value of 1% (IPCC 2006). The average EFs of

manure application in upland soils (mean: 1.87%) were

greatly higher than for rice paddy soils (mean: 0.24%,

Fig. 6a), which was even lower than the IPCC default

factor of 0.30% for rice paddy soils (IPCC 2006).

Because rice paddy soils are often submerged, this can

cause a large proportion of the produced N2O to be fur-

ther reduced to N2, thereby leading to lower N2O emis-

sions, in particular in rice paddies receiving manure

(Firestone & Davidson, 1989; Zhou et al., 2015). Never-

theless, the present estimation provided the latest EFs

of manure application, which reduced the knowledge

gap on how much of the N input by manure applica-

tion can be lost as N2O emission in agricultural soils at

the global scale.

Implications and perspectives

Globally, application of animal manure to arable land

as organic fertilizer enhances SOC stocks compared to

synthetic N fertilizer alone (e.g., Maillard & Angers,

2014). However, the potential of manure application for

climate change mitigation by increase in SOC stocks

can be attenuated by enhanced N2O emissions as indi-

cated in the present analysis (Fig. 1). The estimation of

the present study suggests that increases in N2O emis-

sions offset the GHG sink strength of manure applica-

tion-induced C sequestration by roughly 37% in upland

soils (Table 3), if the annual N rate in agricultural soils

was equal to the global average value of 115.7 kg N

ha�1 in 2014 (Food and Agriculture Organization of the

United Nations (FAO), 2016). In addition, Owen et al.

(2015) found that the stimulation of N2O emissions fol-

lowing long-term manure application offsets the GHG

sink strength of soil C sequestration by 75–100% in the

rangelands of California, USA. By contrast, there was

no stimulatory effect of manure application on N2O

emission in rice paddy soils (Table 3). As CH4 emission

dominantly contributes to GHG balance in rice paddy

soils (e.g., Shang et al., 2011), the GHG sink strength of

increasing SOC stocks could be also largely offset by

CH4 emissions, if the stimulation of CH4 emissions by

manure application for rice paddy soils was taken into

account. Overall, our analysis highlights an important

concept that the benefits of increasing the soil C sink

may be largely offset by increased N2O emission (and

increased CH4 emission, which requires additional

quantitative analysis) by manure application to agricul-

tural soils.

It is noteworthy that the primary goal of manure

application to arable land is to increase and/or at least

sustain crop productivity. This suggests that further

© 2017 John Wiley & Sons Ltd, Global Change Biology, 23, 4068–4083

4080 M. ZHOU et al.



evaluation is necessary to reconcile the concerns of

GHG emissions with food security regarding manure

application, even though manure application has been

shown to be able to sustain crop yield (e.g., Steiner

et al., 2007). Second, we recommend that further

research should consider a potential saturation of the

SOC level following long-term manure application. As

some studies have proposed that soil has an upper limit

of organic C storage capacity (Six et al., 2002; Liu et al.,

2014), C addition by manure application may result in a

limitation of soil C sequestration if the C saturation

point has been reached in a long-term perspective (Stei-

ner et al., 2007). Third, we emphasize that particular

attention should be paid to the dynamic interactions

between the C and the N cycle after manure application

in order to maximize the climate change mitigation

potential of substituting synthetic N fertilizer applica-

tion with animal manure in agricultural soils. It would

appear that the benefit of SOC stocks from manure

application may be further offset by increased N2O

emissions as the significant positive relationship

between SOC content and N2O emissions existed in

most agricultural soils (Li et al., 2005). This emphasizes

that further studies should contribute to improving

dynamic biogeochemical models and conduct measure-

ments in long-term experiments for the accurate assess-

ment of the effect of manure application on the net

GHG balance of agroecosystems in the long-term

perspective.
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