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Abstract

We fabricated the black silicon (BS) structures by using nanosecond pulsed laser (ns-laser) in vacuum or in oxygen
environment. It is interesting that the enhanced visible emission occurs in the photoluminescence (PL) spectra
measured at room temperature and at lower temperature on the BS surface after annealing, in which lasing near
600 nm is observed on the BS surface with Purcell cavity structure. It is demonstrated in the PL spectra analysis
that the electronic states in the nanocrystal doped with oxygen play a main role in the visible emission on the BS
surface. The origin of the visible emission near 400, 560, or 700 nm is univocally revealed in the PL spectra analysis. A
visible emission is promising for the development of the white light device on the BS.

Background
Bulk silicon has an indirect band gap of 1.12 eV and
poor emission efficiency. However, scientists think that
developing efficient silicon light emitter is crucial for
integrating optoelectronic devices into silicon-based
chip. Recent reports demonstrate that visible emission at
room temperature occurs in low-dimensional nanostruc-
tures of silicon [1–6], especially in the black silicon (BS)
structure fabricated by using pulsed laser [7–12]. A sim-
ple pulsed laser (femtosecond (fs) or nanosecond (ns)
laser) processing technique can drastically change the
optical properties on silicon. In particular, visible emis-
sion on the BS surface attracts scientific interest, where
the emission mechanism is still under debate [13–15].
In the letter, we fabricated the BS surface structure by

using ns-laser in vacuum or in oxygen environment, in
which efficient emission in visible range was observed. It
is interesting that the suitable annealing condition on
the BS can obviously improve the visible emission owing
to crystallizing process. More interesting, the visible
emission measured at room temperature can be enhanced
on the BS prepared in oxygen environment. The analysis
of photoluminescence (PL) spectra and TEM image dem-
onstrates that the Si nanocrystals (NCs) doped with

oxygen play a main role in the visible emission on the BS,
and the mechanism of visible emission near 420, 560, and
700 nm is univocally revealed. These observations imply
the potential in fabricating silicon-based solid state light-
ing and light sources for visible range.

Experiments and Results
A pulsed laser etching (PLE) device is used to fabricate
the BS surface structures, in which the spot diameter of
ns-laser is about 10 μm focused on the silicon wafers of
P-type substrate with 10 Ωcm in vacuum (sample I) or
in oxygen environment with 80 Pa (sample II), as shown
in Fig. 1a. It is interesting that the plasmonic lattice
structure occurs on the BS surface in PLE process as
shown in the inset of Fig. 1a. SEM image in Fig. 1b
shows the BS surface structure prepared by ns-laser after
annealing, on which the reflective rate is lower than 10%
and the refractive index is about 1.88 in visible range on
the SiO2 surface. These experimental results agree with
the K-K relations [16, 17]. The nanocrystals of silicon
occur in the BS prepared by ns-laser after annealing, as
shown in the TEM image of Fig. 1c.
The PL spectra on the samples are measured under

the 266-nm excitation laser at room temperature
(300 K) and lower temperature (10~200 K) in the sample
chamber of 1 Pa.
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It should be noted that the temperature and the time
in annealing on the BS are important due to crystallizing
process. The annealing at 1000 °C is suitable for visible
emission in the PL spectra measured in 10 K on the BS
prepared in vacuum (sample I), and the optimal anneal-
ing time is about 15 min at 1000 °C for visible emission
in the PL spectra measured at room temperature on the
BS prepared in oxygen of 80 Pa (sample II).
It is very interested to make a comparison between the

sample I prepared in vacuum and the sample II prepared
in oxygen with 80 Pa in the analysis of PL spectra at
different temperature.
It is detailedly exhibited that the peak intensity in shorter

wavelength near 330 nm measured at 10 K on the sample I
prepared in vacuum is stronger as shown along with the
black curve in Fig. 2a which may be originated from the
nanocrystal emission, but the PL intensity in longer wave-
length near 400 nm measured at room temperature on the

sample II prepared in oxygen with 80 Pa is obviously en-
hanced as shown along with the red curve in Fig. 2b.
It is more interesting to make a comparison between

the sample II and the sample I in PL spectra analysis
near 560 nm. The PL peak measured near 560 nm at
room temperature is enhanced on the BS sample II pre-
pared in oxygen of 80 Pa as shown along with the red
curve in Fig. 3 related to the impurity states on nano-
crystals, while the PL intensity near 560 nm is weaker
on the BS sample I prepared in vacuum as shown along
with the black curve in Fig. 3.
Figure 4a shows the PL spectra with excitation power

measured at room temperature on the sample I prepared
in vacuum, in which the broader PL band is originated
from the size distribution of nanocrystals in the BS. The
analysis of PL spectra demonstrates that the broader
band emission originated from the size distribution of
nanocrystals disappears obviously, while the impurity

Fig. 1 a Structure depiction of PLE device used to fabricate the BS structures. b SEM image of the BS surface structure prepared by ns-laser after
annealing. c TEM image of nanosilicon in the BS prepared by ns-laser after annealing

Fig. 2 a PL spectra from 300 to 500 nm measured at lower temperature on the sample I (black curve) and the sample II (red curve). b PL spectra
measured at room temperature on the sample I (black curve) and the sample II (red curve), in which the impurity states on nanocrystals are exhibited in
the broader enhanced PL peaks on the sample II
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states emission occurs near 600 and 700 nm after
annealing at 1000 °C, as shown in Fig. 4b.
More interesting, the sharper PL peak with lasing near

600 nm occurs in Purcell cavity structure in micrometer
scale on the BS under excitation laser at 514 nm, as
shown in Fig. 5. Figure 5a shows the optical image of
Purcell cavity structure in micrometer scale on the BS
surface, and Fig. 5b shows the sharper PL peak with
lasing near 600 nm on the BS after suitable annealing, in
which the optical gain measured by using various strip
length method is about 130 cm−1.

Discussion
The analysis of the PL decay spectra on Si NCs with vari-
ous diameters demonstrates that the transformation from
indirect gap to direct gap appears on the smaller Si NCs,
as shown in Fig. 6a, b. The direct-gap emission near 400
and 560 nm relates to the faster photons on the smaller
NCs (diameters <2 nm), and the indirect-gap emission re-
lates to the slower photons (involving phonon assistance

process) on the larger NCs (diameters >2.5 nm). Figure 6c
shows the PL decay spectra near 700 nm involving the
slower photons (~μs) on the larger NCs and the faster
photons (~ns) owing to the impurity states.
As shown in Fig. 7, in this emission model, the direct-gap

emission relates to the faster photons on the smaller NCs
(diameters <2 nm), and the indirect-gap emission relates to
the slower photons (involving phonon assistance process)
on the larger NCs (diameters >2.5 nm), which is along with
the energy states’ curve in the quantum confinement effect.

Conclusion
In conclusion, the microstructure and the nanostructure
were found in the BS prepared by ns-laser. In the PL spec-
tra on the BS surface structures, the emission peaks were
measured in visible wavelength for LED application. We
have compared the PL spectra on the BS samples I pre-
pared in vacuum and the sample II prepared in oxygen of
80 Pa by ns-laser, in which it is demonstrated that the vis-
ible emission measured at room temperature near 400,
560, 600, and 700 nm is originated from the oxygen im-
purity states on the Si nanocrystals of the BS, while the
emission near 330 nm measured at 10 K is owing to the
nanocrystals emission. It is a new road to obtain emission
devices for application of visible LED on silicon chip.

Methods
Photoluminescence Measurement
Photoluminescence (PL) spectra of the samples are mea-
sured under the 266 or 488 nm excitation at room
temperature (300 K) and lower temperature (17~200 K) in
sample chamber of 1 Pa. In the PL spectra, the sharper
peaks with stimulated emission and direct-gap emission
characteristics have been observed, in which the PL peak
with lasing near 600 nm on the BS after suitable annealing
is measured by using various strip length methods whose
optical gain is about 130 cm−1. The PL decay spectra near
400, 560, and 700 nm are measured under ps-pulsed laser
at 266 nm.

Fig. 3 PL spectra near 560 nm measured at room temperature
made a comparison between the sample I (black curve) and the
sample II (red curve)

Fig. 4 a PL spectra with excitation power measured at room temperature on the sample I prepared in vacuum. b PL spectra with excitation
power measured at room temperature on the sample I after annealing
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Fig. 5 a Optical image of Purcell cavity structure in micrometer scale on the BS surface. b Sharper PL peak with lasing near 600 nm measured at
room temperature on Purcell cavity structure in a micrometer scale on the BS surface under excitation laser at 514 nm

Fig. 6 a PL decay spectra near 400 nm with the faster photons. b PL decay spectra near 560 nm with the faster photons (ns) on smaller Si NCs.
c PL decay spectra near 700 nm with the faster photons (ns) related to the impurity state emission and the slower photons (μs) on larger Si NCs

Fig. 7 The emission model depiction from the analysis of the PL decay
spectra on Si NCs with various diameters, in which the direct-gap
emission relates to the faster photons on the smaller NCs (diameters
<2 nm), and the indirect-gap emission relates to the slower
photons (involving phonon assistance process) on the larger NCs
(diameters >2.5 nm)
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