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Abstract Magmatic Ni-Cu sulfide deposits in northern
Xinjiang, China, are associated with small mafic-ultramafic
complexes, with the sulfide ores generally occurring in ultra-
mafic rocks. The Huangshan deposit (up to 65 Mt of ore at
0.49% Ni and 0.31% Cu), one of the largest magmatic Ni-Cu
deposits in northern Xinjiang, is composed of a layered se-
quence of lower websterite, lower lherzolite, websterite,
norite-gabbro, gabbro, diorite, and gabbronorite, with sulfide
mineralization mainly found in the lower lherzolite, lower
websterite, and websterite. Systematic variations of the major
oxides and trace elements suggest that the rocks of the
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Huangshan deposit are fractionated from the same parental
magma, with the sharp contact and discontinuous trends of
major oxide contents between different lithologies implying
intrusion of four distinct stages of magma from a single deep-
seated staging chamber. The reversals in olivine Fo contents
and major oxides in the lower lherzolite were the result of
inhomogeneity in olivine within the lower chamber. The Se/
S ratios (63.1~150 x 10°°®) and the negative correlation be-
tween Se/S and 53*S (0.63~2.42%o) of the sulfide ores suggest
that a large contribution of crustal S caused the sulfide segre-
gation. The sulfides in the lower lherzolite have lower Cu
contents (1386-2200 ppm) and Cu/Pd ratios (2.31 x 10°—
1.36 x 10°) relative to those in the mineralized lower
websterite (Cu = 2300 to 18,700 ppm, and Cu/
Pd = 6.65 x 10° t0 2.73 x 10°). A positive correlation between
Pd/Ir and N/Ir for the vein-textured sulfides in the lower
websterite likely reflects fractionated sulfides picked up by a
new pulse of magma. In contrast, the restricted range of Pd/Ir
ratios indicates that the PGE contents of the disseminated
sulfides in the lower lherzolite resulted from reaction between
the sulfides and new pulses of S-undersaturated magma.

Keywords Magmatic Ni-Cu sulfide deposit - Central Asian
Orogenic Belt - Huangshan mafic-ultramafic intrusion -
Magma conduit system - Sulfide saturation

Introduction

Several magmatic Ni-Cu deposits are hosted in Permian
mafic-ultramafic intrusions in northern Xinjiang, NW China,
within the Phanerozoic Central Asian Orogenic Belt (CAOB;
Fig. 1). The main deposits include Kalatongke,
Huangshandong, Huangshan, Tulaergen, and Poyi with a total
Ni metal reserve of approximately two million tons, making
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northern Xinjiang the second largest Ni resource in China after
Jinchuan (Qin et al. 2003; Liu et al. 2005; Xia et al. 2013). The
intrusions hosting the deposits typically have a surface area of
less than 10 km? and mainly consist of dunite, lherzolite,
harzburgite, websterite, and gabbro with rare norite found at
the margins and bases. The Ni-Cu sulfides are dominantly
hosted in ultramafic rocks, as in the Huangshan,
Huangshandong, Tuerlagen, and Poyi deposits (Qin et al.
2003; Liu et al. 2005). The mantle source and tectonic setting
of these intrusive rocks have been extensively studied (Gu
et al. 2006; Mao et al. 2008; Pirajno et al. 2008; Qin et al.
2011; Su et al. 2011, 2012; Sun et al. 2013; Tang et al. 2013;
Song etal. 2013; Gao etal. 2013; Deng et al. 2014, 2015; Mao
et al. 2014, 2015) with some studies proposing that the Ni-Cu
sulfide deposits formed in magma conduit systems (Su et al.
2013; Gao et al. 2013; Mao et al. 2014, 2015).

The Huangshan intrusion (also referred to as Huangshanxi
in the literature) is a small mafic-ultramafic intrusion that hosts
the second largest Ni-Cu sulfide deposit in northern Xinjiang.
Gabbros from the intrusion have yielded crystallization ages
of 284.5 + 2.5 and 283.8 =+ 3.4 Ma by zircon U-Pb LA-ICP-
MS and TIMS (Gu et al. 2006; Qin et al. 2011). The intrusion
is believed to have formed either from plume-related
magmatism or interaction between metasomatized lithospher-
ic mantle and ascending asthenospheric mantle as a result of
slab break-off (Zhou et al. 2004; Su et al. 2011; Song et al.
2013; Deng et al. 2015). Mass balance calculations for incom-
patible trace elements and sulfide abundances suggest that the
Huangshan intrusion represents a dynamic magma conduit
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(Zhang et al. 2011). Assimilation of S-bearing crust and frac-
tional crystallization likely played an important role in sulfide
saturation (Zhou et al. 2004; Zhang et al. 2011; Tang et al.
2012; Mao et al. 2014). However, some important issues are
not fully understood, including (1) the mechanism of reversals
of olivine and whole-rock composition in the lower lherzolite
and lower websterite, (2) the causes of sulfide saturation, and
(3) origin of sulfide mineralization in the lower lherzolite and
lower websterite. In this study, we investigate the role of mag-
ma conduit systems in the formation of the different
lithofacies and sulfide ores in the Huangshan intrusion using
lithology, mineral, and whole-rock geochemistry.

Geological background

The CAOB formed by amalgamation of microcontinents and
arc accretion prior to the Early Permian or Early Triassic
(Windley et al. 2007; Xiao et al. 2008, 2009). It extends from
Kazakhstan in the west to eastern Siberia in the east and sep-
arates the Siberian Craton in the north from the Tarim-North
China Craton in the south (Fig. 1a; Sengor et al. 1993; Jahn
et al. 2000, Jahn 2004; Windley et al. 2007; Xiao et al. 2004,
2008). The southern CAOB in northwest China is composed
of, from north to the south, the Chinese Altai, Junggar, and
Tianshan terranes as well as the Beishan Fold Belt (Fig. 1b).
The Tianshan terrane can be further divided into three tectonic
units: the Northern, Central, and Southern Tianshan (Fig. 1c;
BGMX 1993; Xiao et al. 2004, 2008; Zhou et al. 2010; Zhang
etal. 2013, 2014).
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A number of magmatic Ni-Cu sulfide deposits have been
discovered on the northern margin of the Junggar terrane, in
the Central Tianshan terrane, the Beishan fold belt, and the
Northern Tianshan terrane (Fig. 1; Mao et al. 2008; Qin et al.
2011; Song et al. 2011, 2013; Gao and Zhou 2012, Gao et al.
2013; Sun et al. 2013; Xia et al. 2013; Deng et al. 2014).
Recent discoveries include a Ni-Cu sulfide deposit hosted in
the Permian Poyi ultramafic intrusion in the Beishan fold belt
that has been estimated to contain 1.3 million metric tons of Ni
and 220,000 t of Cu (Xia et al. 2013), and Ni-Cu mineraliza-
tion in the Permian Baixintan mafic-ultramafic intrusion
(Fig. 1c; Wang et al. 2015). Though most of these deposits
formed in the Early Permian in Northern Xinjiang, a few Ni-
Cu sulfide mineralized intrusions, such as the Carboniferous
Tulargen intrusion (San et al. 2010; Jiao et al. 2012) and the
Silurian Jingbulake intrusion (Yang and Zhou 2009) are also
located in the Northern and Central Tianshan terranes. More
than 30 Early Permian mafic-ultramafic intrusions have been
identified along the east-trending Kanggurtag fault in the
Northern Tianshan, eight of which host magmatic Ni-Cu sul-
fide deposits (Fig. 1c; Mao et al. 2008; San et al. 2010; Qin
et al. 2011; Song et al. 2013; Su et al. 2013; Sun et al. 2013;
Wang et al. 2015). The Huangshan and Huangshandong Ni-
Cu sulfide deposits are located in the eastern part of the
Northern Tianshan and are associated with kilometer-scale
tension gashes generated by Permian dextral shearing
(Branquet et al. 2012).

Petrography of the Huangshan intrusion

The Huangshan intrusion is ~2.5 km long and ~50—400 m
wide and was emplaced into the early Carboniferous siltstone,
limestone, and altered basalt of the Gandun Formation (Fig. 2;
Li et al. 1989). The limestones have been metamorphosed to
garnet-diopside-wollastonite marble close to the intrusion and
can be found as xenoliths within it (Wang et al. 1987). The
Huangshan intrusion is predominantly composed of a basal
gabbronorite (>200 m thick); lower websterite (0—100 m
thick); lower lherzolite (100450 m thick); a middle mafic-
ultramafic unit (300-600 m thick) consisting of from bottom
to top a websterite, norite-gabbro, gabbro, diorite; and an up-
per lherzolite (0—50 m thick). The upper lherzolite is crosscut
by the norite-gabbro of the middle unit (Li et al. 1989). The
contacts between the rocks of the middle unit are generally
gradational. The lower websterite has a gradational contact
with the lower lherzolite and was previously interpreted to
be a part of lower lherzolite occurring at the base of that unit.
However, its olivine contents (30—35%) are lower than those
of lower lherzolite (50—70%), and consequently, it has been
reclassified as the lower websterite (Fig. 3a—d; Mao et al.
2014). The contacts between the websterite of the middle unit
and the lower lherzolite are sharp. The basal gabbronorite is

observed to crosscut the websterite in the middle unit and the
lower lherzolite (Fig. 2).

The upper lherzolite contains 60-80% olivine, 10-15%
plagioclase, 10—-15% hornblende, 0-2% clinopyroxene, 3—
5% orthopyroxene, and 1-2% phlogopite. Olivines are
enclosed in orthopyroxene, hornblende, and phlogopite.
Hornblende and plagioclase are commonly interstitial to other
silicates (Wang et al. 1987; Mao 2014). In the middle unit,
websterite is composed of 20-35% olivine, 15-50%
orthopyroxene, 10-25% clinopyroxene, 5-15% hornblende,
2—15% sulfide, and 0-3% plagioclase (Fig. 3b, d). Some gran-
ular clinopyroxenes and orthopyroxenes have reaction
coronae of hornblende (Fig. 3e). The sulfides are commonly
interstitial to the silicates, but small rounded sulfide inclusions
can also be found in olivine crystals. The diorite contains 5—
15% quartz, 40-70% plagioclase, and 5-15% biotite. Some
biotites have been altered into chlorite (Li et al. 1989). The
lower lherzolite contains 50-70% olivine, 5-25%
orthopyroxene, 0-15% clinopyroxene, 5—-15% hornblende,
2-25% sulfide, and minor phlogopite (Fig. 3a, c). Olivine
crystals are euhedral/subhedral and enclosed in large
orthopyroxene, clinopyroxene, plagioclase, and hornblende
crystals. Orthopyroxene is intergrown with clinopyroxene or
enclosed in clinopyroxene and hornblende. The sulfides are
commonly interstitial among the silicates whereas trace Cr-
spinel is present as small inclusions in silicate minerals
(Fig. 3c). In general, olivine (from 50 to 70%) and
orthopyroxene abundances (from 5 to 25%) in the lower
lherzolite decrease gradually with depth, whereas
clinopyroxene (from 0 to 15%) increases (Fig. 4). The lower
websterite is composed of 30-35% olivine, 5-15%
orthopyroxene, 15-35% clinopyroxene, 5—15% hornblende,
and 2-30% sulfide. Some clinopyroxene and olivine crystals
are enclosed in sulfide (Fig. 3e). In the lower lherzolite and
lower websterite, some olivines and pyroxenes have been al-
tered into serpentine and talc, and some hornblendes have
been altered into chlorites (Fig. 3). The basal gabbronorite
consists of 50-55% plagioclase, 15-20% orthopyroxene,
10-15% clinopyroxene, 5—15% hornblende, and 1-3% phlog-
opite plus minor sulfide (1-3%; Fig. 3f). The minerals in some
of the websterites in the middle unit and all of the lower
websterite have been deformed (Fig. 3b, d). Some hornblende
and phlogopite in the basal gabbronorite have been altered to
chlorite. The variation in the mineral content between the low-
er websterite and the lower lherzolite is relatively gradational,
whereas between the websterite, lower lherzolite, and basal
gabbronorite, it is sharp (Fig. 4).

Sulfide mineralization in the Huangshan deposit
The Huangshan deposit contains 0.32 Mt Ni and 0.18 Mt Cu

with average grades of 0.49 wt% Ni and 0.31 wt% Cu (Qin
et al. 2003; Zhang et al. 2011). The Ni-Cu sulfide ore bodies
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and cross sections of the
Huangshan intrusion, showing
the distribution of lithological
units, the P30 and P31 sulfide ore
bodies, and the bore hole ZK118-
7 (after Li et al. 1989)

Fig.2 Simplified geological map ﬁ

0 100 200m
—

Intrusive phase | :

- Upper lherzolite
Intrusive phase Il :

- Websterite

I:] Noritegabbro

|:| Gabbro
|:| Diorite

are dominantly hosted at the base of lower websterite, lower
lherzolite, and websterite. A few small sulfide veins occur in
the underlying basal gabbronorite (Fig. 2). The largest ore
body (P30) occurs in the lower lherzolite and lower websterite
and contains approximately 85% of the total tonnage in the
Huangshan deposit, whereas the second largest ore body
(P31) is located in the lowermost of the websterite layers
and contains about 10% of the total tonnage (Fig. 2; Li et al.
1989). There are also small multilayer ore bodies overlying
the P30 ore body (Fig. 2).

The sulfide ores in the lower websterite are mainly net-
textured and vein-textured and contain pyrrhotite + chalcopy-
rite £+ pentlandite (Figs. 3a, b, e and 5a, b). However, in the
lower lherzolite and websterite, the sulfides are dominantly
disseminated sulfides and comprise pyrrhotite-pentlandite =
chalcopyrite, with less chalcopyrite than in the lower
websterite (Fig. 5c, d). Massive sulfide ores are rare and cut
across the disseminated sulfide ores in the Huangshan deposit
(Mao 2014). Some pentlandites occur as oriented lamellae or
along fractures in pyrrhotite grains (Fig. 5d).

Analytical methods
Nineteen samples were collected from the underground mine

and drill core (ZK118-7). The units sampled include lower
lherzolite, lower websterite, websterite of the middle unit,
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and basal gabbronorite (Figs. 2 and 4). Sulfide ores from the
lower websterite were also sampled.

Olivine was analyzed by wavelength-dispersive X-ray
analysis using an EPMA-1600 electron microprobe at the
State Key Laboratory of Ore Deposit Geochemistry
(SKLODG), the Institute of Geochemistry, Chinese
Academy of Sciences. The accelerating voltage was 15 kV,
the beam current was 20 nA, and the counting time was set at
10 s. Standard Program International mineral standards (USA)
were used for calibration. Major elements have been analyzed
with an accuracy of <3% and an external precision of <3% (2-
sigma), whereas minor elements (<1 wt.%) have been deter-
mined with an accuracy of <6% and an external precision of
<6% (2-sigma). Replicate analytical results of natural mineral
standards are presented in Appendix 1.

Major oxides, trace elements, and platinum-group ele-
ment (PGE) of whole rocks were analyzed at the
SKLODG. Major oxides of samples without mineralization
were analyzed with a PANalytical Axios-advance X-ray
fluorescence spectrometer (XRF) on fused glass pellets
with analytical uncertainties ranging from 1 to 3%.
Analytical results of standard materials and replicate anal-
yses are presented in Appendix 1. Major oxides except
SiO, and selected trace elements (Ni and Cu) of the sulfide
ore were determined by inductively coupled plasma atomic
emission spectroscopy (ICP-AES). SiO, of the sulfide ores
were determined by a gravimetric method. Whole-rock S
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Fig. 3 Photomicrographs of the
rocks from the Huangshan
intrusion showing a the
disseminated texture of the
sulfide-bearing lower lherzolite, b
the vein texture of sulfide-bearing
lower websterite, ¢ olivine
crystals enclosed by
orthopyroxene in lower lherzolite,
d the deformed websterite of the
middle unit, e olivine and
clinopyroxene enclosed by
sulfide in the lower websterite,
and f orthopyroxene and
clinopyroxene in the basal
gabbronorite. O/ olivine, Opx
orthopyroxene, Cpx
clinopyroxene, P/ plagioclase, Hb
hornblende, Bi biotite, Su/ sulfide

contents were measured by Leco furnace. Trace elements
were determined by inductively coupled plasma mass
spectrometry (ICP-MS) using the procedure described by
Qi et al. (2000). Reference standards, BHVO-2, GBPG-1,
and replicate analyses were used to monitor the trace ele-
ment analyses (Appendix 1). The analytical uncertainty of
this procedure is better than 5% for most elements. PGEs
were determined by isotope dilution (ID)-ICP-MS using an
improved Carius tube technique (Qi et al. 2004, 2007).
Five to 10 g of sulfide-poor and 3 to 5 g of sulfide-
bearing powdered samples were digested with 35-ml aqua
regia in a 75-ml Carius tube placed in a sealed, custom-
made, high-pressure, water-filled autoclave. Iridium, Ru,
Pt, and Pd were measured by isotope dilution, and 194p¢
was used as the internal standard to calculate the abun-
dance of mono-isotopic Rh (Qi et al. 2004). The measured
results of PGE for the reference standards WPR-1 and
WGB-1 agree with recommended values reported by Qi

et al. (2004). Analytical precision and accuracy are gener-
ally better than 5%, and the duplicate samples match each
other very well (Appendix 1).

Whole-rock sulfur isotopes of sulfide ores were measured
on a Finnigan MAT 252 continuous flow isotope ratio mass
spectrometry at the Institute of Geochemistry, Chinese
Academy of Sciences, with an analytical uncertainty less than
0.2%o (Appendix 1). Analyses of the GBW04414 S standard
yielded a value of —0.063%¢ (n = 12). All sulfur isotopic
data are reported relative to V-CDT in standard & notation.

Results
Mineral composition

Olivine grains were analyzed from the lower websterite, lower
lherzolite, and websterite of the Huangshan intrusion. The

@ Springer
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Fig. 4 Stratigraphic variation of
mineral contents in drill hole 300 i
ZK118-7 from the Huangshan
intrusion. Cogter}ts of . 400 | Webterite |
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olivines have forsterite (Fo) values varying from 70.7 to
85.8% and NiO from 0.04 to 0.12 wt.% (Appendix 2). The
Fo contents of two olivine grains from the altered websterites
near the contact with the lower lherzolites are lower than those
of the upper samples. The Fo contents of the lower lherzolites
generally decrease with depth (from 85.5 to 82.2%), which are
higher than those of lower websterite. From the base to the top
of the lower lherzolite, MgO contents gradually increase,
whereas FeO contents decrease. The websterites, the lower
lherzolites, and the lower websterites have similar enstatite

Fig. 5 Reflected light
photomicrographs showing vein-
textured sulfides in the lower
websterite (a), net-textured
sulfides in the lower websterite
(b), diseminated sulfides in the
lower lherzolite (¢), and lamellar
pentlandite along fractures in
pyrrhotite grains (d). Cep
chalcopyrite, Pn pentlandite, Mt
magnetite, Po pyrrhotite, O/
olivine
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(En) contents of clinopyroxene (En = 42.2-48.2%) and
orthopyroxene (En = 80.3-85.6%), which are distinctly higher
than those of the clinopyroxene (En = 39.0-39.9%) and
orthopyroxene (En = 61.9-62.3%) from the basal
gabbronorites (Appendix 3; Fig. 6). The MgO, SiO,, FeO,
and CaO contents display limited variation upward in the low-
er lherzolites.

Pyrrhotite, pentlandite, and chalcopyrite compositions
were determined by electron-microprobe from the sulfide ores
in lower lherzolite and lower websterite. The pyrrhotite in the

BN Reflected light
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Fig. 6 Stratigraphic variations of
average olivine, orthopyroxene,
and clinopyroxene compositions
in the Huangshan intrusion.
Additional mineral composition
data are from Song et al. (2013)
and Deng et al. (2015)
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(Appendix 4).

Fig. 7 Chemostratigraphic
columns of SiO,, MgO, CaO,
(F6203)T, Ale}, and La/Sm
through drill hole ZK118-7 in the
Huangshan intrusion, showing
sharp chemical variations
between the websterite, lower
lherzolite, and underlying basal
gabbronorite. Additional whole-
rock data are from Deng et al.
(2011)
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Representative major and trace elements contents of the
Huangshan rocks are listed in Appendix 5. Because the rocks
were altered and contain sulfides, oxide contents have been
recalculated to 100% on a volatile-free and sulfide-free basis
in the following plots and discussions.

Stratigraphic variations of major oxides of the Huangshan
intrusion are illustrated in Fig. 7. The lower lherzolites contain
the highest MgO (31.3-33.8 wt.%) and (Fe,O3)r (10.4—
12.4 wt.%) and the lowest SiO, (37.7-41.6 wt.%) and CaO
(0.58-1.82 wt.%; Appendix 5; Fig. 7). The lower websterites
have lower MgO (27.5-27.8 wt.%) and (Fe,O3)t (11.3—

11.7 wt.%) contents and higher SiO, (42.3-43.3 wt.%), and
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CaO contents (3.54-5.16 wt.%) than the lower lherzolites
(Appendix 5; Fig. 7). In contrast to the lower lherzolites, the
websterite has lower MgO (21.7-29.8 wt.%) and (Fe;O3)r
contents (9.61-12.2 wt.%), and higher SiO, (39.0-
46.6 wt.%) and CaO contents (1.46-8.25 wt.%; Fig. 7).
Major oxide contents of the lower lherzolite, websterite, and
basal gabbronorite are characterized by trends that generally
vary across lithological boundaries. The major oxides of the
websterite display little variation except for two altered sam-
ples near the contact with the lower lherzolites, whereas the
Si0,, MgO, (Fe,03)t, and CaO contents of the lower
lherzolites have a large range (Appendix 5; Fig. 7). The
Si0, and CaO contents of the lower lherzolites decrease with
depth, but MgO and (Fe,O5)t contents increase, and Al,O;
contents are broadly constant (Fig. 7).

The basal gabbronorite contains relatively high Ba (100—
210 ppm), U (0.24-1.46 ppm), La (4.14-9.09 ppm), Nb
(1.22-3.23 ppm), and YD (0.95-2.06 ppm). Compared to the
mafic samples, the lower websterite, the lower lherzolite, and the
websterite have lower Ba (3.54-84.3 ppm), U (0.11-0.25 ppm),
La (1.06-2.78 ppm), Nb (0.28-0.84 ppm), and Yb (0.26—
0.67 ppm). Normal Mid-Ocean Ridge Basalts (N-MORB) nor-
malized trace element diagrams show that the Huangshan intru-
sive rocks are enriched in large ion lithophile elements (e.g., Rb,
Th, U, and La) relative to the high field strength elements (e.g.,
Zr, Hf, and Yb) and exhibit negative Nb-Ta-Ti anomalies
(Fig. 8a). The Huangshan rocks are uniformly enriched in
LREE relative to HREE ((La/Yb)y = 2.13-4.03) and have
positive to negative Eu anomalies (8Eu = 0.72—-1.16; Fig. 8b).

Chalcophile element geochemistry and sulfur isotopes

The concentrations of PGE, Cu, Ni, S, and Se in the ultramafic
rocks and sulfide ores are presented in Appendix 6. Sulfide con-
tents in the sulfide-mineralized samples were calculated using the
procedure of Barnes and Lightfoot (2005): C10pgsuly = Cur X 100/
(2527 x S + 0.3408 x Cu + 04715 % Nl) C(lOO%Sul) is the
concentration of Pd or Pt in 100% sulfide; C,,, is the

100
a Websterite

Lower lherzolite

10 £ AN Lower websterite

Basal gabbronorite

Sample/MORB

0.01

Rb Ba Th U NbTa La Ce Sr NdSm Zr Hf Eu Ti Tb Y Yb Lu

concentration of the element in the whole rock; and S, Cu, and
Ni are the concentrations in wt.% of those elements in the whole
rock. It is assumed that the bulk of the sulfides are pyrrhotite,
pentlandite, and chalcopyrite. The 3PGE abundances in the
Huangshan ultramafic rocks range from 0.97 to 4.69 ppb with
those in the lower lherzolite being similar to those of the
websterite, varying from 0.97 to 5.72 ppb. The websterite and
lower lherzolite contain Ir (0.018-0.18 ppb), Ru (0.024—
0.27 ppb), Rh (0.018-0.41 ppb), Pt (0.38-2.47 ppb), and Pd
(0.45-2.64 ppb). However, the sulfide-bearing lower websterite
has higher Ir (0.19-1.26 ppb), Ru (0.19-2.01 ppb), Rh (0.3—
2.42 ppb), Pt (3.92-21.9 ppb), and Pd (2.53—15.2 ppb) than the
websterite and lower lherzolite. Cu/Pd ratios of the silicate rocks
are between 8.93 x 10* and 4.05 x 10°, much higher than prim-
itive mantle values (7000—10,000; Barnes and Maier 1999).
The mantle-normalized Ni, Cu, and PGE concentrations of
the lower lherzolite and the websterite from the Huangshan in-
trusion are similar (Fig. 9a). The ultramafic rocks have PGE-
depleted patterns relative to Ni and Cu and show PPGE (Pt, Pd,
and Rh) enrichments relative to IPGE (Ir, Ru; Fig. 9a). On a plot
of Pd/Ir vs. Ni/Cu most samples plot in the field of both high-Mg
basalts and layered intrusions (Fig. 9b). The Ru/Y and Pd/Y
ratios of the mineralized lower lherzolite increase with increas-
ing MgO contents, whereas Ru/Y and Pd/Y ratios of the miner-
alized lower websterite increase with decreasing MgO (Fig. 10a,
b). Though there is an overlap in Ni contents of the sulfide ores
in the lower lherzolite and the lower websterite, the Cu contents
of the mineralized lower lherzolite are lower than those of the
mineralized lower websterite (Fig. 10c). Sulfide ores in the low-
er Therzolite have Cu/Pd ratios of 2.31 x 10°-1.36 x 10° and N/
Cu of 1.29-8.44 (Zhang et al. 2011; Mao et al. 2014), whereas
the sulfide ores in the lower websterite contain higher Cu/Pd
(6.65 x 10°-2.73 x 10° and lower Ni/Cu (0.22-2.48) relative
to those of the sulfide ores in the lower lherzolite (Fig. 10d). The
Se/S ratios of the sulfide ores in the Huangshan deposit range
from 63.1 x 107 to 150 x 107, which falls between the crust
(<50 x 107°) and the mantle ratios (230 x 10 350 x 10°%;
Eckstrand et al. 1989). The 5°*S values of the sulfide ores are

100

Sample/Primitive mantle

0.1 I I I 1 1 L 1 ! 1 1 I I

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Fig. 8 N-MORB normalized trace element spider diagrams of the Huangshan intrusion. Additional data for the Huangshan intrusion are from Deng
et al. (2011). The data for N-MORB and C1 chondrite are taken from Pearce (1982) and Sun and McDonough (1989), respectively
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Pd/Ir vs. Ni/Cu, showing that the Huangshandong intrusive rocks and sulfide ores are associated with basaltic magma (modified after Barnes et al. 1988)

low, varying between 0.63 and 2.42%0 (Appendix 6), similar to
typical mantle values (~0 % 2%0; Ohmoto and Rye 1979).

Discussion

Modeling of olivine compositional variations

Possible influences on olivine composition include magma
fractional crystallization, subsolidus reequilibration with inter-

stitial silicate, and trapped sulfide liquids (Barnes 1986; Barnes
etal. 2011, 2013; Li et al. 2003, 2007). The contents of Fo and

Ni in olivine decrease during fractional crystallization, whereas
the compositions of early cumulus olivine can be modified by
subsolidus reequilibration with the trapped silicate liquid
between the mafic minerals. Diffusion of Fe and Mg within
olivine results in olivine with lower Fo contents than the
original cumulus minerals. This effect is referred to as “trapped
silicate liquid shift” by Barnes (1986) and would account for
some of the scatter of the olivine compositions to the right of the
model curve for fractional crystallization. Meanwhile, a nega-
tive Fo-Ni correlation in olivine from sulfide-bearing rocks is
consistent with subsolidus reequilibration of olivine with
trapped sulfide liquid (Li et al. 2003, 2007).
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We have used the PELE (Boudreau and Meurer 1999) pro-
gram to model the fractional crystallization of a hypothetical
magma with compositions similar to high-Mg basalt (Chai
and Naldrett 1992) using an initial Ni content of 155 ppm, a
partition coefficient of Ni between olivine and magma of 7 at
2.5 kba,r and a FMQ-equivalent oxidation state (Li and Ripley
2005). Initial H,O content in the magma was assumed to be
3 wt.% based on the occurrence of magmatic hornblende in
the Huangshan rocks (Zhou et al. 2004). Modeling results
show that olivine, clinopyroxene, and plagioclase crystallized
from a parental magma at 1224, 1060, and 1036 °C, respec-
tively. This crystallization sequence is generally in good
agreement with petrographic observation. The olivine Fo val-
ue and Ni content correlation curve A-B-C is the modeled
result of the normal magmatic evolution (Fig. 11). Curve B-
D is the trend of olivine Fo value and Ni content when olivine
and sulfide crystallized together with the mass ratio of 20:1
after 5.8% of olivine crystallization from the parental magma.
Variations of olivine Fo and Ni contents of the lower
lherzolites are consistent with the normal crystallization trend,
and Ni contents have not been depleted. The Fo and Ni
contents of the olivine in websterites are obviously lower
than those of the curve A-B-C for normal magmatic
evolution (Figs. 6 and 11), indicating that olivine in
websterites crystallized from the silicate liquid coexisting
with the sulfide liquid.

Magma petrogenesis

The similar primitive mantle normalized patterns of the intru-
sive rocks from Huangshan intrusion suggest that they were

1500

<& Lower lherzolite

O Lower websterite
A Olivine-sulfide
Fe-Ni exchange

B Websterite
1000 -

Ni contentin olivine (ppm)
w
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Trapped liquid shift
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Fo content of olivine (mole%)

Fig. 11 Model calculation of the variation of nickel content and Fo of the
Huangshandong intrusion. For detailed methodology, see Li and Naldrett
(1999) and Li et al. (2007). A is the olivine composition in equilibrium
with the parental magma. A-B-C is the calculated curve modeling the
olivine crystallization of the parental magma. B-D is the calculated curve
modeling 5.8% olivine crystallization from the parental magma, and then
olivine and sulfide simultaneously separated (olivine/sulfide = 20/1)
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ultimately derived from the same parent magma (Figs. 8 and
9a). The lower websterite, lower lherzolite, websterite, and
basal gabbronorite show similar but variable trends, suggest-
ing that they are comagmatic (Zhang et al. 2011; Mao et al.
2014). Using the molar Mg-Fe distribution constant (K4 = (Fe/
Mg)°Y(Fe/Mg)™®€™) £ 0.3 + 0.03 (Roeder and Emslie 1970),
the Mg# (atomic Mg/(Fe + Mg)) of the Huangshan parental
magmas are estimated to be less than 64 based on the Fo
contents of 70.7-85.8% for olivine in the websterite and lower
lherzolite. These Mgi#s are lower than silicate magma derived
from the mantle (68—75%; Wilson 1989). The absence of
intermediate-felsic inclusions in the Huangshan intrusion sug-
gests that the relatively low Mg#s were not the result of mag-
ma mixing between a basaltic parent magma and
intermediate-felsic magma. Previous studies have shown that
the La/Sm ratio can be used to trace the assimilation of crustal
rocks by a magma (Lassiter and De Paolo 1997; Lightfoot and
Keays 2005). The constant Al,O; and La/Sm ratios in the
Huangshan intrusion imply that crustal assimilation did not
significantly modify the major and trace elements of the intru-
sive rocks (Zhang et al. 2011; Yang et al. 2012). Thus, the low
Mg#s of the Huangshan parent magma are likely the result of
variable degrees of fractional crystallization before shallow-
level emplacement in the Huangshan magma chamber.

The absence of olivine and the low En values of the
pyroxenes indicate that the parental magma of the basal
gabbronorite was more evolved with lower Mg# values than
the websterite and lower lherzolite. Meanwhile, gradational
variation of mineral and whole rock compositions between
the lower websterite and lower lherzolite suggests that they
formed from the same stage in the evolution of the parent
magma (Figs. 6 and 7). The abrupt changes in mineral and
major element contents at the contacts between the basal
gabbronorite, websterite, and lower lherzolite suggest that
they were formed from different intrusive phases (Figs. 4
and 7). This is consistent with the sharp contacts between
the basal gabbronorite, lower lherzolite, middle unit, and up-
per lherzolite. Thus, multiple pulses of magma replenishment
in the Huangshan intrusion likely occurred with the first stage
forming the upper lherzolite in the eastern part of the intrusion.
Following a period of fractionation, the second stage formed
the middle unit websterite, norite-gabbro, gabbro, and diorite
(Fig. 2). The poikilitic pyroxenes in the websterites have com-
positions indistinguishable from those in the underlying lower
lherzolites and lower websterites, suggesting that they crystal-
lized in situ and were formed by successive pulses of new
homogeneous magma passing through the magma conduit.
The third stage formed the lower lherzolite and lower
websterite. The basal gabbronorite represents the last magmat-
ic intrusion.

That the intrusion formed from multiple pulses of magma is
also consistent with reversals in the volume fraction and compo-
sitions of both minerals and the whole rock (Figs. 4, 6, and 7).
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Because mafic silicate minerals (such as olivine and pyroxene)
will typically crystallize early in a normal basaltic magma in a
closed magmatic system, their accumulation at the base of the
intrusion would result in the abundances of these mafic minerals
and Mg#s of whole rock decreasing from the bottom up.
However, in the Huangshan intrusion, the abundance of olivine
and orthopyroxene as well as the Fo contents of olivine increase
upward in the lower lherzolite and lower websterite. As shown in
Fig. 7, the SiO, and CaO contents of the lherzolites and lower
websterite generally decrease with decreasing depth, but MgO
and (Fe,Os)t contents increase. Thus, the contents and compo-
sitions of the mineral and the whole-rock compositions of the
lower lherzolite and lower websterite in the Huangshan intrusion
are the reverse of those in normally layered intrusions. Similar
reversals have been observed in many layered intrusions where
they are attributed to a variety of processes that modify fractional
crystallization including the intratelluric inhomogeneity of the
magma, magma contamination, and trapped liquid shift (Li and
Naldrett 1999; Latypov 2003; Latypov et al. 2007; Latypov and
Chistyakova 2009). The reversals in the compositions of olivine
and the whole-rock compositions in the mafic sills of the
Noril’sk deposit were taken as evidence for their formation from
an inhomogenous magma (Li et al. 2003; Arndt et al. 2003;
Arndt 2005). Crustal contamination may have played an impor-
tant role in the formation of the whole-rock composition reversal
in the Duluth Complex (Tyson and Chang 1984; Severson and
Hauck 1990). Reaction of cumulus minerals with an
intercumulus melt increasing in abundance towards the base of
the intrusion have been used to explain whole-rock composition
reversals in the Stillwater Complex (Raedeke and McCallum
1984). The basal reversal in olivine composition in the
Voisey’s Bay deposit is related in part to the effect of trapped
liquid crystallization (Li and Naldrett 1999).

It can be speculated that if a basaltic magma assimilates less
silica-rich or more magnesium-rich country rocks with de-
creasing depth, the mafic cumulate rocks formed by this mag-
ma will display reversals of mafic mineral contents and
whole-rock compositions. Variations of La/Sm ratios in the
lower lherzolite and lower websterite from the Huangshan
intrusion are constant, suggesting that whole-rock composi-
tions have not been significantly changed by crustal assimila-
tion. Thus, the reversals of mafic mineral contents and whole-
rock compositions are not the result of crustal assimilation.
Moreover, the trapped silicate liquid shift can cause the rever-
sal of the olivine compositions if the cumulus olivines are less
affected by trapped silicate liquid from the bottom up. The
fractional crystallization of silicates and trapped silicate liquid
shift can be modeled using the proportions of silicate phases
by fractional crystallization (Barnes 1986; Li and Naldrett
1999; Li et al. 2007). The subsolidus reequilibration with the
trapped silicate liquid between the mafic minerals would re-
sult in Fo contents in olivine cores higher than those of olivine
mantle, but olivines from the lower lherzolite in Huangshan

intrusion show no evidence of Fo zoning, even in larger
grains. Variations in olivine Fo and Ni contents of the lower
lherzolite in the Huangshan intrusion are consistent with the
model curve for fractional crystallization, but differ from the
trend caused by trapped liquid shift (Fig. 11). Additionally, if
the reversals in the olivine compositions had been controlled
by the trapped liquid shift, olivine compositions of the
websterite above the lower lherzolite would have been affect-
ed by this process and have displayed similar reversals.

As shown above, the pronounced reversals of abundance
and compositions of mineral and whole-rock compositions in
the lower lherzolite and lower websterite cannot be the result
of crustal assimilation or trapped liquid shift. Rather, it is
proposed that the parent magmas underwent variable degrees
of fractional crystallization before shallow level emplacement
in the Huangshan magma chamber. Olivines with high Fo
contents initially crystallized in a deep-seated magma cham-
ber, then were swept up with the advancing magma to the
point where the conduit broadened out to form the upper part
of the lower lherzolite in the shallow chamber, whereas oliv-
ines with lower Fo contents crystallized in the shallow cham-
ber, underplated the upper rocks and formed the lower part of
the lower lherzolite and the lower websterite. Thus, the abun-
dance and Fo contents of olivines in the lower lherzolite and
lower websterite would increase with decreasing depth.
Consequently, the whole-rock composition of those rocks
would also be the reverse of those of the mafic cumulate rocks
crystallized in normally layered intrusions.

Sulfide saturation

Sulfide saturation is a key process in formation of magmatic
Ni-Cu sulfide deposits (Naldrett 1999, 2004; Keays and
Lightfoot 2010). Many factors can drive a mafic magma to
sulfide saturation, including changes in the chemical compo-
sition, temperature, pressure, and oxygen fugacity of the mag-
ma (Haughton et al. 1974; Mavrogenes and O’Neill 1999; Li
and Ripley 2005; Jugo 2009; Naldrett 2009); however, assim-
ilation of crustal sulfur is believed to be the most important
process (Lesher and Keays 2002; Lightfoot and Keays 2005;
Keays and Lightfoot 2010). There are several specific mech-
anisms of sulfur addition in the crustal contamination process
(see Barnes and Lightfoot 2005 and references therein). Some
authors have argued for bulk assimilation of sulfide-bearing
country rocks (e.g., Ripley and Al-Jassar 1987); some envis-
aged only migration of sulfur gas from heated sediments to the
magma (e.g., Ripley 1981; Lesher and Burnham 2001); more-
over, others proposed that mafic magmas may selectively as-
similate the crustal sulfide and graphite (Naldrett 2004;
Thakurta et al. 2008; Zhang et al. 2011; Yang et al. 2012).
The Se/S ratios of mantle-derived rocks are between
230 x 107 and 350 x 10, whereas crustal rocks have Se/S
ratio <50 x 107 (Eckstrand et al. 1989). Thus, sulfide ores

@ Springer



856

Miner Deposita (2017) 52:845-862

1000

Pechenga deposit

&

100 |
[/ (]
[i.:\DunkaRoad deposit

Se*10°%/S

3%S (% VCDT)

——
Slossor

DunkaRoad deposit

L Segain Pechenga deposit

o
Crustal S
T

N/ =
| w
3 Local mantle =
Crustrange 2 N =
E 38 o (=]
s =
10 . L L L L L
0 10 20 30 40 0 5000 10000 15000 20000
S(wt%) S/Se ratio
0

Fig. 12 Plots of a Se*10%S vs. S and b Se*10%S vs.5**S for the
Huangshan sulfide ores. The values of the Huangshandong ores are
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which contain a large contribution of crustal sulfur tend to
have low Se/S ratios (Peltonen 1995; Maier et al. 2008; Xie
et al. 2014). The Se/S ratios of the Huangshan sulfide ores
range from 63.1 to 150 x 10~ (Appendix 6), which is between
the ratios of crustal rocks and mantle-derived rocks (Fig. 12a).
These values are similar to those of other Ni-Cu sulfide de-
posits, such as Dunka Road (62.5-476 x 1076; Theriault and
Barnes 1998) and Pechanga (125-386 x 1076; Barnes et al.
2001), which have been interpreted to have incorporated a
crustal sulfur component (Fig. 12a). As shown in Fig. 12b,
the S/Se ratios do not plot in the mantle field and the trend of
the S/Se is similar to that of crustal S addition, suggesting that
there was contamination by crustal sulfur, which could have
resulted in extensive sulfide segregation. Because the 5°*S
value of carbonaceous slates in the Huangshan deposit are
1.75%0 (Wang et al. 1987), similar to those of mantle-
derived magma and Huangshan ores (Fig. 12b), so S isotopic
composition alone does not constrain the role of external sul-
fur in the genesis of the Huangshan deposit.

As discussed above, S/Se ratios suggest the presence of a
crustal sulfur component in the Huangshan deposit, whereas
the La/Sm ratios have not been elevated by crustal assimila-
tion. Because crustal sulfides are less stable than silicates dur-
ing partial melting or devolatilization of the crust (Lesher and
Burnham 2001), they could be selectively incorporated into
the mantle-derived magma by assimilation, whereas silicate
minerals would be incorporated to a lesser extent owing to
their higher melting point. It is suggested that crustal sulfides
were selectively assimilated into the silicate magma, thus as-
similating more S in preference to other trace elements. The
low La/Sm ratios in the crustal sulfides would not significantly
affect the La/Sm of the whole rock. The fact that the S/Se
ratios would be more sensitive to crustal assimilation than
La/Sm suggests that in the Huangshan deposit, contamination
was more likely due to the selective assimilation of crustal
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is taken from Eckstrand et al. (1989). The data for the Dunka Road and
Pechenga deposits are from Theriault and Barnes (1998) and Barnes et al.
(2001)

sulfides. This process is analogous to the crustal contamina-
tion model proposed for the Voisey’s Bay, Duke Island, and
Qingbulake deposits (Lightfoot and Naldrett 1999; Thakurta
et al. 2008; Yang et al. 2012).

Origin of sulfide mineralization

The largest ore body in the Huangshan deposit (P30) is com-
posed of sulfide mineralization in the lower lherzolite and the
lower websterite. The gradual contact between the lower
lherzolite and the lower websterite indicates that they were
formed from a single pulse of magma. Calculated sulfide/
silicate ratios for the Huangshan intrusion are significantly
lower than actual sulfide abundances in the ore bodies, sug-
gesting transportation of immiscible sulfide droplets from
depth (Mao et al. 2014; Zhang et al. 2011). Additionally, Sr-
Nd isotopic values of the intrusive rocks and S/Se ratios of the
sulfide ores are consistent with crustal contamination at depth
as the wall rocks to the deposit are barren of sulfide (Zhang
etal. 2011). The sulfide ores in the lower lherzolite are mainly
disseminated sulfides (Fig. 3a), suggesting that sulfides were
accumulated from the staging chamber coeval with the em-
placement of silicate minerals. In contrast, the sulfide veins in
the lower websterite have sharp contacts with the host rocks
and contain pyrrhotite, chalcopyrite, and pentlandite, which
are similar to the magmatic assemblage. Moreover, there are
no low-temperature hydrothermal minerals (i.e., quartz, cal-
cite, pyrite) in these sulfide veins, which is not consistent with
the deformed and hydrothermally remobilized Sarah’s Find
Ni-Cu-(PGE) in western Australia (Vaillant et al. 2016), so a
metasomatic infiltration or postmagmatic modification model
is unlikely. Thus, the vein-textured sulfides in the lower
websterite suggest that some sulfide melts were intruded after
the emplacement of the cumulate silicates (Figs. 3 and 5). The
Huangshan intrusion (284.5-283.8 Ma; Gu et al. 2006; Qin
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et al. 2011) was likely emplaced as a synkinematic sheeted
intrusion by injection of several magma batches within
kilometer-scale tension gashes generated by Permian dextral
shearing (300-283.7 Ma; Chen et al. 2005; Branquet et al.
2012). The minerals in some websterites and the lower
websterite have been deformed by the regional shearing,
whereas the minerals in the sulfide zones of the lower
websterite have not (Figs. 3 and 5). This implies that the sul-
fides were intruded into the lower websterite after the emplace-
ment of cumulates and the regional deformation. Though the
lower websterite and lower lherzolite were formed by the same
magma pulse, the sulfides in the lower websterite were formed
slightly later than those in the lower lherzolite. Moreover, the
compositional differences between the sulfide minerals in the
lower lherzolite and lower websterite indicate that two pulses
of sulfide melts were required to form the sulfide ores.

The sulfide ores in the lower websterite have higher Cu
contents and Cu/Pd ratios but lower Ni/Cu ratios than in the
lower lherzolite (Fig. 10d). On plots of Ru/Y and Pd/Y ratios
against MgO (Fig. 10a, b), the sulfides in the lower lherzolite
display different trends from the sulfides in the lower
websterite, supporting the interpretation that the sulfides in
these two units likely formed from sulfide melts with distinct
compositions. Because the geochemical signatures of the
Huangshan intrusion are similar to those of island-arc
magmas, we assume that the Huangshan intrusion had a
source similar to a PGE-undepleted island-arc basaltic mag-
ma, with 4 ppb Pd, 0.07 ppb Ir, and 85 ppm Cu (Barnes et al.
1993; Kelemen et al. 2004). The partition coefficients of Cu,
Ir, and Pd between sulfide and silicate magma were assumed
to be 1000, 30,000, and 40,000, respectively (Peach et al.
1990; Fleet et al. 1993; Crocket et al. 1997). Using the mass
balance equation proposed by Campbell and Naldrett (1979),
the sulfides in the lower lherzolite and the lower websterite
probably segregated from the same parent magma which
underwent 0.015% early sulfide removal under R factors of
100 to 2000 (Fig. 13a, where the R factor is the mass ratio of
silicate magma to sulfide melt).

Experimental studies have shown that Os, Ir, Ru, and Rh are
compatible into monosulfide solid solution (MSS), whereas Pt,

Pd, Au, and Cu are incompatible in the MSS structure and tend to
concentrate in the residual sulfide liquid (Fleet et al. 1993; Li etal.
1996; Barnes et al. 1997; Mungall et al. 2005). Consequently, Pd/
Ir and N¥/Ir ratios increase as the sulfides accumulate the MSS.
On the other hand, the sulfide liquid/silicate melt partitioning
coefficients of PGEs are similar, but are all much higher than that
of Ni (Francis 1990; Fleet et al. 1993). If the sulfide liquids
reacted with a large volume of S-unsaturated magma, Pd/Ir will
vary very little and the Ni/Ir ratio will decrease. The limited
variation of the Pd/Ir ratios with decreasing Ni/Ir ratios of the
sulfides in the lower lherzolite (Fig. 13b) suggests that the sulfide
liquids experienced upgrading of PGE by reaction with succes-
sive pulses of primary S-unsaturated magma, rather than fraction-
al crystallization of MSS (Lesher and Burnham 2001). This re-
action process would have resulted in elevated R factors and
enrichment of metal elements (Fig. 13b; Li et al. 2000, 2003;
Song et al. 2008). In contrast, the positive correlations between
Ni/Ir and Pd/Ir of the sulfide in the lower websterite suggest a role
for MSS fractional crystallization and explain the different char-
acteristics of the two generations of sulfides (Fig. 13b).

Implications for dynamic ore-forming processes

Many important magmatic Ni-Cu sulfide deposits have been
found in small intrusions which have been interpreted to have
formed by emplacement of multiple magma pulses (such as
Jinchuan, Heishan, Kabanga, Eagle and East Eagle, Uitkomst,
and Aguablanca; Li et al. 2002, 2012; Song et al. 2003, 2012;
Tornos et al. 2006; Song and Li 2009; Maier et al. 2010; Ding
etal. 2010; Xie et al. 2012; Xie et al. 2014; Chen et al. 2013).
The mass-balance calculations indicate that the host intrusions
cannot supply enough Ni to form magmatic sulfide deposits,
so these ore-bearing intrusions likely represent a dynamic
magma conduit, which scavenge sulfide droplets and crystal
mushes from the staging magma chamber. Zhang et al. (2011)
inferred that >40% of the magmas involved in the formation
of the Huangshan intrusion ascended to form dikes or erupt on
the surface. Additionally, the Huangshan intrusion contains a
large proportion (>85%) of ultramafic rocks (i.e., websterite,
lower lherzolite, and lower websterite) and reversals in olivine

Fig. 13 Plots of the Huangshan 10°
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Fig. 14 Genetic model for the
Huangshan deposit. See text for a
detailed discussion
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composition and major oxides in the lower lherzolite (Figs. 6
and 7), consistent with intrusion as part of a conduit system
through which at least four pulses of magma passed.

The genetic model of the Huangshan deposit is illustrated in
Fig. 14. An initial pulse of magma rose to a lower chamber and
fractionated to form ultramafic cumulates and silicate melts.
After ~5.8% crystallization, the magma reached sulfide satura-
tion because of assimilation of crustal sulfur. The sulfide melts
settled on the mafic cumulates that formed earlier in the middle
part of the lower chamber (Fig. 14a). The upper ultramafic cu-
mulates and the silicate melts were squeezed into the shallow
magma chamber at the point where the magma conduit broad-
ened out and formed the websterite, noritegabbro, gabbro, and
diorite. In the meantime, the sulfide in these mushes settled at the
base of the websterite and formed a layer of sulfide ore (P31 ore
body). With the entry of a fresh magma pulse into the lower
chamber, the top of the lower ultramafic cumulates with low
Fo olivines were forced upward to form the basal part of the
lherzolite in the shallow chamber under the websterite

@ Springer

(Fig. 14b). The unfractionated sulfides in the lower chamber
coexisting with the top of the lower ultramafic cumulates were
swept up with the advancing magma, intruded into the tension
gashes generated by Permian dextral shearing, precipitated at the
base of the lower lherzolite and lower websterite and formed the
largest disseminated and net-textured sulfide ore bodies in the
deposit (P30 ore body). Fractionated sulfide melts in the lower
chamber were squeezed into the upper magma chamber and
emplaced into fissures in the lower websterite forming the
vein-textured sulfides. Then, the bottom of the lower ultramafic
cumulates with high Fo olivines in the lower chamber were
forced upward to form the top part of the lower lherzolite and
the lower websterite in the shallow chamber under the websterite
(Fig. 14c). When continuous magmas flowed through the mafic
cumulates and the coexisting sulfide, they interacted with the
sulfides and lost some of their Ni and Cu, enriching these sul-
fides in this process. Finally, the last pulse of magma was
emplaced in the shallow chamber under the lherzolite forming
the basal gabbronorite.
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Conclusions

The lithological and geochemical characteristics of the
Huangshan intrusive rocks suggest that the intrusion was
formed from multiple pulses of magma. Reversals in olivine
Fo contents and whole-rock compositions of the lower
lherzolite and lower websterite were likely the result of inho-
mogeneity of olivines from the lower chamber. Assimilation
of crustal sulfur played a critical role in generating sulfide
saturation in the parental magma. The positive correlations
between Ni/Ir and Pd/Ir of the vein-textured sulfides in the
lower websterite were likely generated by fractionated sul-
fides transported with a new pulse of magma. In contrast,
the limited variation of the Pd/Ir with decreasing Ni/Ir of the
disseminated sulfides in the lower lherzolite resulted from a
reaction between the sulfides and new pulses of S-
undersaturated magmas.
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