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Abstract – Geochemical and Sr–Nd–Pb isotopic data are presented for volcanic rocks from
Zougouyouchaco (30.5 Ma) and Dogai Coring (39.7 Ma) of the southern and middle Qiangtang
block in northern Tibet. The volcanic rocks are high-K calc-alkaline trachyandesites and dacites, with
SiO2 contents ranging from 58.5 to 67.1 wt % The rocks are enriched in light REE (LREE) and contain
high Sr (649 to 986 ppm) and relatively low Yb (0.8 to 1.2 ppm) and Y (9.5 to 16.6 ppm) contents,
resulting in high La/Yb (29–58) and Sr/Y (43–92) ratios, as well as relatively high MgO contents and
Mg no., similar to the compositions of adakites formed by slab melting in subduction zones. However,
the adakitic rocks in the Qiangtang block are characterized by relatively low εNd(t) values (−3.8 to
−5.0) and highly radiogenic Sr ((87Sr/86Sr)i = 0.706–0.708), which are inconsistent with an origin by
slab melting. The geochemistry and tectonics indicate that the adakitic volcanic rocks were most likely
derived from partial melting of delaminated lower continental crust. As the pristine adakitic melts rose,
they interacted with the surrounding mantle peridotite, elevating their MgO values and Mg numbers.

Keywords: adakitic rocks, lower crust, delamination, Cenozoic, Tibet.

1. Introduction

Post-collisional potassic volcanic rocks, following the
late Cretaceous Indo-Asian collision (c. 70 Ma: Yin &
Harrison, 2000), are widely distributed in the Lhasa,
Qiangtang and Songpan–Ganzi blocks in the Tibetan
Plateau (Coleman & Hodges, 1995; Turner et al. 1996;
Chung et al. 1998; Williams et al. 2001; Ding et al.
2003, 2007). These ultrapotassic, potassic and high-
potassium calc-alkaline series volcanic rocks (Deng,
1989, 1991, 1998; Liu, 1998) range in age from
65 Ma to < 1 Ma, and provide important information
to help decipher the geological evolution of the Tibetan
Plateau and the thermal and compositional structure of
the lithosphere. Previous work (Deng, 1991; Arnaud
et al. 1992; Turner et al. 1996; Ding et al. 1999;
Miller et al. 1999; Hacker et al. 2000; Lai & Liu,
2001; Chung et al. 2003; Ding et al. 2003, 2007)
indicates that these volcanic rocks exhibit negative Nb,
Ta and Ti anomalies, strong enrichment in incompatible
elements, and relatively radiogenic Sr and Pb and
unradiogenic Nd isotopic ratios, suggesting that the
parental magmas were derived from an enriched
lithospheric mantle source that has been isolated from
the convecting asthenosphere since at least Proterozoic

§Author for correspondence: liushen@vip.gyig.ac.cn

time (e.g. Turner et al. 1996). However, it has been
proposed that the parental magmas of some young
lavas (0–3 Ma) were derived from a mafic granulitic
or eclogitic lower-crustal source in thickened lower
crust (Cooper et al. 2002). The rocks evolved from
such parental magmas will have features similar to
adakitic rocks formed by slab melting in terms of trace
element composition (Atherton & Petford, 1993; Kay
& Kay, 1993; Xu et al. 2002). Some of the potassic
adakitic rocks in the Lhasa, northern Qiangtang and
the Songpan–Ganzi terranes are now interpreted as
partial melts of the lower crust (Chung et al. 2003;
Hou et al. 2004; Lai, Qin & Li, 2007; Wang et al.
2005). Studies of Cenozoic adakitic rocks provide a
good opportunity to investigate the thickening and
foundering of lower continental crust beneath the
Tibetan Plateau. However, little information exists
on the adakitic rocks from the Qiangtang region.
Here we report Nd, Sr, and Pb isotopic compositions
and elemental concentrations of the volcanic rocks
from two new localities (Zougouyouchaco and Dogai
Coring) in the southern and middle Qiangtang region
(Fig. 1), and compare our results with published data
from post-collisional volcanic rocks from Qiangtang
Terrane. Our objectives are: (1) to advance a better
understanding of lower crustal magmatic processes of
the Tibetan Plateau, (2) to report the newly discovered
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Figure 1. Map of the Tibetan Plateau showing the major terranes,
the distribution of Cenozoic volcanic rocks and some of the main
faults (modified from Yin & Harrison, 2000).

adakites in the northern Tibetan Plateau, and (3) to
constrain their mechanism of formation.

2. Geological background and petrography

The Tibetan Plateau comprises six terranes, from
south to north: Himalaya, Lhasa, Qiangtang, Songpan–
Ganzi, Kunlun and Tarim (Fig. 1). The Tibetan Plateau
has been created by collision of India–Asia since the
early Cenozoic, about 55 Ma ago (Chung et al. 1998;
Yin & Harrison, 2000). The Qiangtang terrane is
bounded by the Jinshajiang (or Jinsha) suture to the
north, and Bangong suture to the south (Fig. 1). It
is generally accepted that suturing of the Songpan–
Ganzi and Qiangtang terranes occurred in pre-Jurassic
time (Tapponnier et al. 2001), and the Qiangtang
terrane has been in an intra-continental setting since
the Jurassic. Cenozoic lavas are widely distributed
in the Qiangtang terrane (Pearce & Houjun, 1993;
Turner et al. 1996; Deng, 1998; Tan, Pan & Xu,
2000; Lai & Liu, 2001; Ding et al. 1999, 2003;Yin
et al. 2004; Williams et al. 2004; Lai et al. 2006),
with ages from c. 65 Ma to c. 24 Ma, in three
volcanic series: Na-rich alkaline basalt (65–40 Ma),
leucite basanite–phonolite (29–24 Ma), and high-K
calc-alkaline (40–29 Ma) (Chi et al. 1999). Samples
for this study were collected from Zougouyouchaco and
Dogai Coring, in the Qiangtang terrane (Fig. 1). 40Ar–
39Ar ages of these rocks are 39.7 Ma (Dogai Coring)
and 30.5 Ma (Zougouyouchaco: Chi et al. 1999; Li
et al. 2006). In this paper, the 40Ar–39Ar ages for
Zougouyouchaco and Dogai Coring are used for the
age-correction of Nd, Sr and Pb isotopic compositions.
Morphologically, the volcanic rocks are preserved
as domes along with recent clastic alluvial deposits,
suggesting subsequent tectonic uplift and erosion after
eruption. The available data indicate that intermediate
to acidic volcanic rocks are dominant in the Qiangtang

Figure 2. K2O v. SiO2 diagram of the Cenozoic volcanic rocks in
northern Tibet. The Qiangtang potassic volcanic rocks are from
Pearce & Houjun (1993); Turner et al. (1996); Deng (1998);
Ding et al. (1999, 2003); Yin et al. (2004); Williams et al.
(2004); Turner et al. (1996); Tan, Pan & Xu (2000); Lai & Liu
(2001); Lai et al. (2006). Northern Qiangtang adakitic rocks are
from Lai, Qin & Li (2007). Data field for adakites by slab melting
is from published data (Defant & Drummond, 1990; Kay, Ramos
& Marquez, 1993; Stern & Kilian, 1996, and references therein).

area (Deng, 1998) (Fig. 2), whereas mafic volcanic
rocks are common in the western Qiangtang terrane
(Deng, 1998; Ding et al. 1999, 2003). The adakitic
volcanic rocks discussed here include trachyandesites,
trachydacites and dacites from Zougouyouchaco, and
trachydacites and dacites from Dogai Coring. All of
these samples are porphyritic. Dacites from Dogai
Coring and Zougouyouchaco contain phenocrysts of
quartz, oligoclase and minor orthopyroxene and biotite,
and groundmass with felsophyric texture consisting of
oligoclase, sanidine and quartz. Trachydacites from
Zougouyouchaco and Dogai Coring have the same
mineralogy as the dacites but exhibit a trachytic
groundmass texture.

3. Analytical methods

Major elements were determined by PANalytical
Axios-advance X-ray fluorescence spectrometer (XRF)
at the State Key Laboratory of Ore Deposit Geochem-
istry, Institute of Geochemistry, Chinese Academy
of Sciences (IGCAS), using fused lithum-tetraborate
glass pellets. Analytical precision as determined on
the Chinese National Standard GSR-1 was generally
around 1–5 % (Table 1). Loss on ignition was obtained
by weighing after 3 hours of combustion at 950 ◦C.

The trace elements were analysed using a Finnigan
MAT ELEMENT inductively coupled plasma source
mass spectrometer (ICP-MS) at the IGCAS, following
procedures described by Qi, Hu & Gregoire (2000). Rh
was used as an internal standard to monitor signal drift
during counting. The international standards GBPG-1
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Table 1. Major oxides (wt %) of the volcanic rocks in Qiangtang, northern Tibet

Sample Sample locality Rock types SiO2 TiO2 Al2O3 FeOT MnO MgO CaO Na2O K2O P2O5 LOI Total
Mg
no.

FeOT/
MgO

ZGYC-01 Zougouyouchaco Trachydacite 63.99 0.9 15.64 4.29 0.06 1.92 3.93 4.37 3.58 0.36 0.64 99.68 45 2.2
ZGYC-02 Zougouyouchaco Trachyandesite 60.52 1.04 15.09 4.82 0.07 2.69 5.15 3.84 3.81 0.5 1.99 99.52 50 1.8
ZGYC-03 Zougouyouchaco Trachyandesite 61.43 0.85 15.28 4.25 0.06 2.45 5.15 4.03 3.48 0.35 1.91 99.24 51 1.7
ZGYC-04 Zougouyouchaco Trachyandesite 60.58 0.98 15.30 4.50 0.07 2.92 5.12 3.67 3.66 0.44 2.16 99.40 54 1.5
ZGYC-05 Zougouyouchaco Trachyandesite 58.48 1.01 15.43 5.50 0.07 2.65 5.02 4.22 3.73 0.51 2.07 98.69 46 2.1
ZGYC-06 Zougouyouchaco Trachydacite 64.58 0.87 15.38 4.12 0.05 1.89 3.64 4.26 3.61 0.35 0.79 99.54 45 2.2
ZGYC-07 Zougouyouchaco Dacite 64.72 0.68 15.29 3.91 0.06 1.93 3.35 3.98 3.59 0.33 1.53 99.37 47 2.0
ZGYC-08 Zougouyouchaco Dacite 66.93 0.48 15.38 3.74 0.05 1.85 3.29 4.12 3.08 0.15 0.55 99.62 47 2.0
ZGYC-09 Zougouyouchaco Dacite 66.39 0.57 15.17 3.76 0.06 1.96 3.38 3.93 3.05 0.22 0.87 99.36 48 1.9
ZGYC-10 Zougouyouchaco Trachydacite 66.83 0.49 15.26 3.12 0.06 1.91 2.86 4.23 3.16 0.17 1.24 99.33 52 1.6
DGC-01 Dogai Coring Dacite 67.11 0.47 15.62 2.59 0.06 1.73 3.65 4.36 3.28 0.21 0.71 99.79 55 1.5
DGC-02 Dogai Coring Dacite 65.75 0.42 15.43 3.74 0.05 1.54 3.37 4.34 3.12 0.16 1.64 99.56 43 2.4
DGC-03 Dogai Coring Dacite 65.45 0.48 16.19 3.54 0.06 1.96 3.25 4.11 3.23 0.17 0.95 99.39 50 1.8
DGC-04 Dogai Coring Dacite 66.46 0.47 15.87 3.43 0.05 1.92 2.89 4.60 2.97 0.17 0.73 99.56 50 1.8
DGC-05 Dogai Coring Trachydacite 65.89 0.46 15.76 3.50 0.06 1.76 2.73 4.66 3.08 0.17 1.48 99.55 48 2.0
DGC-06 Dogai Coring Dacite 66.52 0.45 15.51 3.32 0.06 2.12 3.49 4.24 3.07 0.16 0.92 99.86 53 1.6
DGC-07 Dogai Coring Dacite 66.58 0.57 15.65 3.28 0.05 2.08 3.36 3.98 3.25 0.17 0.73 99.70 53 1.6
DGC-08 Dogai Coring Dacite 66.7 0.55 15.47 3.21 0.05 1.94 3.43 4.04 3.05 0.18 0.66 99.28 52 1.7
GSR1 This study 72.69 0.28 13.47 2.15 0.06 0.41 1.51 3.26 5.01 0.1 0.78 99.72
RV∗ Recommended

values
72.83 0.29 13.4 2.14 0.06 0.42 1.55 3.13 5.01 0.09 0.76 99.68

LOI = Loss on Ignition, Mg no. = 100 × Mg/(Mg+�Fe)

and OU-6 were used for analytical quality control
(Table 2). The analytical precision is generally better
than 5 % for trace elements.

Sr and Nd isotopes were measured by a Micro-
mass Isoprobe multicollector inductively coupled
plasma mass spectrometry (MC-ICPMS) at Guang-
zhou Institute of Geochemistry, Chinese Academy
of Sciences (GIGCAS). Measured Sr and Nd iso-
topic ratios were normalized to 86Sr/88Sr = 0.1194
and 146Nd/144Nd = 0.7219, respectively. The meas-
ured Nd and Sr isotope standard values are
143Nd/144Nd = 0.512124 ± 11 (2σ ) for Shin Etou and
87Sr/86Sr = 0.710243 ± 14 (2σ ) for NBS987. The
detailed analytical procedures for Sr and Nd isotope
measurement have been documented elsewhere (Liang
et al. 2003).

Samples for Pb isotope analyses were dissolved
using a HF + HClO4 mixture. Pb was extracted and
purified using HBr and HCl anion microcolumn
procedures. The Pb isotopes were determined using
a MAT261 thermal ionization mass spectrometer at the
Isotope Analysis Center of the Institute of Geology,
Beijing Nuclear Industry. Pb isotopic ratios in samples
have been corrected by reference to the analyses of
NBS981 standard. Mass fractionation correction is
0.1 % per atomic mass unit for 206Pb/204Pb, 207Pb/204Pb
and 208Pb/204Pb. Procedural blanks were < 100 pg for
Nd, < 1 ng for Sr, and < 500 pg for Pb.

4. Analytical results

4.a. Major and trace elements

Major and trace element concentrations are given
in Tables 1 and 2. The Zougouyouchaco and Do-

gai Coring volcanic rocks are classified as high-
K calc-alkaline andesites and dacites (Fig. 2). They
have high SiO2 (58.5–67.1 wt %), Al2O3 (15.1–
15.9 wt %), K2O (2.97–3.81 wt %), Na2O (> 3.6 wt %,
K2O/Na2O < 1.0), high Sr (650–890 ppm), and low
HREE and Y contents (Yb: 0.8–1.2 ppm; Y: 9–
17 ppm). They also display elevated Sr/Y (43–92)
and La/Yb (29–58) ratios (Fig. 3a, b). Furthermore,
the volcanic rocks exhibit relatively low FeOT/MgO
(1.5–2.4) ratios and Yb contents, relatively high
MgO (1.54–2.92 wt %), Mg no. (43–54), Cr (47.4–
72.3 ppm) and Ni (37.5–64.7 ppm) contents (Figs 3b,
4a–h, 5; Tables 1, 2). In chondrite-normalized rare
earth element (REE) diagrams, and in N-MORB
normalized trace element diagrams (Fig. 6a, b), the
volcanic rocks display significantly enriched light REE,
strongly depleted heavy REE and no obvious Eu
anomalies (Fig. 6a). They are strongly depleted in high
field strength elements(HFSE)(Nb, Ta, and Ti), and
relatively enriched in Rb, Th, La and Gd (Fig. 6b).

4.b. Sr, Nd and Pb isotope systematics

The Nd and Sr isotopic compositions of the volcanic
rocks are characterized by high 87Sr/86Sr (0.7061–
0.7077) and low 143Nd/144Nd (0.51233–0.51243) and
thus negative εNd(t) values (−3.8 to −5.0) (Table 3;
Fig. 7). The volcanic rocks also display highly radio-
genic Pb isotopic compositions (Table 3). 207Pb/204Pb
(15.895–16.031) and 208Pb/204Pb (39.411–39.786) in
the rocks are unusually radiogenic and yield steep
arrays that plot well above the Northern Hemisphere
Reference Line (NHRL) (Hart, 1984), parallel to,
but shifted to higher values of 206Pb/204Pb (18.928–
19.046) than the Geochron (4.55 Ga) (Fig. 8). Steep
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Figure 3. (a) Sr/Y v. Y and (b) (La/Yb)N v. YbN diagrams (Defant & Drummond, 1990) of the high-K calc-alkaline adakitic lavas from
Qiangtang terrane, northern Tibet. Data for delaminated lower crust-derived adakitic rocks are from Xu et al. (2002) and Wang et al.
(2004a,b, 2006). Other data sources are same as in Figure 2.

linear correlations between Pb isotopic ratios have been
reported by previous researchers for other Tibetan lavas
(Arnaud et al. 1992; Turner et al. 1996; Miller et al.
1999; Ding et al. 2003; Williams et al. 2004). The more
variable 207Pb/204Pb and 208Pb/204Pb are interpreted to
be a characteristic of Tibetan potassic lavas.

5. Discussion

5.a. Petrogenesis

5.a.1. Genetic model

The post-collisional potassic rocks of the Qiangtang
terrane possess consistent chemical compositions
(Figs 4, 7, 9). However, in contrast to many of the
Qiangtang potassic rocks, the volcanic rocks in this
study have high K2O (2.97–3.81 wt %) and belong
to the high-K calc-alkaline series (Table 1; Fig. 2).
Furthermore, the high Sr and low HREE and Y contents
(Tables 1, 2) result in elevated Sr/Y (43–92) and La/Yb
(29–58) ratios, characteristic of typical adakites (Fig.
3a, b). Discussing the genesis of these adakitic rocks
will be important for deciphering the tectonic evolution
of the Tibetan Plateau.

Five genetic models have been proposed for adakites:
(1) partial melting of subducting oceanic slab (Defant
& Drummond, 1990); (2) crustal assimilation and frac-
tional crystallization (AFC) processes from parental
basaltic magmas (Castillo, Janney & Solidum, 1999);
(3) partial melting of mafic rocks in the lower part of a
thickened crust (Atherton & Petford, 1993; Xiong et al.
2003); (4) partial melting of a stalled (or dead) slab in
the mantle (Pe-Piper & Piper, 1994; Defant et al. 2002;
Mungall, 2002; Qu, Hou & Li, 2004) and (5) partial
melting of delaminated or foundered lower crust (Kay
& Kay, 1993; Xu et al. 2002; Gao et al. 2004; Wang
et al. 2004a,b). The Qiangtang volcanic rocks have high
Pb isotopic age-corrected ratios (206Pb/204Pb)i > 18

(Table 3), similar to those of Mesozoic MORB and
oceanic sediments in the West Pacific (Castillo, Pringle
& Carlson, 1994; Shimoda et al. 1998). The adakitic
lavas show a range of K2O contents (2.97–3.81 wt %)
(Table 1, Fig. 2), relatively high Th (12.7–18.9 ppm)
and Rb (747–1289 ppm) contents, resulting in high
Th/Ba (0.014–0.023), Th/U (3.0–6.2) and Rb/Ba (0.1–
0.14, except three samples) ratios, relatively low Ba
contents (747–1289 ppm) (Table 2) and no positive
Sr anomalies (Table 2; Fig. 6b). These geochemical
features exclude the first genetic hypothesis (Defant
& Drummond, 1990), as well as the possibility that
the adakitic rocks originated from a stalled slab in
the mantle (Wang et al. 2006). Moreover, the low
εNd(t) (−3.8 to −5.0) and high (87Sr/86Sr)i (0.7061–
0.7077) features obviously distinguish them from
adakites derived from partial melting of subducted
oceanic slabs, such as those from Cook Island (Stern &
Kilian, 1996), Adak Island (Kay, 1978) and Cerro
Pampa (Kay, Ramos & Marquez, 1993), as these
adakites have mid-ocean-ridge (MORB)-like Sr–Nd
isotopic compositions (Gao et al. 2004). Geophysical
evidence (Owens & Zandt, 1997; Tilmann et al. 2003)
indicates that the N-trending subducted Indian plate and
Tethyan oceanic slabs have not reached the southern
boundary of the Qiangtang terrane (Bangong suture
zone), suggesting that there was no subducted oceanic
slab beneath the Qiangtang terrane when these adakitic
rocks were generated. On a La/Yb v. La plot (Fig. 9),
the adakitic rock compositions are more consistent
with partial melting than a fractional crystallization
trend, while their fairly high Mg no. (> 45 except
for DGC–02) (Table 1) indicates that assimilation
and fractional crystallization could not have produced
the geochemical variation within the adakitic rocks
(Castillo, Janney & Solidum, 1999). Moreover, there
are no correlations between SiO2, Rb and initial Sr
isotopic compositions, which is inconsistent with the
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Figure 4. Harker variation diagrams showing the major and trace element variations of the Qiangtang adakites. Data for delaminated
lower crust-derived adakitic rocks are constructed using the same data sources as Figure 3. The data for subducted oceanic crust-derived
adakites are from Defant & Drummond (1990); Kay, Ramos & Marquez (1993); Drummond, Defant & Kepezhinskas (1996); Stern
& Kilian (1996); Sajona et al. (2000); Defant et al. (2002); Aguillón-Robles et al. (2001); Martin et al. (2005). Data for thick lower
crust-derived adakitic rocks are from Atherton & Petford (1993); Muir et al. (1995); Petford & Atherton (1996); Johnson, Barnes &
Miller (1997) and Xiong et al. (2003). Other data sources are same as in Figure 2.

evolved isotopic compositions resulting from assimila-
tion and fractional crystallization (AFC)-like processes
in the lower crust (Gao et al. 2004). High Th/U is a
feature of most Cenozoic volcanic rocks derived from
the upper and lower crust and mantle within the Tibetan
Plateau (McKenna & Walker, 1990; Turner et al. 1996;
Miller et al. 1999). However, the Nd–Sr–Pb isotopic
characteristics (Table 3; Figs 7, 8), the relatively high
MgO, Cr and Ni contents as well as the low FeOT/MgO
ratios (Fig. 4; Table 1) of the adakitic rocks confirm that
a mantle component may have played an important role
in their petrogenesis. The Pb isotopic patterns (Fig. 8)
highlight the problem of crustal contamination, and

an old piece of continental crust in the amphibolite
facies, depleted in U with respect to Th (high Th/U
ratios) but undepleted in Rb (Taylor, Jones & Moorbath,
1984) as observed in this study (Table 2; Fig. 6b).
Furthermore, sample SiO2 contents are too high (60–
68 wt %, except ZGYC–05) for magma produced
directly by partial melting of mantle peridotite, which
cannot yield melts more silicic than andesite or boninite
(Green, 1980; Jahn & Zhang, 1984; Baker et al. 1995).
Our samples also show geochemical characteristics
distinct from the rhyolites derived from upper-crustal
sources (McKenna & Walker, 1990; Wang et al.
2005). Therefore, lower-crustal melting is thought to
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Figure 5. Mg no. v. SiO2 diagram of Qiangtang adakites. Fields
of delaminated lower crust-derived adakitic rocks, subducted
oceanic crust-derived adakites and thick lower crust-derived
adakitic rocks are constructed using the same data sources as
those in Figure 3. The crustal AFC curve, mantle AFC curves
and the supposed pure slab melts are after Stern & Killian (1996).
The field of metabasaltic and eclogite experimental melts (1–
4.0 GPa) is from the following: Rapp, Watson & Miller (1991);
Rapp et al. (1999); Rapp, Xiao & Shimizu (2002); Sen & Dunn
(1994); Rapp & Watson (1995); Prouteau et al. (1999); Skjerlie
& Patino Douce (2002), and references therein. The field of
metabasaltic and eclogite experimental melts hybridized with
peridotite is after Rapp et al. (1999).

be the most likely interpretation for the origin of the
Qiangtang volcanic rocks discussed here. Nevertheless,
a remaining question is whether model (3) or model (5)
is more reasonable.

If the adakitic rocks are derived directly from partial
melting of mafic rocks in the lower crust, they should
have relatively low MgO contents and Mg no. similar
to the experimental melts of Rapp & Watson (1995).
However, the adakitic volcanic rocks in this paper have
relatively high MgO contents and Mg no. (Table 1;
Figs 4d, 5), suggesting that pristine adakitic melts must
have interacted to some extent with mantle peridotite
(e.g. Kepezhinskas, Defant & Drummond, 1995; Stern
& Kilian, 1996; Rapp et al. 1999; Smithies, 2000).
In this case, the most likely scenario to explain the
high MgO and Mg no. of the adakitic rocks seems
to be foundering of the lower crust consisting of
amphibole-bearing eclogitic materials, coinciding with
dehydration melting of the delaminated crustal rocks
in the hot mantle. Subsequently, the foundered crustal
melts probably interacted with the surrounding mantle
peridotite during emplacement.

Figure 6. (a) Chondrite-normalized and (b) N-MORB-
normalized spidergrams of Qiangtang adakitic volcanic rocks,
northern Tibet. Normalized values are after Sun & McDonough
(1989). The REE and trace elment data for delaminated lower
crust-derived adakitic rocks, subducted oceanic crust-derived
adakites, thick lower crust-derived adakites are constructed using
the same data sources as those in Figure 3. The natural slab melt
data are from Kepezhinskas, Defant & Drummond (1995) and
Sorensen & Grossman (1989).

5.a.2. Source features

The highly enriched N-MORB normalized abundance
patterns of trace elements for Qiangtang adakitic rocks
(Fig. 6b) may suggest the existence of garnet as a
residue in the mantle source beneath northern Tibet
(Defant & Drummond, 1990; Drummond, Defant &
Kepezhinskas, 1996; Defant & Kepezhinskas, 2001).
The relative enrichment of Sr (up to 986 ppm) and
the absence of significant Eu anomalies (Fig. 6)
indicates either that plagioclase was not present in
the source rock, or that it was completely consumed
during melting. Nb partitions strongly into amphibole
under equilibrium conditions (Pearce & Norry, 1979),
whereas Ti partitions into rutile under hydrous mantle
conditions (Tatsumi, 1986). However, both elements
are strongly depleted in the Qiangtang adakitic rocks,
which indicates that the source also has residual rutile
and amphibole, and thus residues were most probably
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Figure 7. εNd(t) v. (87Sr/86Sr)i diagram of the adakitic volcanic
rocks in Qiangtang terrane, northern Tibet. Data sources: Sierra
Nevada lower crust from Ducea & Saleeby (1998); lower crust
(garnet-bearing) amphibolite xenoliths in Tibet from Deng
(1998); adakitic rocks in East China from Xu et al. (2002);
subducted oceanic crust-derived adakites in Cenozoic after
Defant et al. (1992), Kay, Ramos & Marquez (1993) and Sajona
et al. (2000). MORB from Zindler & Hart (1986). Late Jurassic–
Cretaceous delaminated lower crust-derived adakitic rocks in the
eastern Yangtze block are from Wang et al. (2006). Qiangtang
potassic volcanic rock data are from Pearce & Houjun (1993);
Turner et al. (1996); Deng (1998); Ding et al. (1999, 2003);
Yin et al. (2004); Williams et al. (2004). Northern Qiangtang
adakitic rocks are from Lai, Qin & Li (2007).

hydrous amphibole-bearing and rutile-bearing eclo-
gites (Mahoney et al. 1998).

5.a.3. Dynamic mechanism

Experimental studies (e.g. Rapp & Watson, 1995; Rapp
et al. 1999; Rapp, Xiao & Shimizu, 2002; Rapp,
Shimizu & Norman, 2003) indicate that mafic crustal
rocks can melt to produce adakitic liquids at sufficient
depths (> 40 km, that is, 1.2 GPa) for garnet to be
stable within the residual assemblage (e.g. residues of
garnet-amphibolite, amphibole-bearing eclogite and/or
eclogite). The Qiangtang adakitic volcanic rocks
display the typical adakitic affinities, such as high
La/Yb, Sr/Y ratios and low Y and Yb contents (Table 2;
Figs 3a, b, 6), implying that garnet was stable within
the source residues when the adakitic magmas were
segregated. Furthermore, rutile occurs at pressures
higher than approximately 1.5 GPa (≥ 50 km crustal
thickness), depending on H2O content (2–5 wt %)
and bulk composition (especially with bulk TiO2:
1.72 wt % and K2O: 1.43 wt %), during partial melting
of hydrated basalt (Xiong, Adam & Green, 2005).
Accordingly, the crustal thickness in the Qiangtang
terrane must have been at least 50 km when the adakitic
lavas were formed.

As a result of the collision between the Indian block
and Asian block between Late Cretaceous and Early
Cenozoic times (Yin & Harrison, 2000), the continental
crust beneath Qiangtang was compressed and probably

Figure 8. (a) (207Pb/204Pb)i and (b) (208Pb/204Pb)i v. (206Pb/
204Pb)i diagrams of the adakitic rocks in Qiangtang terrane,
northern Tibet. NHRL is from Hart (1984), Geochron (4.55 Ga)
and the mantle end-members HIMU, EM1 and EM2 are after
Zindler & Hart (1986). The Qiangtang potassic volcanic rocks
are from Pearce & Houjun (1993); Turner et al. (1996); Deng
(1998); Ding et al. (1999, 2003); Yin et al. (2004); Williams
et al. (2004). Northern Qiangtang adakitic rocks are from Lai,
Qin & Li (2007).

Figure 9. Plot of La/Yb v. La for the adakitic volcanic rocks
in Qiangtang terrane, northern Tibet. The Qiangtang potassic
volcanic rocks are from Pearce & Houjun (1993); Turner et al.
(1996); Deng (1998); Ding et al. (1999, 2003); Yin et al. (2004);
Williams et al. (2004); Turner et al. (1996); Tan, Pan & Xu
(2000); Lai & Liu (2001); Lai et al. (2006). Northern Qiangtang
adakitic rocks are from Lai, Qin & Li (2007).
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Figure 10. A suggested model to produce the adakitic volcanic rocks in Qiangtang via partial melting of delaminated lower crust
from 40 to 30 Ma (modified from Xu et al. 2002). (a) The relatively cold lithospheric mantle and thick crust during Eocene times
(Tapponnier et al. 2001). The thick lower crust is composed of amphibole-bearing eclogite. (b) The thick lower crust is removed
through delamination or foundering due to density instability and has dived into the underlying hot lithospheric mantle, at the same
time, the hot asthenospheric mantle wells up due to lithospheric delamination, extension and thinning. The adakitic melts are produced
by dehydration melting of the delaminated lower crust (amphibole-bearing eclogite materials), which has been heated by the flux of
heat from the hot lithospheric mantle and upwelling asthenosphere. The adakitic melts react with the surrounding mantle peridotite,
enhancing their MgO, Cr and Ni contents. (c) The lithosphere framework beneath Qiangtang terrane at present (Wu, Xiao & Li, 1989).

over-thickened (> 70 km) in Eocene times (Tapponnier
et al. 2001) (Fig. 10a); the increase in pressure and
temperature would have transformed the basaltic lower
crust into amphibolite-bearing eclogite in a thickened
crust region (Austrheim, Eramber & Engvik, 1997)
(Fig. 10a). Delamination is caused by the gabbro-
eclogite transformation in the thickened continental
lower crust (Sobolev & Babeyko, 2005). Once this
transformation was complete, the eclogitized lower
crust would delaminate and sink into the mantle due
to its negative buoyancy (Kay & Kay, 1993; Gao et al.
2004). This would be balanced by an upwelling of hot
asthenosphere material (Tilmann et al. 2003). Such
an upward heat flow would provide a mechanism for
heating the cold lithospheric mantle, delaminated crust
and gradual erosion of remaining crust beneath Qi-
angtang terrane. After collision in the Early Cenozoic
(Yin & Harrison, 2000), the release of stress led to
extensional extension and thinning of the lithosphere
beneath Qiangtang terrane at c. 40 Ma (Fig. 10b),
allowing further upwelling flux from the asthenoshpere,
and decompression melting of delaminated lower crust
(amphibole-bearing eclogite materials) in hot mantle.
Subsequently, significant chemical interaction will oc-
cur between mantle peridotite and the ascending crustal
melt (Fig. 5), and produced the 40–30 Ma adakitic
volcanic rocks in the Qiangtang terrane. However,
amphibole-bearing and rutile-bearing eclogite would
be left in the source, and cause strongly negative Nb
and Ti anomalies.

6. Conclusions

(1) The high-K calc-alkaline volcanic rocks from
Zougouyouchaco and Docai Coring in the Qi-

angtang terrane are adakites that were generated
by partial melting of delaminated lower contin-
ental crust with a composition similar to the
amphibole-bearing eclogitic materials beneath
the Qiangtang terrane.

(2) The Nd–Sr isotopic signatures, their relatively
high MgO, Mg no., Cr and Ni contents as
well as low FeOT/MgO ratios imply that the
adakitic magmas include a significant mantle
composition, and the existence of interaction
between the delaminated lower crustal melts and
the surrounding mantle peridotite.
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