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Abstract

The uncertainties of China’s gross primary productivity (GPP) estimates by global

data-oriented products and ecosystem models justify a development of high-resolu-

tion data-oriented GPP dataset over China. We applied a machine learning algorithm

developing a new GPP dataset for China with 0.1° spatial resolution and monthly

temporal frequency based on eddy flux measurements from 40 sites in China and

surrounding countries, most of which have not been explored in previous global

GPP datasets. According to our estimates, mean annual GPP over China is

6.62 � 0.23 PgC/year during 1982–2015 with a clear gradient from southeast to

northwest. The trend of GPP estimated by this study (0.020 � 0.002 PgC/year2

from 1982 to 2015) is almost two times of that estimated by the previous global

dataset. The GPP increment is widely spread with 60% area showing significant

increasing trend (p < .05), except for Inner Mongolia. Most ecosystem models over-

estimated the GPP magnitudes but underestimated the temporal trend of GPP. The

monsoon affected eastern China, in particular the area surrounding Qinling Moun-

tain, seems having larger contribution to interannual variability (IAV) of China’s GPP

than the semiarid northwestern China and Tibetan Plateau. At country scale, tem-

perature is the dominant climatic driver for IAV of GPP. The area where IAV of GPP
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dominated by temperature is about 42%, while precipitation and solar radiation

dominate 31% and 27% respectively over semiarid area and cold-wet area. Such

spatial pattern was generally consistent with global GPP dataset, except over the

Tibetan Plateau and northeastern forests, but not captured by most ecosystem

models, highlighting future research needs to improve the modeling of ecosystem

response to climate variations.
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1 | INTRODUCTION

Gross primary productivity (GPP), describing photosynthetically car-

bon assimilation by vegetation per unit space and time (Monteith,

1972), is a pivotal flux that drives the terrestrial carbon cycle (Beer

et al., 2010). As the largest carbon flux, minor change of GPP would

significantly alter of ecosystem carbon balance, atmospheric CO2

concentration and thus feedbacks to the climate (Ahlstr€om et al.,

2015; Ichii, Hashimoto, Nemani, & White, 2005; Piao, Ciais, et al.,

2009). Therefore, quantifying GPP and its spatiotemporal variation is

of priorities in carbon cycle studies.

Temporal variation of GPP can be analyzed from two aspects:

decadal trend and interannual variability. While trend in GPP pro-

vides an integrative measure for impacts from all anthropogenic and

natural forcings affecting GPP. Interannual variation of GPP reflects

the year-to-year difference mainly driven by climate variations (Peng,

Piao, Ciais et al., 2013; Weber et al., 2009), including the climate

extremes (Zhao & Running, 2010; Zscheischler et al., 2014). Our

understanding on global and regional interannual variations of GPP

relies largely on ecosystem models and remains uncertain (Anav

et al., 2015; Mao, Thornton, Shi, Zhao, & Post, 2012). Previous stud-

ies indicate that climatic drivers of GPP interannual variations

include variations in temperature, precipitation, and solar radiation

(Barman, Jain, & Liang, 2014; Richardson, Hollinger, Aber, Ollinger, &

Braswell, 2007). For example, warmer temperature facilitates plant

growth in cold regions, and thus can be regarded as one main reason

for enhanced vegetation productivity over northern higher latitudes

(Piao, Friedlingstein, Ciais, Viovy, & Demarty, 2007; Zhao & Running,

2010). Droughts controlled interannual variations of GPP over semi-

arid regions such as southwestern US (Mekonnen, Grant & Schwalm,

2016) and sub-Sahara Africa (Weber et al., 2009). Despite of poten-

tial role of solar radiation in regulating GPP over humid tropical or

subtropical regions (e.g., Nemani et al., 2003), it has often been

neglected in regional GPP analyses (e.g., Mekonnen, Grant, &

Schwalm, 2016). As the response of GPP to climate variations

depends on many factors such as baseline climate and vegetation

types, regional studies on spatiotemporal variations of GPP are

therefore helpful to reduce uncertainties in our understanding of the

mechanisms driving the carbon cycle and to forecast GPP under

expected future climate change. As a large country spanning from

the tropics to the boreal zone and from humid to arid, and has

almost all ecosystem types, China is an ideal region for such a study.

Accurate estimate of GPP over a region is not without challenges

since direct GPP measurement is only applicable at leaf-level through

photosynthesis measurements (Welp et al., 2011) or indirectly at

ecosystem level with eddy covariance technique (Lee, 1998). Scaling-

up these measurements are not straightforward (Yang, Shang, Guan,

& Jiang, 2013). Machine learning algorithms have been developed to

derive a global GPP dataset (Beer et al., 2010; Jung et al., 2011),

which has been widely used as the benchmark to ecosystem models

(e.g., Piao et al., 2013). The accuracy of the flux-based GPP dataset

in part relies on the representativeness of the flux sites used (Beer

et al., 2010). However, only nine flux sites in China have been used

in the global dataset, which cannot well represent the diverse

ecosystem types in China. The 0.5° spatial resolution is too coarse

for regional scale study. With increasing number and representative-

ness of new flux sites and lengthening measurements, it is of inter-

est to rebuild and examine the spatiotemporal variations of GPP in

China, in order to further our understanding on the responses of car-

bon cycle to climate change.

In this study, we applied model tree ensemble (MTE) algorithm

to develop a GPP dataset over China with 0.1° spatial resolution

from 1982 to 2015 based on 40 flux sites, which represents almost

all ecosystem types in China. Our main objectives are (1) developing

high-resolution GPP products at regional scale based on updated flux

site data; (2) identifying hotspots and subregional contributions to

interannual variations in China’s GPP; (3) understanding the domi-

nant climatic driver to the interannual variations of GPP.

2 | MATERIALS AND METHODS

2.1 | Fluxnet eddy covariance data

Eddy covariance provides net ecosystem exchange (NEE) measure-

ment (Baldocchi, 2008). The eddy covariance flux data used in this

study were downloaded from ChinaFlux (www.chinaflux.org), Asia-

Flux website (www.asiaflux.net), and global fluxnet database (www.f

luxdata.org). The distribution of 40 flux sites is showed in Figure 1.
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The specific characteristics of these 40 flux sites are listed in

Table S1. The half-hourly flux measurements were gap filled and

quality controlled using standardized procedures (Papale et al.,

2006). GPP from eddy covariance NEE measurement is derived via

Lasslop et al. (2010) method to separate GPP and terrestrial ecosys-

tem respiration (TER). The half-hourly GPP data were first aggre-

gated to daily scale, then averaged within a month. We collected

1,054 site-month flux data in total from 1999 to 2015.

2.2 | Climate and satellite data

We use the gridded reanalysis meteorological datasets for monthly

mean air temperature, monthly precipitation sum, monthly shortwave

radiation, which covered the period of 1982–2015 on a 0.1° 9 0.1°

grid. This dataset was developed by Data Assimilation and Modeling

Center for Tibetan Multi-spheres, Institute of Tibetan Plateau

Research, Chinese Academy of Sciences (Chen et al., 2011; Yang,

He, Tang, Qin, & Cheng, 2010), via merging Princeton reanalysis

data, Global Energy and Water Cycle Experiment (GEWEX) Surface

Radiation Budget (SRB) products, Global Land Data Assimilation Sys-

tem (GLDAS) data and ground-observed meteorological data from

China Meteorological Administration (CMA). This reanalysis meteoro-

logical datasets have been evaluated against MODIS Land Surface

Temperature (LST) products, CMA routine data, and GEWEX-SRB

dataset (Chen, Yang, Zhou, Qin, & Guo, 2010; Chen et al., 2011;

Yang et al., 2010). In general, the climate field from this high-resolu-

tion gridded dataset compares quite well with flux site measure-

ments. The monthly temperature and radiation of the two datasets

are well consistent. Monthly precipitation from the two datasets is

also quite consistent, but with deviations for some sites in southern

China. As the scale of spatial covariance in precipitation is finer than

temperature and solar radiation, this seems a common issue, which

has been reported in previous researches (Beer et al., 2010; Jung,

Reichstein, & Bondeau, 2009). Meteorological datasets are much

more uncertain with respect to precipitation compared to tempera-

ture (Zhao, Running, & Nemani, 2006).

During the identification of driving climate factors in process-

based models, we use monthly climatic variables from the Climatic

Research Unit National Centers for Environmental Prediction

(CRUNCEP) dataset (New, Hulme, & Jones, 2000), including temper-

ature, precipitation, and shortwave radiation.

Fraction of photosynthetically active radiation (FPAR) is used as

a proxy for the photosynthetic activity characteristics of vegetation.

The Global Inventory Modeling and Mapping Studies (GIMMS) FPAR

was generated by an artificial neural network model and GIMMS

Normalized Difference Vegetation Index (NDVI) dataset at 15-day

time frequency and 1/12 degree resolution (Zhu et al., 2013, 2016).

We first aggregated the original 15-day GIMMS FPAR data to

monthly time step by maximum value composition (MVC) method

(Holben, 1986), which is widely used in previous FPAR-based studies

(Peng et al., 2012; Zhang et al., 2008), and then resampled the FPAR

data to 0.1° 9 0.1° resolution by using nearest neighbor method.

2.3 | Vegetation distribution map

In this study, 1:1,000,000 China vegetation map was used (Editorial

Board of Vegetation Map of China, Chinese Academy of Sciences,

2007). Five hundred and seventy-three vegetation types in the map

were reclassified into nine categories, which are deciduous broadleaf

forest (DBF), deciduous needle-leaf forest (DNF), evergreen broad-

leaf forest (EBF), evergreen needle-leaf forest (ENF), MF (mixed for-

est), cropland, grassland, shrubland, and wetland. The distribution of

nine vegetation type is also showed in Figure 1 with lighter color

than flux sites in the same class.

2.4 | GPP datasets

One data-driven global monthly GPP product (Jung et al., 2011) and

monthly GPP simulations from nine TRENDY (“Trends in net land-

atmosphere carbon exchange over the period 1980–2010”) models:

CLM4.5 (Oleson et al., 2013), ISAM (Jain, Meiyappan, Song, &

House, 2013), JULES (Clark et al., 2011), LPJ (Sitch et al., 2003), LPX

(Stocker, Spahni, & Joos, 2014), OCN (Zaehle & Friend, 2010),

ORCHIDEE (Krinner et al., 2005), VEGAS (Zeng, Qian, Roedenbeck,

& Heimann, 2005) and VISIT (Kato, Kinoshita, Ito, Kawamiya, & Yam-

agata, 2013), were used for comparison with GPP produced in this

study. Jung et al. (2011) released a gridded monthly global GPP

(hereafter, JUNG-GPP) by training MTE over 178 stations with cli-

matic fields (temperature, precipitation, and potential radiation) and

satellite-derived parameter (FPAR). The nine TRENDY models are

forced by the global observed atmospheric CO2 concentration and

variable climate from CRU-NCEP dataset. We mainly evaluated

model results from S3 simulation forced with time-variant CO2, cli-

mate, and land use/cover. All monthly GPP from TRENDY models

are first resampled to a uniform 0.5° 9 0.5° grid in unit

of gC m�2 yr�1. Both JUNG-GPP and TRENDY models provided

GPP covering the time scope from 1982 to 2010. In discussion sec-

tion, we used the same time span of GPP in this study for their com-

parison.

F IGURE 1 The distribution of flux sites used in this study. Land
cover map was adapted from the vegetation distribution map of
China
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2.5 | GPP data reconstruction

In this study, the same MTE algorithm as Jung et al. (2009, 2010,

2011) was used to estimate gridded China GPP at 0.1° 9 0.1° reso-

lution. The MTE was trained with monthly GPP as dependent vari-

able and a series of explanatory variables listed in Table S2 as

inputs. Then, the trained MTE was applied to whole China domain.

GPP is estimated from the trained MTE based on climate variables

and FPAR in each pixel.

2.6 | Trend and anomaly of GPP at grid and
country scale

The temporal trend of total sum GPP weighted by area is calculated

using linear least square regression method. The same method is also

applied to annual GPP in each grid. The standard deviation of annual

GPP over all studied years is calculated for each pixel like Mao et al.

(2012) and Anav et al. (2015). GPP anomaly at country scale and

grid scale were detrended from total annual GPP and annual GPP in

each grid, respectively.

2.7 | Partition of interannual variability in China
GPP

Partitioning of GPP interannual variability (IAV) to each grid is based

on the definition of Equation (1) from Ahlstr€om et al. (2015).

fj ¼
P

t
xjt jXt j
XtP

t jXtj (1)

Xt ¼
X

j
xjt: (2)

Where xjt is the GPP anomaly for region j at time t, and Xt is the

China GPP total anomaly. fj is the average relative anomaly xjt/Xt for

region j, weighted with the absolute China GPP total anomaly |Xt|. fj

ranges from �1 to 1. Higher positive fj indicates IAV in the pixel var-

ies in phase with integral IAV and larger local contribution toward

China GPP IAV, while smaller or negative fj represents the opposite.

2.8 | Characterizing relationships between GPP
interannual variability and climatic factors

Besides annual GPP, we also detrended annual mean temperature,

annual precipitation sum, and annual mean shortwave radiation time

series in each grid. To derive the relative importance of these three

climate factors in determining the GPP IAV, we used Lindeman-Mer-

enda-Gold (LMG) method, which allows to differentiate the contribu-

tion of different correlated regressors in a multiple linear regression

model from R software version 3.2.4 (R Core Team, 2016) with the

package “relaimpo” (Gr€omping, 2006). The LMG method has been

widely used in several previously published papers, some of them

are in high-profile journals, e.g., Carvalhais et al. (2014), Fern�andez-

Mart�ınez et al. (2014), Musavi et al. (2017), etc. This metric is based

on unweighted averages over sequential R2s of each variable in all

permutation of available regressors to avoid regressors’ order effects.

And the total R2 can be decomposed to non-negative components

that sum to the total R2 spontaneously. The explained power (R2) of

three climate factors was normalized to derive RGB combination to

reflect climatic drivers of GPP IAV.

2.9 | The comparison map profile method

To detect spatial similarity and difference patterns, the comparison

map profile (CMP) method, which is based on the absolute distance

and cross-correlation coefficient through multispatial scales (Gau-

cherel, Alleaume, & Hely, 2008), is employed in this study. The abso-

lute distance between moving window in two compared images is

calculated as Equation (3), which provides absolute differences

between them.

D ¼ absð�x� �yÞ (3)

�x and �y are averages computed over two moving windows to be

compared.

The cross-correlation (CC) coefficient is calculated as Equa-

tion (4), which suggests similar or contrasting directions in gradient

(Gritti, Gaucherel, Crespo-Perez, & Chuine, 2013).

CC ¼ 1
N2

XN

i¼1

XN

j¼1

xij � �x
� �� yij � �y

� �

rx � ry
(4)

with r2
x ¼ 1

N2 � 1

XN

i¼1

XN

j¼1

xij � �x
� �2

(5)

xij and yij are the pixel value at row i and column j of two moving

windows in two compared images, respectively. Each moving win-

dow covers N pixels. rx and ry are the standard deviation calculated

over the two moving windows.

Low CC value indicates that similarity between two images is

poor, and low D value indicates good agreement between them.

Repeating these similarity index computation 20 times successively

by increasing the window size from scale 1 (window size:

3 9 3 pixel) to scale 20 (window size: 41 9 41 pixel), the CMP

method provides 20 monoscale similarity maps. All these monoscale

maps can be integrated to one mean CMP map by averaging the

similarity value over 20 monoscale in each pixel. This method

enables the quantification of differences between images when

changing spatial scales. GPP produced in this study is resampled to

0.5° 9 0.5° resolution to match the JUNG-GPP and TRENDY model

mean during CMP comparison procedures. For detailed CMP method

description, please refer to Gaucherel et al. (2008).

3 | RESULTS

3.1 | Spatiotemporal pattern of GPP over China

The high-resolution regional GPP dataset we developed in this study

can successfully capture the spatiotemporal variations of GPP

observed in the flux sites (R2 = 0.97, p < .01). The robustness of the
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dataset is still outstanding when compared to validation flux site

data that were not put in training of MTE (R2 = 0.88, p < .01; Fig-

ure 2a). Further, we assess the MTE performance in aspects of

among-site variability, seasonal variations, and interannual anomalies

(Fig. S1). MTE performs well in terms of all data, among-site variabil-

ity, and seasonal variations (Fig. S1). According to the high-resolution

regional GPP dataset, mean annual GPP during 1982–2015 over

China is 6.62 � 0.23 PgC/year. For the vegetated area, GPP shows

a descendant gradient from southeast toward northwest (Figure 2b),

with the highest value in the southeast (>2,000 gC m�2 yr�1) and

the lowest in northwest, Inner Mongolia and Tibetan Plateau (<

300 gC m�2 yr�1). We also carry out the experiments that using

only China flux sites or subset of flux measurements (to test the

uncertainty associated with flux measurement period). These tests

generate similar results (see Appendices S1 and S2).

Over the last thirty years, China’s GPP increased from 6.31 PgC/

year in 1982 to 6.94 PgC/year in 2015, with a significant temporal

trend of 0.020 � 0.002 PgC/year2 (~0.32%/year, p < .01, Figure 3a).

Meanwhile, annual temperature and precipitation also significantly

increased at a rate of 0.04°C/year (p < .01) and 3.00 mm/year

(p < .01), respectively (Figure 3b,c). Annual radiation presented large

year-to-year variation with statistically insignificant trend at a rate of

�0.03 W m�2 yr�1 (p = .39, Figure 3d). Interannual changes of

annual GPP are highly correlated with annual mean temperature

(R = 0.86, p < .01). Lower agreement occurred between annual GPP

and annual radiation (R = 0.36, p < .05), followed by annual precipi-

tation (R = 0.30, p = .10).

GPP trend in China presented a heterogeneous geographical pat-

tern. Positive trends are widespread (89.5%), and almost 60% of the

study region experienced a significant increase (p < .05). Magnitude

of the trend in most area varies within the range of 0–

4 gC m�2 yr�2, in which is generally larger in the southeastern and

the northeastern than that in the northwestern (Figure 4a). The lar-

gest increase in GPP (>6 gC m�2 yr�2) occurred in densely forested

area in Yunnan in the Southeast, southeast of Tibetan Plateau, Dax-

ing’anling in the Northeast and Taiwan Island. Decreased trend of

GPP was found for only 10.5% area (1.1% is significant, p < .05),

and scattered mainly over semiarid grasslands in northern Inner

Mongolia, magnitude of which can be larger than �4 gC m�2 yr�2

(Figure 4a). We further analyzed the standard deviation of annual

GPP over 1982–2015 and found that larger interannual variability

occurred in forests in northeast area, Qinling Mountain and south-

east of Tibetan Plateau (>100 gC m�2 yr�1, Figure 4b), while the

hinterland of Tibetan Plateau and Inner Mongolia are among the

area with lower standard deviation (<50 gC m�2 yr�1).

3.2 | Local and subregional contribution to GPP
interannual variability over China

We applied Equation (1) (see Section 2; Ahlstr€om et al., 2015) to

analyze contribution of each pixel or each subregion to interannual

variability of China’s GPP (e.g., area-weighted sum of GPP over

China) (Figure 4c). We found that, at pixel scale, interannual variabil-

ity in most pixels is in phase with China’s GPP (positive value in Fig-

ure 4c), except in northern Tibetan Plateau, Inner Mongolia, and

western part of Northeast China. Therefore, although standard devi-

ations of GPP seem largest in Daxing’anling in Northeast China (Fig-

ure 4b), the phase of the variability is different over this area. As the

opposite phases canceling out themselves, the contribution to IAV of

the northeastern pixels is not outstanding comparing to central

China pixels where standard deviation of interannual variability is

smaller. We also aggregate pixels into geographical subregions over

China according to its physical geography (Piao, Fang, et al., 2009).

As Qinling Mountain and surrounding area seem contributing most

to IAV of China’s GPP, we found that North China and South-west

China contribute most to IAV of China’s GPP (21% and 16%, respec-

tively). The contributions of Northwestern China, Inner Mongolia,

Qinghai-Tibetan area are less than 10%, indicating that the semiarid

regions in China are not the dominant contributor to IAV of GPP.

3.3 | Spatial pattern of dominant climatic drivers to
GPP interannual variation

We further examined the dominant climatic factor with decomposi-

tion of regression coefficients when regressing GPP against annual

mean temperature, annual precipitation sum (precipitation acted as a

proxy for soil moisture content approximately), and annual solar radi-

ation. Overall, the dominant climate driver to IAV of GPP varies

widely across the country. Temperature is the dominant factor for

about 42% of the area, while precipitation and solar radiation-

F IGURE 2 (a) The comparison between
model tree ensemble (MTE) predicted
gross primary productivity (GPP) and flux
GPP observation. The performance of
model tree was labeled. For training
samples, R2 = 0.97 and
RMSE = 0.55 gC m�2 day�1. For validating
samples, R2 = 0.88 and
RMSE = 1.05 gC m�2 day�1. (b) The
spatial pattern of mean annual GPP in
China during 1982–2015
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dominant IAV are about 31% and 27%, respectively (Figure 4d).

Although the temperature-dominated area is only 10% more than

that dominated by precipitation or by solar radiation, it distributed

over North China, Southwest China, and eastern China (Figure 4d),

where their contribution to IAV of China’s GPP is almost 70% (Fig-

ure 4c). Thus, it is not surprising why at regional scale, IAV of

F IGURE 3 Interannual change in (a) annual total gross primary productivity (GPP), (b) annual mean temperature, (c) annual precipitation
sum, and (d) annual radiation from 1982 to 2015

F IGURE 4 Spatial pattern of (a) temporal trend and (b) standard deviation of annual gross primary productivity (GPP) over 1982–2015, (c)
local GPP contribution at pixel and subregional level to total GPP anomaly and (d) climate drivers for China GPP interannual variability. Black
points mark pixels with significant linear trend of annual GPP during this time period in panel (a). The inset in panel (a) and (b) denotes the
frequency distribution of linear trend and standard deviation for annual GPP. The top inset in panel (c) represents the geographical
regionalization of China. The left inset in panel (c) indicates the contribution of nine subregion in China to total GPP anomaly. I: North-east
China; II: Inner Mongolia, III: North-west China; IV: North China; V: Central China; VI: Qinghai-Tibetan Plateau; VII: Southeast China; VIII:
South China, and IX: Southwest China
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China’s GPP is dominantly controlled by variations in temperature.

IAV of GPP over most grassland area in Inner Mongolia and Tibetan

Plateau is controlled by precipitation. It should be noted that even in

the very cold central Tibetan, precipitation still outweighs tempera-

ture in driving the IAV of GPP (Figure 4d). In terms of that the con-

tributions of GPP IAV in Inner Mongolia and Tibetan Plateau to GPP

IAV at country scale are small and can cancel each other, relative

importance of IAV in precipitation to GPP IAV at country scale is

negligible. Solar radiation is the dominant climatic driver to IAV of

GPP in northeastern border area and eastern edge of the Tibetan

Plateau (Figure 4d). However, as these two areas have largely oppo-

site phase in interannual variations (Figure 4c), we did not observe

significant impact of solar radiation on IAV of China’s GPP (Fig-

ure 2d).

4 | DISCUSSION

4.1 | GPP estimations by different global and
regional datasets

Despite growing efforts in quantifying GPP, large uncertainties still

exist. With higher resolution and better sampling for climate and

vegetation types (Fig. S2), our GPP dataset can indeed reduce uncer-

tainties due to interpolation and extrapolations, which are prevalent

in the global GPP dataset. Although at the country scale GPP esti-

mated by our product and JUNG-GPP remains similar

(6.59 � 0.23 PgC/year in our study and 6.35 � 0.18 PgC/year in

JUNG-GPP, 1982–2010), their spatial patterns differ. Compared with

JUNG-GPP, our product has larger estimates of GPP for grassland

over Tibetan plateau and Inner Mongolia, while much smaller GPP

estimates over southeastern China (Figures 2b and S3a). As the

data-oriented estimates are often served as the benchmark to pro-

cess-based ecosystem models, we confront the TRENDY models

(Sitch et al., 2015) to our dataset. The ensemble model mean seems

overestimating China’s GPP by 19.1% (7.85 PgC/year), with inter-

model range from 4.95 PgC/year in ISAM to 9.65 PgC/year in OCN

(Figure 5a). Leaving out effects of human activity (Anav et al., 2015),

natural disturbances (Liu et al., 2011), tropospheric ozone (Sitch,

Cox, Collins, & Huntingford, 2007), and nutrient availability limitation

(Goll et al., 2012; Piao et al., 2013) could have induced such biases.

Uncertainty and differences in model structure and parameterization

could also lead to such inconclusive estimation in simulating China

GPP even to the same climate forcing (Sitch et al., 2008, 2015). In

addition, there are some regional GPP estimates based on other

models. For example, GPP estimation based on EC-LUE model

(Eddy-Covariance Light Use Efficiency model, e.g., Li et al., 2013;

Yuan et al., 2010) is more than 10% lower than that in this study

albeit similar spatial gradient accompanied (Table 1), highlighting

uncertainties related to model structure and parameters. Besides,

two newly published researches generate rather high total amount

of annual GPP in recent periods via multiple regression (Zhu et al.,

2014) or Support Vector Regression (SVR, Ichii et al., 2017). Zhu

et al. (2014) presents widespread greater GPP in majority areas of

China except in Daxing’anling, north of Tibetan Plateau and southern

area due to that climate-based potential GPP are considered. Asian

GPP dataset from Ichii et al. (2017) derives higher China GPP mainly

in Tibetan Plateau, Inner Mongolia, and part of southwest and south-

east monsoon regions possibly due to their leaving out China flux

sites like Tibetan Plateau and Inner Mongolia grassland flux sites as

well as SVR-based prediction of GPP is greater than observation

GPP to some extent when its value is less than 12 gC m�2 day�1

(Ichii et al., 2017).

Not only does the magnitude but also the spatial pattern of GPP

is subject to large uncertainties. We further use spatial correlation to

test the spatial consistency among different GPP datasets. The spa-

tial correlation between global data-oriented dataset and regional

data-oriented dataset in this study is quite high (Figure 5b), but the

correlation strength between our dataset and model simulations may

F IGURE 5 The (a) total gross primary productivity (GPP) weighted by area and (b) spatial correlation and RMSE among GPP in this study,
JUNG-GPP and nine TRENDY models. The black dashed line in panel (a) indicates the corresponding mean total amount over 1982–2010 of
GPP produced in this study. Error bar in panel (a) except “Model mean” indicates standard deviation of annual GPP over 1982–2010. Error bar
in “Model mean” denotes the standard deviation, calculated as statistic of the 29 years mean for nine TRENDY models. In panel (b), the spatial
correlation coefficients between any two datasets are highly significant (p < .01)
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vary quite a lot. The correlation coefficient varied from 0.58 to 0.86,

indicating models differ in the simulated sensitivity of GPP to climate

variations (Anav et al., 2015; Piao et al., 2013). The most outstand-

ing difference is the overestimation of GPP in southern area by

CLM4.5, LPJ, OCN, and ORCHIDEE (Fig. S3c,f,h,i), probably indicat-

ing the forest parameters used by these models cannot well repre-

sent the response of China’s temperate forest to climate variations.

In addition, these models still have limitations in representing the

effects of human management (Anav et al., 2015; Guanter et al.,

2014), which may greatly affect productivity estimation especially in

intensively managed ecosystems such as croplands and forest planta-

tions. Taking nitrogen availability into account could also bring sub-

stantial difference among models estimation. In terms of OCN and

ORCHIDEE, whose disparity largely comes from whether nitrogen

cycle is coupled or not, the former derives lower GPP value in

southern area than the latter (Fig. S3 h,i), highlighting the need to

incorporate full nutrient constraint on carbon fluxes (Wieder, Cleve-

land, Smith, & Todd-Brown, 2015).

The improvement of climate space sampling also has large influ-

ences on the magnitude and spatial distribution of GPP trends. Our

dataset produced trend in China’s GPP two times larger than that

derived from the global dataset (0.012 PgC/year2; Jung et al., 2011).

When comparing our dataset and the JUNG-GPP dataset, we found

that mean CMP distance and correlation comparison showed that the

largest gradient consistency appears in Inner Mongolia (Mean correla-

tion >0.4) and the largest discrepancy appeared in northeastern forests

(Mean distance >3 gC m�2 yr�2, Figure 6a,b). Disparity of GPP trend

in northeastern forests could be related to following two reasons. The

deciduous needle-leaf forest sites in northeastern China were not

included in the construction process of global dataset (Jung et al.,

2011), which cannot represent local responses to climate change. On

the other hand, JUNG-GPP used monthly potential radiation (not vary

over years) as a predictor, rather than monthly shortwave radiation

that update monthly and yearly, which may affect accuracies of GPP in

area sensitive to change in solar radiation (Figure 4d).

The trend produced in our study is also larger than the TRENDY

model mean but within the range of the model ensemble (Fig. S4).

Seven of the nine TRENDY models underestimate the trend in GPP,

which may be related to several reasons. Firstly, Sun et al. (2014)

found that global carbon cycle models underestimate photosynthetic

responsiveness to atmospheric CO2 change due to overestimation of

mesophyll CO2 transfer within leaves. Secondly, models without

nitrogen constraint could have ignored the GPP trend increment

induced by increasing nitrogen deposition in China (Tian et al.,

2011), which may explain why the OCN with full nitrogen cycle pro-

duced two times the GPP trend than the similar model (ORCHIDEE)

without nitrogen cycle (Fig. S4). Thirdly, the lack of explicit represen-

tation of agricultural management and crop physiology may lead to

underestimate of GPP (Guanter et al., 2014) and the trend in crop-

land GPP resulted from green revolution, which may explain why

many models do not show as large increasing trend in the North

China Plain and Sichuan Basin as our dataset does (Figures 4a and

S5). Finally, China has experienced unique afforestation processes

over the past three decades (Piao, Fang, et al., 2009), models not

considering this process (Sitch et al., 2015) would not be able to rep-

resent the increasing trend in large afforestation area such as the

“Three North Program” (Duan et al., 2011) in Northeast, North and

Northwest China (Figures 4a and S5) and Yangtze River Shelter

afforestation program (Zhang, Song, Zhang, & Zhang, 2015) carried

out in Yangtze River Basin (Figures 4a and S5). Indeed, CMP shows

large distance between our dataset and TRENDY models over Inner

Mongolia, northeastern China (Mean distance >3 gC m�2 yr�2, Fig-

ure 6c) and mediate distance over Yangtze River Basin (Mean dis-

tance >1 gC m�2 yr�2, Figure 6c). Gradient difference between

trend in this study and model mean mainly concentrated in Tibetan

Plateau (Mean correlation <�0.1, Figure 6d). Model mean shows

large GPP increase in south of Tibet Plateau since six of nine

TRENDY models identify temporal trend of > 6 gC m�2 yr�2 in this

place (JULES, LPJ, LPX, OCN, ORCHIDEE, VISIT) while GPP in this

study show weak increase of <4 gC m�2 yr�2 (Figures 4a and S5).

Larger trend found in models could correspond to local enhanced

precipitation, which implies overestimated sensitivity to precipitation

variation for GPP simulated in models (Piao et al., 2013). Future

efforts should focus on improving the model in response to climate

variability and incorporating more missing processes to reduce sys-

tematic uncertainties (Keenan et al., 2012; Wang et al., 2014). Fur-

thermore, we also compare GPP trends between TRENDY models

and our data-driven product from the perspective of their radiation

trend and FPAR trend difference (see Appendix S3).

4.2 | Interannual variability of GPP and its
relationship with climate

Unlike the globe where semiarid regions contribute most to interan-

nual variability (Ahlstr€om et al., 2015), humid area in the eastern part

of China seems dominating the interannual variability of GPP, with

largest local contribution to total GPP anomaly was found in Qinling

Mountain, which has not been previously identified. Interannual

TABLE 1 Estimation of GPP in different terrestrial models over
China

Model
GPP
(PgC/year)

Study
period Reference

MOD17 5.53 2000–2014 Zhao, Heinsch,

Nemani, and

Running (2005)

EC-LUE 6.04 2000–2009 Li et al. (2013)

EC-LUE 5.55 2008–2009 Cai et al. (2014)

EC-LUE 5.38 2000–2009 Yuan et al. (2010)

Multiple

regression

7.51 2001–2010 Zhu et al. (2014)

SVR 7.81 2000–2015 Ichii et al. (2017)

MTE 6.35 1982–2010 Jung et al. (2011)

MTE 6.62 1982–2015 This study

EC-LUE, Eddy-covariance light use efficiency; GPP, gross primary produc-

tivity; MTE, model tree ensemble; SVR, support vector regression.
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variability of photosynthetic activity potentially mirrors patterns of cli-

mate variability (Baker, Denning, & St€ockli, 2010). Climate over the

eastern part of China is largely affected by East Asia monsoon, sug-

gesting variability of monsoon is driving that of GPP. As temperature

dominating the eastern part of China, it is not surprising that variabil-

ity of China’s GPP is more driven by temperature than by precipita-

tion (Figure 3; He, Dong, Guo, & Dan, 2007), but, the climatic driver

can diverse quite a lot spatially. In terms of forest areas having large

annual precipitation (>1,000 mm), temperature increase could facili-

tate local forest growth without encountering water limitation (Piao

et al., 2007). While in semiarid grasslands, moisture control on pro-

ductivity in Inner Mongolia seems well consistent with field evidences

(Bai et al., 2008) and modeling studies (Gerten et al., 2008; Peng,

Piao, Shen, et al., 2013). Northeastern forests showed dominance of

shortwave radiation on GPP variability. Kitamura et al. (2012) also

found GPP IAV could be attributed to variations in shortwave radia-

tion during foliated season in a forest site in Japan with similar lati-

tudes, which seems supporting our findings. Future researches are

still required to clarify why variability of GPP over regions such as

Northeast China with low temperature and mediate precipitation is

driven mostly by solar radiation. Recently, Yang, Guan, Shen, Liang,

and Jiang (2015) suggests that more radiation input would attenuate

anaerobic soil condition induced by high soil moisture content.

Although the hypothesis may seem promising, evidences are still lack-

ing to support it at ecosystem level. We also noted that process-

based ecosystem models present different dominant climatic driver to

IAV of GPP except in semiarid Inner Mongolia (Fig. S6b–k). Five of

nine TRENDY models show distinct temperature dominant effects in

Tibetan Plateau (LPJ, LPX, OCN, VEGAS, VISIT), which are different

from the dominance of precipitation identified by data-oriented prod-

ucts in this study (Figures 4d and S6f–h,j,k). Such discrepancies indi-

cate that the ecosystem models still have a long way to go in order to

correct the represent of carbon cycle response to climate variations.

In addition, the dominant climatic drivers of modeled GPP in China

differ a lot even among the models. For example, variations in precipi-

tation dominate large area in CLM4.5 and JULES (Fig. S6c,e), but tem-

perature seems to be the dominant driver in VEGAS (Fig. S6j). Such

intermodel discrepancies reflect structural and parameterization dif-

ferences in modeling GPP response to climate variable (Sitch et al.,

2015). For TRENDY models, we also estimate the contribution of soil

F IGURE 6 Comparison of annual gross primary productivity (GPP) linear trend in this study with (a, b) JUNG-GPP and (c, d) TRENDY
model mean based on (a, c) absolute distance analysis and (b, d) cross-correlation analysis from Comparison Map Profile method. Panel (a) and
(c) denote multiscale absolute distance map averaged over 20 monoscale distance maps. Panel (b) and (d) denote multiscale cross-correlation
analysis through average of 4–20 monoscale correlation map (removing the overestimation of nonsignificant correlation in very small windows
like 1–3 scale). The inset in four panels denotes the frequency distribution of multiscale average of absolute distance (a, c) and correlation (b,
d), respectively
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moisture on GPP IAV using simulated soil moisture by TRENDY mod-

els (see Appendix S4).

4.3 | Uncertainties and future directions

Although data-oriented global GPP dataset has served as the bench-

mark for ecosystem models, previous studies recognized that the

global dataset considerably underestimated the interannual variations

of GPP (Jung et al., 2011; Piao et al., 2013), whether it is inherent in

the methodology remains unclear (Jung et al., 2011). In our study,

with the improvement of climate space sampling, which has filled

the data gaps of typical ecosystems in China, and the variables rep-

resenting interannual variations in solar radiations, we found our

regional dataset indeed has distinctly larger interannual variability

than the global dataset, which seems improving the precision of

data-oriented GPP estimation. However, uncertainties remain in a

few aspects. First of all, while effects of rising atmospheric CO2 on

plant growth (e.g., leaf area increment, Norby & Zak, 2011) are par-

tially considered via FPAR, some physiological effects such as change

in stomatal conductance and then water use efficiency are not

explicitly represented in our approach. While the magnitude of CO2

fertilization effects on GPP is still under debate (Gray et al., 2016), it

will be interesting for future studies to test the machine learning

algorithms against FACE experiments in order to quantify uncertain-

ties in this aspect. Besides, other valuable information like human

management and nature disturbance is also reflected by FPAR indi-

rectly and spatially explicit distribution of these influential factors is

required and could improve our estimation in the future. Moreover,

previous studies show that IAV and trend in GPP derived from ear-

lier version of JUNG-GPP could have been underestimated, since

the trend and IAV of global GPP was much lower than that esti-

mated by process-based models (e.g., Anav et al., 2013, 2015; Piao

et al., 2013). Such issue was suspected to result from potential

biases introduced by “spatial gradients extrapolation to temporal

interannual gradients” (Jung et al., 2009; Piao et al., 2013; Reichstein

et al., 2007), or leaving out some cumulative effects like soil mois-

ture (Jung et al., 2007). However, latest version of machine learning

methods derived carbon fluxes (GPP, TER and NEE) compared well

with process-based model simulations (Jung et al., 2017). In addition,

we found that, in our study over China, the magnitude of IAV and

trend of GPP estimated by MTE algorithms compared well with the

process-based ecosystem models (Figures 5 and S4). Therefore, at

least for mostly temperate ecosystems in China, the MTE algorithm

seems capable for trend analyses. The earlier version of JUNG-GPP

trained MTE with La Thuile dataset, most stations of which had

short measurement period. Thus, we suggest that improvement of

the latest MTE products in representing trend and IAV of GPP

seems indicating the importance of using longer term flux data in

training MTE, which partially avoids extrapolating spatial gradients

into temporal ones. Furthermore, the good performance of MTE on

China seems suggesting that cumulative effects like soil moisture on

GPP may be less important over temperate ecosystems than over

the tropical forests, where deep soil reservoir (may >10 m) serves as

an important source of IAV of vegetation productivity (e.g., Gatti

et al., 2014). Future studies based on increasing flux measurements

over Amazon and Congo basins should further explore this issue of

cumulative moisture effects on GPP variation.
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