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ABSTRACT. It is widely accepted that the incorporation of external sulfur via
crustal contamination is an important trigger for sulfide immiscibility that generates
Ni-Cu-(PGE) sulfide mineralization, yet other controlling factors for sulfide immiscibil-
ity may also be present. The late Permian Panzhihua, Baima, Hongge, Xinjie and Taihe
layered intrusions in the Emeishan Large Igneous Province (ELIP, SW China), are
well-endowed with Fe-Ti oxide deposits, whereas their sulfide mineralization is mainly
sub-economic. For example, the lower part of the Xinjie intrusion hosts a few thin
PGE-rich ore layers, yet other ELIP layered intrusions do not contain any Ni-Cu sulfide
mineralization and are PGE-depleted (0.01–1 ppb).

Compared with the PGE-undepleted Emeishan high-Ti basalts that are genetically
related to the intrusions, the extent of PGE depletion and elevated Cu/Pd ratios (up
to 3.2�106) of the Panzhihua, Baima, Taihe and Hongge intrusions suggest PGE-
depletion in their parental magmas due to early-stage sulfide removal. Sr-Nd isotopic
compositions of the Panzhihua, Baima and Taihe intrusions suggest crustal contamina-
tion was insignificant and sulfide saturation produced mainly by crustal sulfur input
was unlikely. MELTS modeling shows that extensive fractionation of chromite, olivine
and clinopyroxene in deep-seated magma chambers may have induced early-stage
sulfide saturation of the primary magmas. The relatively high sulfide contents in the
Fe-Ti oxide layers at Panzhihua, Baima, Hongge and Taihe indicate a close relationship
between the second-stage sulfide immiscibility and extensive Fe-Ti oxide crystalliza-
tion.

Positive correlations between sulfur and total Fe2O3, V and TiO2 suggest that
Fe-Ti oxide (magnetite and ilmenite) crystallization may have triggered the second-
stage sulfide saturation via sharply lowering the Fe concentration and oxygen fugacity
of the magmas. Moderate degree of crustal contamination for the Xinjie Fe-Ti
oxide-barren rocks may have induced sulfide saturation and accumulation at the lower
part of the intrusion. Our calculations indicate that the Xinjie PGE-rich rocks have high
R-factors (1000–10000), which are ascribed to PGE-upgrading of the sulfides via
reaction with new replenishments of PGE-undepleted magmas. A few Panzhihua,
Baima and Taihe samples that contain higher PGE concentrations suggest that the
early-stage sulfide droplets at depths were entrained in later magma pulses delivered to
shallower magma chambers. The very high R-factors determined by mass balance
calculation, implies a good potential for discovering more PGE mineralization in the
deep-seated intrusions of the magma plumbing system.

Keywords: Platinum-group elements (PGE), sulfide segregation, crustal contami-
nation, fractional crystallization, Fe-Ti oxides, layered intrusion, Emeishan Large
Igneous Province

introduction
Mantle-derived magmas cannot easily achieve sulfide saturation during their

ascent because sulfur solubility increases with decreasing pressure (Wendlandt, 1982;
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Mavrogenes and O’Neill, 1999; Moretti and Baker, 2008; Mungall and Brenan, 2014).
In the past several decades, extensive debate has developed over the relative impor-
tance of magmatic differentiation, oxygen fugacity, and crustal sulfur input to mag-
matic sulfide immiscibility (Haughton and others, 1974; Wendlandt, 1982; Mavragenes
and O’Neill, 1999; Ripley and Li, 2003; Lightfoot and Keays, 2005; Ripley and others,
2010; Jenner and others, 2010). Platinum-group elements (PGE) are very sensitive to
sulfide saturation of mantle-derived magmas because of their extremely high partition
coefficients between sulfide and silicate melts (Peach and others, 1990, 1994; Mungall
and Brenan, 2014). More than 45 percent and 80 percent of the global Pd and Pt
reserves, respectively, are hosted by magmatic sulfide reefs in layered intrusions,
notably the Bushveld Complex (South Africa), Great Dyke (Zimbabwe) and Stillwater
Complex (US) (Mungall and Naldrett, 2008; Barnes and Ripley, 2016). Crustal
contamination is considered to be an important trigger for sulfide saturation, which
facilitates the segregation and accumulation of PGE-reef-style mineralization in the
Bushveld and Stillwater complexes (Barnes, 1989; Maier and others, 2000, 2008;
Ihlenfeld and Keays, 2011; Keays and others, 2012). In some intrusions with smaller
and sub-economic PGE mineralization, the PGE reef formation may have been
produced by prolonged magmatic fractionation in closed systems with no crustal sulfur
input, for example the intrusions at Skaergaard (Greenland), Sonju Lake (Minne-
sota), Stella (South Africa), Rincon del Tigre (Bolivia) and Rio Jacare (Brazil)
(Andersen and others, 1998; Prendergast, 2000; Miller and Andersen, 2002; Maier and
others, 2003; Sa and others, 2005; Andersen, 2006; Holwell and Keays, 2014). Extensive
magnetite crystallization is suggested to have led to sulfide segregation and PGE
enrichment in the Fe-Ti oxide layers of these intrusions (Andersen and others, 1998;
Prendergast, 2000; Maier and others, 2003; Holwell and Keays, 2014). Nevertheless,
there are also some Fe-Ti oxide layers that are barren of PGE mineralization, as
exemplified by the Sept Iles intrusion (Canada) (Namur and others, 2015). Thus, the
major controls on sulfide liquid immiscibility and PGE mineralization for layered
intrusions remain controversial (Haughton and others, 1974; Wendlandt, 1982; Barnes,
1989; Mavragenes and O’Neill, 1999; Maier and others, 2000, 2008; Ripley and Li,
2003; Lightfoot and Keays, 2005; Ripley and others, 2010; Jenner and others, 2010;
Ihlenfeld and Keays, 2011; Keays and others, 2012).

In the central part of the Emeishan Large Igneous Province (ELIP), SW China,
several layered intrusions (Panzhihua, Baima, Hongge, Xinjie and Taihe) host world-
class Fe-Ti oxide deposits (Panxi Geological Unit, 1984). However, only thin PGE-rich
layers (�PGE�1300 ppb) have been identified in Cycle I in the lower part of the Xinjie
intrusion (Zhong and others, 2011a). The Panzhihua, Baima, Taihe and Hongge
intrusions are characterized by PGE depletion compared to the PGE-undepleted
Emeishan high-Ti basalts (�PGE�10–30 ppb, Zhong and others, 2006; Qi and Zhou,
2008; Song and others, 2009). It has been suggested that the PGE depletion of the
layered intrusions may have resulted from the early, deep-level removal of minor
sulfides (Zhong and others, 2002; Bai and others, 2012; Zhang and others, 2013;
Howarth and Prevec, 2013). The unanswered questions are: (1) why does the Xinjie
intrusion contains sub-economic PGE mineralization whereas the other ELIP intru-
sions are essentially PGE-barren; (2) what major factors triggered sulfide liquid
immiscibility at different depths; and (3) what is the potential for economic PGE
mineralization in the deep-seated intrusions of the magma plumbing system?

On the basis of a new PGE dataset of the Panzhihua, Hongge and Taihe intrusions
and the compilation of recently published major, trace element geochemical and
Sr-Nd isotopic data, it is proposed that the sulfide liquid immiscibility in these
intrusions was dominantly attributed to extensive Fe-Ti oxide fractionation and
crystallization leading to oxygen fugacity changes. Crustal contamination may have

484 Yu-Wei She & others—Platinum-group element geochemistry of the layered



played an important role in sulfide saturation and PGE mineralization in the Xinjie
intrusion. The PGE depletions at Panzhihua, Baima, Hongge and Taihe may have been
caused by early sulfide removal in their parental magmas, probably led by extensive
fractionation of mafic silicates at depth.

geological background

The ELIP is situated in the western part of the Yangtze Block and eastern margin
of the Tibetan Plateau, SW China (Xu and others, 2001; Song and others, 2001, 2004;
Ali and others, 2005). The Precambrian metamorphic basement on the western
margin of the Yangtze Block is overlain by thick Sinian to lower Permian strata,
consisting of clastic, carbonate and meta-volcanic rocks. The Songpan-Ganze Terrane
is located in the easternmost part of the Tibetan Plateau, and contains thick (up to ca.
10 km) upper Triassic deep marine strata (Burchfiel and others, 1995).

The ELIP consists mainly of the late Permian Emeishan continental flood basalts
that cover at least 5�105 km2 (total volume may be up to 3�105 km3), and the
cogenetic mafic-ultramafic and syenitic-granitic intrusions (Xu and others, 2001; Song
and others, 2004, 2008; Ali and others, 2005). The Emeishan flood basalts comprise a
high-Ti and low-Ti series (Xu and others, 2001; Xiao and others, 2004; Kamenetsky and
others, 2012). In situ zircons from the cogenetic mafic-ultramafic and felsic intrusions
have U-Pb dates of �260 Ma (Zhou and others, 2002, 2005, 2008; Zhong and Zhu,
2006; Xu and others, 2008; Zhong and others, 2011b; She and others, 2014). Previous
trace element and Sr-Nd isotopic geochemistry studies indicated that these intrusive
and volcanic rocks were derived from a late Permian mantle plume (Chung and Jahn,
1995; Xu and others, 2001 and references therein). The central zone of the ELIP is
marked by low-Ti basalts overlain by high-Ti basalts, whereas the outer zone is
dominated by high-Ti basalts (Xu and others, 2001, 2004; Xiao and others, 2004; Song
and others, 2009). Small mafic-ultramafic intrusions that host magmatic sulfide
deposits, for example Limahe, Zhubu, Jinbaoshan and Baimazhai, are common and
are considered to be genetically linked to the low-Ti basalts (Zhou and others, 2008;
Zhang and others, 2009), whereas the layered intrusions that host giant Fe-Ti-(V)
oxide deposits (Panzhihua, Baima, Hongge, Taihe and Xinjie) are believed to be
associated with high-Ti basalts (Zhou and others, 2008, 2013; Zhang and others, 2013).
These intrusions are distributed along N-S trending regional faults (fig. 1), which are
widely accepted to have formed by Emeishan plume activity (He and others, 2003).
Such rift structures are believed to have facilitated the development of interconnecting
magma conduits, and the strike-slip motion of the faults may have promoted magma
emplacement at depth (Lightfoot and Evanms-Lamswood, 2015).

layered intrusions of the central elip

The Xinjie Intrusion
The NW-SE trending Xinjie mafic-ultramafic layered intrusion is �7.5 km long

and �1.2 km thick. It is SW-dipping and was emplaced at the base of the Emeishan
high-Ti flood basalts. Xinjie is divided into three cycles from the bottom to the top,
namely: Cycle I, II and III (fig. 2) (Zhong and others, 2004, 2011a). Cycle I, capped by a
gabbro layer, contains several sub-cycles dominated by peridotite and clinopyroxenite.
Cycle II consists of plagioclase-bearing peridotite and olivine clinopyroxenite, gabbro
and magnetitite. Cycle III comprises clinopyroxenite overlain by gabbro. Four PGE-
rich layers (�PGE�1300 ppb; 3–5 meters thick) have been identified within the
peridotites in the lower half of the Cycle I (Zhong and others, 2011a). The Xinjie
parental magma is considered to share a common mantle source with the nearby
high-Ti basalts (Zhong and others, 2004, 2011a). The PGE-rich layers commonly
contain � 1 percent sulfides, up to 2 percent locally. The sparsely disseminated sulfides
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occur as interstitial phases among silicate minerals, and include mainly pyrrhotite,
pentlandite and chalcopyrite. Platinum-group minerals, such as sperrylite and Pd-Pt-
Bi-Te minerals, are rare and coexist with the base-metal sulfides (Zhu and others,
2010).

The Panzhihua Intrusion
The NE-SW trending Panzhihua intrusion is �19 km long and �1.5 km thick, and

was emplaced into Neoproterozoic dolomitic limestone, gneiss and schist. The intru-
sion can be divided into the lower zone (LZ), middle zone (MZ) and upper zone (UZ)
from the bottom upwards (fig. 2) (Zhou and others, 2005; Pang and others, 2008; Song
and others, 2013). The LZ is characterized by a thick magnetitite layer overlain by
magnetite gabbro and gabbro. The MZ comprises mainly alternating magnetite
gabbro and gabbro layers, whereas the UZ is marked by the presence of apatite gabbro
(Song and others, 2013). In the LZ, the magnetitite contains 2 to 3 percent sulfides (up
to 4% locally); the magnetite gabbros and gabbros contain 1 to 2 percent and � 1
percent sulfides, respectively. Sulfide contents of the magnetite gabbro (1–2%) are

Fig. 1. Simplified geological map of the central ELIP, SW China (Modified after Song and others,
2009), showing the locations of mafic-ultramafic intrusions. Aga data are after Zhou and others (2002, 2005,
2008), Zhong and Zhu (2006), Tao and others (2009), Wang and others (2014), Yu and others (2014) and
She and others (2014).
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higher than those of the gabbro and apatite gabbro (�1%) in the MZ and UZ,
respectively. Overall, the magmatic sulfide abundance correlates positively with the
Fe-Ti oxides at Panzhihua. Most of the Panzhihua rocks are PGE-depleted (�PGE�1
ppb, Howarth and Prevec, 2013), and are believed to have crystallized from a parental
magma similar to those of the Emeishan high-Ti basalts (Zhou and others, 2005; Pang
and others, 2008; Song and others, 2013).

Fig. 2. Petrographic columns of the Panzhihua, Baima, Xinjie, Hongge and Taihe layered intrusions in
the central ELIP (Modified after Zhong and others, 2011a; Zhang and others, 2012; Song and others, 2013;
Luan and others, 2014; She and others, 2014).
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The Baima Intrusion
The N-S trending and W-dipping Baima mafic intrusion is �24 km long and over

2 km thick, and is emplaced into Sinian meta-sandstone, phyllite, slate and marble.
The intrusion is surrounded by slightly later syenitic intrusions and cut by syenitic
dikes. Zhang and others (2012) and Liu and others (2014) divided the Baima intrusion
into a lower zone (LZ) and an upper zone (UZ) (fig. 2). The LZ is further subdivided
into LZa comprising magnetite troctolite and troctolite and LZb comprising magnetite
troctolite, troctolite and gabbro interlayers. Capped by apatite gabbro, the UZ is
mainly composed of gabbro, troctolite and thin interlayers of magnetite troctolite
(Zhang and others, 2012). Like the Panzhihua intrusion, sulfide abundance in the
Baima intrusive rocks also correlates positively with the Fe-Ti oxide contents. Most
magnetite troctolite of the LZa have 1 to 3 percent sulfides, which are closely associated
with the Fe-Ti oxide. The LZb magnetite troctolite contains 1 to 2 percent sulfides,
whereas the LZb troctolite and gabbro contain much less sulfides (�1%) than the
other Fe-Ti oxide-rich rocks. The sulfides contents are much lower than 1 percent in
the UZ apatite gabbros and troctolite. Like the Panzhihua rocks, sulfide abundance in
the Baima rocks also correlates positively with the Fe-Ti oxide contents. Zhang and
others (2013) indicated that the Baima intrusion is PGE-depleted (�PGE�1 ppb), and
its parental magma likely has similar composition as that of the Emeishan high-Ti
basalt.

The Hongge Intrusion
The Hongge intrusion, �16 km long and �1.5 km thick, is a sub-horizontal

layered lopolith emplaced into Neoproterozoic dolomitic limestone and meta-
sandstone. The Emeishan high-Ti basalts are in contact with the roof of the intrusion
in the northeastern part (fig. 1). The Hongge intrusion is divided into the lower zone
(LZ), middle zone (MZ) and upper zone (UZ) from the base upwards (fig. 2) (Zhong
and others, 2002; Bai and others, 2012a; Luan and others, 2014). The LZ is mainly
composed of clinopyroxenite with a few magnetite clinopyroxenite interlayers. Capped
by gabbro, the MZ consists mainly of thick magnetitite and magnetite clinopyroxenite
layers. Apatite gabbro dominates the UZ (Luan and others, 2014). The LZ rocks
contain � 1 percent sulfides, whereas the MZ magnetitite and magnetite clinopyroxen-
ite contain 1 to 5 percent sulfides. The MZ and UZ gabbros contain �1 percent
sulfides. The MZ magnetitite and magnetite clinopyroxenite contain lower PGE
concentrations (�PGE�0.09–63.5 ppb) than the co-genetic PGE-undepleted Emeis-
han high-Ti basalts (Bai and others, 2012a, 2012b).

The Taihe Intrusion
The Taihe intrusion is �3 km long and �1.3 km thick. The intrusion dips to the

southeast (dip angles of 50–60°) and is completely surrounded by syenite. Taihe can
be divided into the lower zone (LZ), middle zone (MZ) and upper zone (UZ) (fig. 2)
(She and others, 2014, 2015). Capped by magnetitite, the LZ is composed chiefly of
gabbro with an olivine clinopyroxenite interlayer. The MZ rocks are featured by being
apatite- and Fe-Ti oxide-rich, and comprise apatite-magnetite clinopyroxenite and
apatite gabbro. The UZ is composed mainly of apatite gabbro and apatite-magnetite
clinopyroxenite interlayers. The LZ gabbro and olivine clinopyroxenite contain little
sulfides (�1%), whereas the LZ magnetitite contains highly variable sulfide contents
(1–3%, up to 4%). In the MZ and UZ, the apatite-magnetite clinopyroxenite contains 1
to 5 percent sulfides, whereas the apatite gabbro contains much lower sulfide contents
(�1%). She and others (2016) concluded that the Taihe intrusion is associated with
evolution of the high-Ti basaltic magmas.

In conclusion, the rocks in the lower and middle zones of the layered intrusions
contain more sulfides than those in the upper zone. Additionally, the sulfides tend to
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concentrate along with Fe-Ti oxides (fig. 3). The dominant sulfides in the rocks of the
Panzhihua, Baima, Hongge and Taihe intrusions include pyrrhotite, pentlandite and
chalcopyrite, which occur as interstitial phases among the cumulus silicates and Fe-Ti
oxides (fig. 3). Sulfide blebs are in many places enclosed by magnetite crystals in the
magnetitite (fig. 3B). The pyrrhotite commonly displays pentlandite and magnetite
exsolutions (fig. 3D).

sampling and analytical methods
Samples of the Panzhihua intrusion were collected from the northern open-pit of

the Panzhihua mine (Song and others, 2013), and samples of the Hongge and Taihe
intrusions were collected from drill cores (Luan and others, 2014; She and others,
2014). All samples (�500–700 grams) were crushed using steel jaws and then milled to
200 mesh.

Platinum-group elements (Ir, Rh, Ru, Pt and Pd) were determined by isotope
dilution (ID)-ICP-MS using an improved digestion technique at the State Key Labora-
tory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of
Science. The analytical method is reliable and suitable for PGE analyses of mafic-
ultramafic rocks. The analytical procedure was described in detail in Qi and others
(2011) and summarized below: Ten grams of powdered samples and appropriate
amounts of isotope spike solutions enriched in 193Ir, 101Ru, 194Pt and 105Pd were
weighed and placed in a PTFE beaker for digesting. Subsequently, the digested
samples were used to pre-concentrate PGE by Te-co-precipitation. Last, the Te-
precipitates were dissolved with aqua regia and purified through a mixed ion exchange
column (a Dowex 50W X8 cation exchange resin and a P507 levextrel resin) for
analysis. Iridium, Ru, Pt, and Pd were measured using ICP-MS, whilst Rh was obtained
by external calibration using194 Pt as an internal standard (Qi and others, 2004).

The detection limits (DL) were calculated as three times the standard deviation of
four individual procedural blanks to range from 0.001 ng/g (Ir) to 0.012 ng/g (Pd),
and the total procedural blanks of this study vary from 0.001 ng (Rh) to 0.017 ng (Pd)
(table 1). Analytical results for the CCRMP (CANMET, Ottawa, Canada) certified
reference materials WGB-1, TDB-1 and UMT-1 agree well with the certified values and
results reported by Meisel and Moser (2004), Qi and others (2008, 2011) (table 1).
Four duplicates were analyzed and the repetition was good (table 1). PGE concentra-
tions of the analyzed Panzhihua, Hongge and Taihe rocks are listed in tables 2, 3 and 4,
respectively.

platinum-group element concentrations
In the primitive mantle-normalized PGE diagram (fig. 4), the PGE-rich layers and

sulfide-bearing rocks of the Xinjie Cycle I are featured by a more variable PGE
enrichment relative to the PGE-undepleted Emeishan high-Ti basalts. As for the
Panzhihua, Baima and Taihe layered intrusions, some LZ rocks contain similar PGE
patterns to the PGE-undepleted high-Ti basalts, whereas most of the MZ and UZ rocks
have PGE concentrations comparable to those of the PGE-depleted high-Ti basalts
(figs. 4B, 4C, 4E and 4F). It is also notable that some Hongge LZ and MZ rocks show a
relatively flat PGE pattern and slightly higher PGE concentrations than that of the
PGE-undepleted high-Ti basalts (fig. 4D). A few Taihe MZ and LZ samples show
positive Pt anomalies (figs. 4E and 4F).

The layered intrusive rocks exhibit good positive correlations among Pt, Pd, Ir and
Rh, although there is some scattering in the Ir data, when Ir concentration is �0.01
ppb (fig. 5). The Xinjie Cycle I rocks have significantly higher PGE concentrations
than the samples from the other layered intrusions and the PGE-depleted high-Ti
basalts (fig. 5). A few Taihe MZ and LZ samples show no correlation of Pt with Ir and
Pd (figs. 5A and 5C). Samples from the Panzhihua, Baima, Hongge and Taihe
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Fig. 3. Photomicrographs of sulfide minerals of the layered intrusions (reflected light). (A) Interstitial
sulfides between Fe-Ti oxide and silicate minerals in magnetite gabbro from the Panzhihua Lower Zone. (B)
Rounded pyrrhotite enclosed by magnetite in magnetitite from the Panzhihua Lower Zone. (C) Irregular
interstitial sulfides between cumulus olivine, plagioclase and Fe-Ti oxide in magnetite troctolite from the Baima
Lower Zone a. (D) Pyrrhotite with exsolution of magnetite and pentlandite in magnetite troctolite from the
Baima Lower Zone a. (E) Interstitial sulfides between Fe-Ti oxide and silicate minerals in magnetite clinopyroxen-
ite from the Hongge Lower Zone. (F) Pyrrhotite closely associated with magnetite in magnetite clinopyroxenite
from the Hongge Middle Zone. (G) Interstitial pentlandite and minor pyrrhotite assemblages in the Taihe Lower
Zone gabbro. (H) Interstitial pyrrhotite and pentlandite assemblages between the Fe-Ti oxide and silicate
minerals in apatite-magnetite clinopyroxenite from the Taihe Middle Zone. Sul � Sulfides; Po � Pyrrhotite; Pn �
Pentlandite; Mt � Magnetite; Ilm � Ilmenite; Spl � Spinel; Ol � Olivine; Pl � Plagioclase; Cpx � Clinopyrox-
ene; Ap � Apatite.
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intrusions show positive correlations between Ir, Pd and Cr, whereas there is a negative
correlation of Ir and Pd with Cr for the Xinjie samples (figs. 6A and 6B). It is also noted
that the samples from Panzhihua, Baima and Taihe show a positive Cu/Zr versus Cr
correlation, whereas samples from the Hongge MZ and LZ have large variation in
Cu/Zr and relatively constant Cr concentrations (fig. 6C). There is also a positive
correlation between Cu/Zr and PGE concentrations in the rocks from all the five
intrusions (fig. 6D).

The positive correlation is good between S and the metal concentrations (Ir, Pd,
Cu and Ni) for the Xinjie Cycle I rocks (fig. 7), yet such positive correlation is relatively
weak for the rocks from other intrusions, particularly, for those with relatively high Ni,
Ir and Pd concentrations (fig. 7). In the binary plots of total Fe2O3, TiO2 and V against
Pd and S, no discernible correlation is present in the Xinjie Cycle I samples (fig. 8).

Fig. 4. Primitive mantle-normalized platinum-group element patterns of rocks from the Xinjie,
Panzhihua, Baima, Hongge and Taihe intrusions. Normalized values are from Barnes and Maier (1999). The
values of the PGE-undepleted high-Ti basalt are from Zhong and others (2006), Qi and Zhou (2008) and
Song and others (2009), and the PGE-depleted high-Ti basalts are from Qi and others (2008) in the central
ELIP.
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Sulfur shows positive correlations with total Fe2O3, TiO2 and V for most of the rocks
from Panzhihua, Baima, Hongge and Taihe (figs. 8B, 8D and 8F). Most samples from
Panzhihua, Baima and Taihe have their Pd correlated positively with total Fe2O3, TiO2
and V, but not for the Hongge samples (figs. 8A, 8C and 8E).

Most of Xinjie Cycle I samples have Cu/Pd ratios (1.5�102-1.1�104) lower than or
equal to that of the primitive mantle (�104, Barnes and others, 1993) and the
PGE-undepleted high-Ti basalts (5.0�103-4.5�104) (fig. 9). In contrast, most samples
from Panzhihua, Baima and Taihe have much higher Cu/Pd (6.7�104-3.2�106) than
that the primitive mantle, and display similar Cu/Pd ratios (4.1�104-4.3�105) with the
PGE-depleted high-Ti basalt (fig. 9). It is also noteworthy that a few samples from the
Panzhihua, Baima and Taihe LZs have relatively low Cu/Pd (3.5�103-2.3�104) (fig.
9). Different from the others intrusions, most of the Hongge MZ and LZ samples have
lower Cu/Pd (5.1�103-7.7�104) than the UZ ones (3.2�105-8.1�105) (fig. 9).

discussion

PGE-depleted Parental Magmas and Prior Sulfide Removal
The occurrences of economic or sub-economic PGE-rich magnetitite layers have

been documented in the upper parts of the Skaergaard, Rio Jacare and Stalla
intrusions (Maier and others, 2003; Sa and others, 2005; Holwell and Keays, 2014).

Fig. 5. Binary plots of (A) Pt vs. Pd, (B), (C) and (D) Ru, Pt and Pd vs. Ir of rocks from the Panzhihua,
Baima, Xinjie, Hongge and Taihe intrusion, respectively.
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PGE enrichment in these intrusions was attributed to sulfide segregation along with
magnetite crystallization, led by the prolonged differentiation of an originally PGE-
undepleted magma (Andersen and others, 1998; Miller and Andersen, 2002; Maier
and others, 2003; Sa and others, 2005; Holwell and Keays, 2014). In the central ELIP,
the layered intrusions that host the giant Fe-Ti oxide deposits are co-magmatic with the
Emeishan high-Ti basalts, as evidenced by their age, geochemical and isotopic similari-
ties (Zhou and others, 2002, 2008; Zhong and others, 2004; Yu and others, 2015). Due
to the fact that PGEs are incorporated preferentially into sulfide liquids (Peach and
others, 1990; Mungall and Brenan, 2014) and disseminated sulfides always accumulate
with silicates and Fe-Ti oxides in these ELIP layered intrusions (fig. 3), whole-rock PGE
concentrations are much higher than PGE concentrations of the magmas, although
the cumulus silicates and Fe-Ti oxides are depleted in PGE. Copper and Zr are highly
incompatible in silicate minerals and would be concentrated in the residual magma.
Zirconium is a lithophile element and Cu is highly chalcophilic, and thus the Cu/Zr

Fig. 6. Binary plots of (A), (B) and (C) Ir, Pd and Cu/Zr vs. Cr, and (D) Cu/Zr vs. PGE of rocks from
the Panzhihua, Baima, Xinjie, Hongge and Taihe intrusion, respectively.
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ratio serves as a good proxy for chalcophile depletion in the magma (Lightfoot and
Hawkesworth, 1997). The positive correlation between Cu/Zr ratio and total PGE
concentrations in the layered intrusive rocks indicates that PGE are mainly trapped by
sulfides (fig. 6D). However, the Xinjie Cycle I rocks contain much higher PGE than the
rocks from the other intrusions, although they have comparable sulfur contents (fig.
7). Particularly, the Xinjie Cycle I rocks not only show higher PGE concentrations than
the PGE-undepleted high-Ti basalt but also display PGE enrichment relative to Ni and
Cu in the primitive mantle normalized patterns (fig. 4A). This indicates that the
sulfides of the Xinjie Cycle I were segregated from a PGE-undepleted parental magma.
In contrast, most of the rocks from the other layered intrusions, Panzhihua, Baima,
Taihe and Hongge (except for a few samples from the lower zones), are similar to the
PGE-depleted high-Ti basalts in PGE concentrations and show PGE depletion relative
to Ni and Cu (fig. 4), although the layered intrusion rocks contain minor sulfides (fig.
3). These features indicate that the sulfides in the Panzhihua, Baima, Taihe and
Hongge intrusions were segregated from PGE-depleted parental magmas.

The Xinjie Cycle I PGE-rich rocks have Cu/Pd lower than or equal to those of
the primitive mantle and the PGE-undepleted high-Ti basalts (Zhong and others,
2006; Qi and Zhou, 2008; Song and others, 2009) (fig. 9). In addition, the Xinjie
samples have Cu/Pd value and Pd concentration comparable with the PGE-rich
rocks of the Bushveld, Skaergaard, Rio Jacare and Stella intrusions (fig. 9) (Barnes

Fig. 7. Binary plots of Ir, Pd, Cu and Ni vs. S concentration of rocks from the Panzhihua, Baima, Xinjie,
Hongge and Taihe intrusion, respectively.
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and Maier, 2002; Maier and others, 2003; Sa and others, 2005; Ihlenfeld and Keays,
2011; Holwell and Keays, 2014), also indicating that the parental magma of the
Xinjie intrusion was sulfide-undersaturated (Zhong and others, 2011a). In con-
trast, most of the Panzhihua, Baima, Hongge and Taihe rocks have distinctly higher
Cu/Pd than the primitive mantle, and are plotted on the same trend as the
PGE-depleted high-Ti basalts (Qi and others, 2008) (fig. 9). Qi and others (2008)

Fig. 8. Binary plots of whole-rock Fe2O3 (total), TiO2 and V vs. Pd and S concentrations of rocks from
the Panzhihua, Baima, Xinjie, Hongge and Taihe intrusion, respectively.
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suggested that the PGE-depleted Emeishan high-Ti basalts may have experienced
weak sulfide segregation before the eruption. It is also notable that the Cu/Pd of
these ELIP intrusions is similar to or higher than that of the Bushveld Upper Zone
PGE-depleted rocks, which was suggested to have formed from the PGE-depleted
residual magma due to early sulfide segregation in the lower part of the intrusion
(Barnes and others, 2004). Therefore, PGE depletion and high Cu/Pd of the
Panzhihua, Baima, Hongge and Taihe intrusions indicate that their parental
magmas had undergone prior sulfide removal before their final emplacement.

Cause of Deep-level Sulfide Removal
Experimental studies have shown that sulfur solubility of mafic magmas increases

with decreasing pressure and therefore mantle-derived magma could not achieve
sulfide saturation itself during ascent (Mavrogenes and O’Neill, 1999; Holzheid and
Grove, 2002). Possible mechanisms of sulfide saturation previously proposed include
magma mixing, external sulfur input and fractional crystallization (Campbell and
others, 1983; Naldrett and others, 1986; Andersen and others, 1998; Barnes and Maier,
2002; Ripley and Li, 2003; Barnes and others, 2008; Keays and Lightfoot, 2010; Holwell
and Keays, 2014).

Due to similar solubility of sulfur, mixing of two mafic magmas could not lead to
sulfide saturation (Li and Ripley, 2005; Ripley and Li, 2013). Mixing a mafic magma
with a felsic magma or addition of SiO2 is considered to be capable to induce sulfide
saturation (Irvine, 1975; Li and Naldrett, 2000; Naldrett and others, 2012). In the
ELIP, although large granitoid plutons occur around the layered intrusions, crosscutting

Fig. 9. Plot of Cu/Pd vs. Pd for rocks from the Panzhihua, Baima, Hongge, Taihe and Xinjie intrusions.
The red dashed curves which extend from an initial point at 13 ppb Pd and 200 ppm Cu represent the
mixing lines between the cumulus phases and sulfides at different R-factors. Sulfide compositions were
calculated using the equilibrium fractionation equation (Campbell and Naldrett, 1979) assuming sulfide
melt-silicate melt partition coefficients of 1000 for Cu and 200000 for Pd (Peach and others, 1990; Mungall
and Brenan, 2014). Fields of other PGE-enriched layered intrusion are from Barnes and Maier (2002),
Maier and others (2003), Barnes and others (2004), Sa and others (2005), Ihlenfeld and Keays (2011) and
Holwell and Keays (2014).
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relationships suggest that they are younger than the mafic-ultramafic layered intru-
sions (Xu and others, 2008; Zhong and others, 2011b; Zhang and others, 2012; She
and others, 2014). Addition of SiO2 to mafic magma favors crystallization of orthopy-
roxene and plagioclase over olivine or clinopyroxene (Irvine, 1970; Sparks, 1986). The
ELIP layered intrusions are characterized by the absence of orthopyroxene (Zhong
and others, 2002, 2011a; Zhou and others, 2005; Zhang and others, 2012), which
suggest that sulfide saturation caused by magma mixing was unlikely.

Incorporation of external sulfur via crustal contamination is considered to be an
important sulfide saturation mechanism (Keays, 1995; Ripley and Li, 2003; Keays and
Lightfoot, 2007, 2010). Nevertheless, the narrow Sr-Nd isotope variations at Panzhi-
hua, Baima and Taihe suggest that crustal contamination was insignificant (�5%) (fig.
10). This is consistent with the mantle-like �18O signature of the magmas in equilib-
rium with clinopyroxene in the layered intrusions (mean �18Omelt: Panzhihua �
6.1‰, Baima � 5.7‰ and Taihe � 5.9‰) (Yu and others, 2015). In contrast, the
Sr-Nd isotopes (εNd260: 	2.82 to 0.49; (87Sr/86Sr)i: 0.7057 to 0.7076) and oxygen
isotope (�18Omelt: 5.8 to 7.1‰) for the Hongge rocks indicate a slightly higher degree
of crustal contamination (Luan and others, 2014; Yu and others, 2015) (fig. 10), which
may have induced the sulfide saturation.

Sulfur is strongly incompatible with silicates and oxides, and extensive fractional
crystallization could result in sulfur enrichment in the residual magma and eventually
sulfide saturation. In sulfide-undersaturated magma, elements for example Cr, Ni, Ir,
Ru, Rh and Pt are likely to be partitioned into chromite, olivine and pyroxene, whereas
Cu, S and Pd are likely to remain in the residual magma (Duke, 1976; Peach and

Fig. 10. Binary plot of εNd(t) value vs. (87Sr/86Sr)i ratio of rocks from the Panzhihua, Baima, Hongge,
Xinjie and Taihe intrusions. The calculated parameters of Nd (4.4 ppm), εNd(t) (
7), Sr (102 ppm)
and (87Sr/86Sr)i (0.704) are from picrite in northern Vietnam as primary magma (Wang and others, 2007).
The Yangtze upper and middle crust data are from Chen and Jahn (1998). The numbers indicate the
percentages of participation of the crustal materials.
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others, 1990, 1994; Hauri and others, 1994; Crocket and others, 1997; Righter and
others, 2004 and references therein). The PGE mineralization in the upper parts of the
Skaergaard, Sonju Lake, Stella, Rincon del Tigre and Rio Jacare intrusions is suggested
to have resulted from weak sulfide segregation triggered by prolonged fractionation of
mafic magma, as demonstrated by the relatively small amount of sulfides (�0.5%),
which are richer in Cu and Pd than Ni and Pt (Andersen and others, 1998; Prender-
gast, 2000; Maier and others, 2003; Sa and others, 2005; Holwell and Keays, 2014). The
forsterite content (Fo value) of olivine in the Panzhihua (Fo61-81), Baima (Fo55-75),
Hongge (Fo72-82) and Taihe (Fo62-75) rocks are markedly lower than that of the olivine
phenocrysts (Fo88-92) of the Emeishan high-Ti picrites (Pang and others, 2009; Zhang
and others, 2011, 2012; Bai and others, 2012a; She and others, 2014; Zhang and others,
2006; Kamenetsky and others, 2012). This observation indicates that the parental
magmas may have experienced extensive fractional crystallization before entering the
layered intrusions (Pang and others, 2009; Song and others, 2013 and references
therein). Furthermore, in sulfide-saturated magma, PGE, Cu and Ni are preferentially
concentrated in the sulfide liquid (Peach and others, 1990, 1994; Crocket and others,
1997). Yttrium is incompatible with all silicates and oxides and sulfide liquid, whereas
Cr is compatible with mafic silicates and oxides (Hauri and others, 1994; Nielsen and
others, 1992; Bindeman and others, 1998; Klemme and others, 2006). Fractionation of
olivine, clinopyroxene and chromite from mafic magma would increase Y/Cr and
decrease Pd/Y. In contrast, the removal of sulfide liquids resulting from external sulfur
addition would decrease Pd/Y without changing Y/Cr. Thus, the negative Pd/Y versus
Y/Cr correlation for the Panzhihua, Baima, Taihe and Hongge samples suggests that
the deep-level sulfide saturation and segregation were mainly attributed to fraction-
ation of mafic silicates and chromite (fig. 11).

The sulfur content at sulfide saturation (SCSS) in the magma is mainly controlled
by temperature, pressure and magma compositions (Mavrogenes and O’Neill, 1999; Li
and Ripley, 2005, 2009). Using the melt inclusion composition in the Emeishan
high-Ti picrite olivine phenocryst (Fo�88, Kamenetsky and others, 2012) as a starting
composition, the MELTS modeling indicates that the sulfur content in the evolving
magma increases with fractional crystallization of spinel, olivine, and clinopyroxene
(fig. 12). According to the equation of Li and Ripley (2009), SCSS decreases progres-
sively with fractional crystallization of the primary magma (fig. 12). Calculation shows
that sulfide saturation in the evolving magma is achieved by 43 percent fractionation of
spinel, olivine and clinopyroxene in the deep crust if no external sulfur is involved (fig.
12). It is also noticed that the Hongge rocks have relatively low εNdt and (87Sr/86Sr)I,
indicating a modest degree of crustal contamination (fig. 10). Luan and others (2014)
and Yu and others (2015) suggested that the parental magma of the Hongge intrusion
were most likely contaminated by the footwall meta-sandstone. Therefore, prior sulfide
removal at depth before the magma entered the Hongge intrusion probably resulted
from fractionation of mafic minerals.

Second-stage Sulfide Saturation in the Layered Intrusions
Experiments and theoretical calculations indicated that Ir is strongly compatible

to chromite in sulfide-undersaturated mafic magma, whereas Pd is much less compat-
ible (Barnes and Picard, 1993; Brenan and others, 2003, 2005, 2012; Page and others,
2012). Thus, chromite fractionation may result in differentiation between IPGEs and
PPGEs in the magma. If the rocks contain sulfides, PGE concentration would be mostly
controlled by the sulfide phases due to the extremely high sulfide/silicate partition
coefficients (Peach and others, 1990, 1994; Crocket and others, 1997; Barnes and
others, 2006; Mungall and Brenan, 2014). As shown in figure 5, there are good positive
correlations of Ir with Ru, Pt and Pd in the Panzhihua, Baima, Hongge, Taihe and
Xinjie rocks, which indicate no differentiation between IPGEs and PPGEs and that
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PGE are mainly hosted by sulfides. Thus, Ir, Pd, Cu and Ni in each of these ELIP
intrusions are broadly positively correlated with S (fig. 7). This is consistent with the
occurrences of the sparsely disseminated sulfides in the Panzhihua, Baima, Hongge,
Taihe and Xinjie intrusions (fig. 3). The positive correlation of Cr with Pd in the
Panzhihua, Baima, Hongge and Taihe intrusive rocks (fig. 6B) indicates that the PGE
concentrations are unlikely to be controlled by chromite because Pd is incompatible
with chromite (Peach and others, 1990, 1994). The negative correlations of Cr with Ir
and Pd in the Xinjie Cycle I rocks (figs. 6A and 6B) may be ascribed to the upgrading of
PGE in the sulfides via reaction with PGE-undepleted magmas (Zhong and others,
2011a). Upgrading PGE of the sulfides in the Xinjie Cycle I rocks containing much
higher PGE than the rocks of the other ELIP layered intrusions with comparable
Cu/Zr ratios and sulfur contents (figs. 6D and 7).

In the Panzhihua, Baima, Hongge and Taihe intrusions, the Fe-Ti oxide-rich
layers contain higher sulfide contents (1–3%) than the oxide-poor intrusions (�1%),
indicating a close relationship between sulfide segregation and Fe-Ti oxide accumula-
tion (fig. 3), as also evidenced by the positive correlations of S with total Fe2O3, TiO2
and V (figs. 8B, 8D and 8F). Moreover, Pd concentration correlates positively with total
Fe2O3, TiO2 and V in most of the Panzhihua, Baima, Hongge and Taihe rocks, also
suggesting that sulfide liquid immiscibility and Fe-Ti oxide fractionation is genetically
linked (figs. 8A, 8C and 8E).

Fig. 11. Plot of Pd/Y vs. Y/Cr ratios of rocks from the Panzhihua, Baima, Xinjie, Hongge and Taihe
intrusions.
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Experimental studies indicated that sulfur solubility of mafic magma decreases
with decreasing Fe2
 content and temperature at a constant pressure (Wendlandt,
1982; Mavrogenes and O’Neill, 1999). Crystallization of Fe-Ti oxides significantly
reduces the Fe2
 content of magma, along with its sulfur carrying capacity that may
lead to sulfide immiscibility. In addition, Jugo and others (2005) and Jugo (2009)
concluded that small fO2 changes could strongly affect the sulfur content at sulfide
saturation (SCSS). Under reducing conditions (fO2�FMQ), sulfides account for � 95
percent of the total sulfur species in the silicate melt. Sulfate ions (S6
) would be
reduced to sulfide ions (S2	) under the sharp fO2 drop led by magnetite crystallization
(Jugo, 2009). This process increases proportionally the S2	 in the silicate magma and
could trigger sulfide saturation. Consequently, we suggest that the Fe (Fe2
 and Fe3
)
decreases due to Fe-Ti oxide crystallization may have caused a second-stage sulfide
immiscibility in the layered intrusions.

Sulfide droplets and Fe-Ti oxide crystals in the Panzhihua, Baima, Hongge, and
Taihe intrusions were precipitated together and accumulated at the Fe-Ti oxide-rich
layers of the intrusions. In contrast, in the PGE-rich Xinjie Cycle I rocks, S and Pd do
not correlate positively with total Fe2O3t, TiO2 and V (fig. 8), indicating that the sulfide
immiscibility was unlikely to be led by Fe-Ti oxide crystallization. This model is
consistent with the negative correlations of Ir and Pd with Cr in the Xinjie Cycle I rocks
(figs. 6A and 6B). The same conclusion is also reached by the lack of Cu/Zr versus Cr

Fig. 12. Variations of sulfur content at sulfide saturation (SCSS) and sulfur content in evolving magma.
The melt inclusion data in high-Ti picrite olivine phenocryst (Fo�88) were taken as the starting composition
(Kamenetsky and others, 2012). Fractional crystallization was simulated using the MELTS program of
Ghiorso and Sack (1995) at 5 kbar and under the assumed oxidation state of FMQ buffer. The SCSS curve is
generated using the equation of Li and Ripley (2009). The initial sulfur content in the magma is assumed to
be 1300 ppm (Kamenetsky and others, 2012). Ol, olivine; Sp, spinel; Cpx, clinopyroxene; Mt, titanomagne-
tite; Pl, plagioclase; Ap, apatite.
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correlation in the Xinjie rocks (fig. 6C). Zhong and others (2004) showed that the
Xinjie Cycle I rocks have relatively low εNd260 values (	4.11 to 2.79) and high
(87Sr/86Sr)i ratios (0.7056 to 0.7074) (fig. 10). This indicates that the sulfide saturation
associated with the Xinjie Cycle I PGE mineralization was likely to be triggered by
variable degrees of crustal contamination.

Sulfide PGE-upgrade and Deep-level PGE Mineralization Potential
The R-factor, as defined by Campbell and Naldrett (1979), is the mass ratio of

silicate to sulfide liquids during sulfide saturation. Due to the large partition coeffi-
cients of PGE between sulfide and silicate melt, Campbell and Naldrett (1979)
emphasized the influence of the high R-factor on the significant PGE mineralization in
mafic-ultramafic intrusions. Compositions of the immiscible sulfide liquid could be
modeled using the equilibrium fractionation equation (Campbell and Naldrett, 1979):

Yi � Xi
oDi

sul/sil(R
1)/(R
Di
sul/sil) (1)

where Xio is the initial concentrationwhere Xi
o is the initial concentration of i in

silicate liquid, Di
sul/sil is the partition coefficient of i between silicate and sulfide liquid,

and Yi the is concentration of i in the sulfide liquid, and R is the R-factor. It is assumed
that the parental magma of the Xinjie Cycle I rocks is compositionally similar to the
Emeishan high-Ti basalt, which contains 13 ppb Pd and 200 ppm Cu (Song and others,
2009). A DPd

sul/sil of 200000 is used for the modeling (Mungall and Brenan, 2014).
Calculations show that the PGE-rich Xinjie Cycle I samples are plotted in the 0.5 to 2
percent sulfide (R-factors: 1000 to 10000) field in the Cu/Pd versus Pd diagram (fig.
9). Reaction between sulfide droplets and PGE-undepleted magma is very important
for PGE mineralization in layered intrusions (Kerr and Leitch, 2005; Naldrett and
others, 2009). The large variations of R-factors (1,000 to 10,000) and the low Cu/Pd
ratios (mostly � 104) in the Xinjie Cycle I rocks indicate metal upgrading of the
sulfides via reactions with PGE-undepleted magmas (fig. 9). Moreover, the Pd/Y
variation is large under a relatively constant Y/Cr for the Xinjie Cycle I samples (fig.
11), suggesting an increase of PGE concentration in a lowly-fractionated magma. Such
high PGE concentrations are ascribed to PGE-undepleted magma replenishments,
which reacted with the pre-existing sulfide droplets to upgrade the concentrations
of PGE.

Apart from the Xinjie Cycle I PGE-rich layers , economic PGE deposits were also
documented in the Jinbaoshan intrusion (260�3 Ma) south of Panzhihua (fig. 1) (Tao
and others, 2009). The Jinbaoshan deposit is the largest PGE deposit in China, and
contains �45 tons of Pt 
 Pd ores with grades of 1 to 5 ppm (locally up to 17 ppm)
(Tao and others, 2007). Sub-economic PGE mineralization also occurs on the margins
of the Zhubu (261�2 Ma) and Abulangdang (262�2 Ma) intrusions (Zhou and
others, 2008; Tang and others, 2013; Wang and others, 2014). All of these PGE-
mineralized intrusions in the central ELIP show that the sulfide concentration and
PGE mineralization occurred in the ultramafic parts of an open magma chamber (Tao
and others, 2007; Tang and others, 2013; Wang and others, 2014). The presence of a
periodic magma-plumbing system is also indicated by the rhythmic cycles composed of
oxide-rich layers and oxide-barren gabbros at Panzhihua, Baima, Hongge and Taihe
(Pang and others, 2009; Zhang and others, 2012; Song and others, 2013; Liu and
others, 2014; Luan and others, 2014; She and others, 2016). As discussed above, the
early-stage sulfide removal along with mafic silicates and minor chromite fractionation
may have occurred in deep-seated magma chambers (fig. 12). The relatively high PGE
concentrations at a comparable S content in some of Panzhihua LZ, Baima LZa, Taihe
LZ, and Hongge LZ and MZ samples (fig. 7) suggest that the large PGE variation may
not be associated with any in situ sulfide settling in these intrusions. Holwell and others
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(2014) proposed that sulfide saturation may have occurred at depth in the River Valley
intrusion of Canada, where the sulfide droplets may have been subsequently entrained
into a major pulse of magma and then settled in a staging magma chamber within a
conduit system. Similarly, the more PGE-rich Panzhihua LZ, Baima LZa, Taihe LZ, and
Hongge LZ and MZ samples may have formed in the early-stage segregation of sulfide
droplets at depth, which were then entrained into later magma pulses to be settled in
the present sites. A few Taihe MZ and LZ samples show no correlation of Pt with Ir and
Pd (fig. 5A and C), and the presence of positive Pt anomalies in primitive mantle-
normalized patterns (figs. 4E and 4F). This indicates the crystallization of discrete
Pt-rich minerals (for example, sperrylite) from the PGE-rich sulfide droplets, and thus
points to a deeper-level PGE mineralization potential. The Xinjie intrusion has �698
Mt of Fe-Ti oxide ores with grades of �22 weight percent Fe (Wang and others, 2008),
indicating a large volume of magma (compared with �9 wt% Fe of Emeishan high-Ti
basalts). The huge Fe-Ti oxide ore reserves at Panzhihua (�1330 Mt at �33 wt% Fe),
Baima (�1479 Mt at �27 wt% Fe), Hongge (�4572 Mt at �26 wt% Fe) and Taihe
(�1300 Mt at �33 wt% Fe) suggest that the deep-seated magma chambers beneath
these intrusions must be very large. Mass balance calculation indicates that the
magmatic volume at Panzhihua, Baima, Hongge and Taihe are 2.6 to 7.7 times greater
than that at Xinjie. Thus, there is potential for discovering PGE mineralization at
greater depth (than the present prospecting level) in these central ELIP intrusions.

conclusions
Parental magmas of the Panzhihua, Baima, Hongge and Taihe intrusions are

PGE-depleted due to early and deep-level sulfide removal from the primary magmas.
Extensive fractional crystallization of mafic silicates and chromite may have led to this
prior sulfide segregation at deep-seated magma chambers in a periodic magma-
plumbing system. Subsequently, the evolved magmas may have entered the shallower
Panzhihua, Baima, Hongge and Taihe magma chambers and experienced a second-
stage sulfide saturation, which resulted from extensive Fe-Ti oxide crystallization and
the consequent decrease in. Crustal contamination may have triggered sulfide satura-
tion for the less evolved and Fe-Ti oxide-barren rocks in the lower part of the Xinjie
intrusion. Formation of the Xinjie PGE-rich rocks may have been ascribed to high
R-factors and to sulfide PGE-upgrading via reaction with the newly-replenished PGE-
undepleted magmas. Potential for more PGE mineralization may lie at deeper level in
the central ELIP.
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Sá, J. H. S., Barnes, S.-J., Prichard, H. M., and Fisher, P. C., 2005, The distribution of base metals and
platinum-group elements in magnetitite and its host rocks in the Rio Jacaré Intrusion, Northeastern
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