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Recent advances in engineered biochar productions
and applications

Bing Wang a,b, Bin Gaob, and June Fangb

aState Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of
Sciences, Guiyang, China; bDepartment of Agricultural and Biological Engineering, University of Florida,
Gainesville, Florida, USA

ABSTRACT
Biochar is mainly used as a soil amendment and for carbon
sequestration; while other applications such as environmental
remediation may be equally important. Recently, different
engineering methods have been developed and used to expand
biochar’s applications. A systematic literature review on the
linkages between the production methods and applications of
engineered biochar, therefore, is in critical need. In this work,
the production and application prospects of engineered biochar
are reviewed comprehensively based on the current literature.
The application values and effect of engineered biochar in
energy, environment, and agriculture are also expounded.
Different from previous ones, this review is more focused on the
unique properties and functions of various types of engineered
biochars to explain their potential application, particularly
environmental application. It not only summarizes recent
advances in engineered biochar technology but also offers
insights on new directions for development and research of
engineered biochar in the future.

KEYWORDS
Biochar; modification;
environmental applications

1. Introduction

Biochar is a porous carbonaceous solid material with a high degree of aromatiza-
tion and strong antidecomposition ability that is produced by the decomposition
of biomass from plant or animal waste under limited oxygen conditions
(Lehmann, Gaunt, and Rondon, 2006; Lehmann and Joseph, 2009). It is a carbon-
rich organic continuum. Biochar has a large specific surface area, is porous, and
contains hydroxyl, carboxyl, carbonyl and other functional groups. It can be used
to remove or reduce organic and inorganic contaminants in water, such as toxic
heavy metals, dyes, and antibiotics (Ahmad et al., 2014; Inyang et al., 2016; Raja-
paksha et al., 2014; Tan et al., 2015). As a new type of adsorbent, biochar has been
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applied to improve the sustainability of the environment, agriculture, and energy
(Laird, 2008; Lehmann and Joseph, 2009).

Biochar is produced from a wide range of raw materials, and it has a porous struc-
ture and negative surface functional groups. Usually, pristine biochar has lower
adsorption capacity than activated biochar to contaminants in aqueous solutions,
particularly highly concentrated wastewater. Besides, because of its low density and
small particle size, pristine biochar is not easy to separate from water, which largely
limits its application (Tan et al., 2016). To maximize the adsorption capacity of bio-
char and its application in different areas, different engineering methods have been
developed and used in water treatment and soil remediation, as well as energy stor-
age. The creation of activated or modified styles of biochar is called biochar engi-
neering (Ok, Chang, Gao, and Chung, 2015). Engineered biochar is the derivative of
pristine biochar that is modified by physical, chemical and biological methods to
improve its physical, chemical and biological properties (e.g., specific surface area,
porosity, cation exchange capacity, surface functional group, pH etc.) and its adsorp-
tion capacity compared to pristine biochar (Mohamed, Ellis, Kim, Bi, and Emam,
2016; Rajapaksha et al. 2016; Yao et al., 2013b). While biomass-derived activated car-
bon can be counted as one type of engineered biochar, the definition of engineered
biochar is much broader. Most of the biochar engineering methods are more conve-
nient or less expensive than the typical carbon activation processes.

Previous literature has reviewed common modification methods for the produc-
tion of engineered biochar (Rajapaksha et al., 2016). Based on the previous studies,
this work included the recent advance of novel engineered methods for biochar
modification, including ball milling, microwave modification, biological modifica-
tion, etc. In terms of applications, while the focus of this work was on the environ-
mental application, it also complemented the use of agriculture and energy storage
and saving for environmental sustainability. In the end, it also pointed out the
future direction of engineered biochar, such as carrying out risk assessments before
engineered biochar is used for environmental application, as its fate in environ-
mental systems such as soil and water issues to be concerned about. The overarch-
ing objective of this review is to summarize the latest methods of modification of
different biochars, the adsorption mechanisms for different organic and inorganic
pollutants, and the potential for application in different areas. It is anticipated that
this work would set up a bridge to connect laboratory tests and practical applica-
tions to promote the research and development of biochar technology.

2. Engineered biochar production

The properties of engineered biochar are largely affected by the pyrolysis process,
feedstocks, and modification methods (Sun et al., 2014; Wang et al., 2015f). A vari-
ety of feedstocks from forestry and agricultural residues have been used to produce
engineered biochar. However, very little is known about the effect of production
conditions on engineered biochar (Mayer et al., 2014). Understanding the
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influence of production conditions on the characteristics and long-term stability of
biochar obtained from pyrolysis is critical for the development of specifically engi-
neered biochar (Crombie and Ma�sek, 2015). The adsorption properties of the
modified biochars are largely determined by the pore structure characteristics, sur-
face functional groups, and specific surface area. Therefore, according to different
application requirements, the research and development of different engineered
biochar that can improve its environmental application have become the main
focus of the present research. Properties of feedstocks, preparation methods, and
processes parameters can change the performance of modified biochar adsorbents
(Tripathi, Sahu, and Ganesan, 2016). Therefore, the pore structure of the carbona-
ceous adsorbent can be controlled to a certain extent by selecting specific feed-
stocks or modifying the raw material through either biological, chemical or
physical modification or a chemical–physical combination method (Figure 1).

2.1 Biological modification

Biological modification of biochar is to produce engineered biochar from biologically
pretreated biomass feedstocks through anaerobic digestion or bacterial conversion
(Inyang, Gao, Pullammanappallil, Ding, and Zimmerman, 2010, 2011; Yao, Gao, Wu,
Zhang, and Yang, 2015, 2017). Anaerobic digestion and bacterial conversion technolo-
gies are the most effective ways to realize resource utilization of biomass waste (Appels
et al., 2011; Inyang et al., 2010; Yao et al., 2015). Biomass anaerobic digestion is the
use of anaerobic bacteria in the conversion of organic matter to biogas and digestate.
Bacteria such as engineered strains of Escherichia coli have also been used to produce
biofuel and bioproduct from cellulosic biomass. Economic value is generated from
these processes (Holm-Nielsen, Al Seadi, and Oleskowicz-Popiel, 2009; Yao et al.,
2015). Biochar produced from the pyrolysis of anaerobically digested residue has been
proposed as a beneficial product that could be obtained from digestion residuals
(Inyang et al., 2011, 2012; Monlau, Sambusiti, Antoniou, Barakat, and Zabaniotou,

Figure 1. Typical engineered biochar production methods.
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2015; Streubel, Collins, Tarara, and Cochran, 2012; Yao et al., 2011a, 2015, 2017). Pre-
vious studies have suggested that anaerobic digestion could be used as a new post
modification method to create high-efficiency carbon-based sorbents for heavy metals
and cationic methylene blue dye (Inyang et al., 2011, 2012; Sun, Wan, and Luo,
2013b) (Table 1). After anaerobic digestion and pyrolysis, the digested biochar showed
higher pH, surface area, CEC, anion exchange capacity (AEC), and hydrophobicity as
well as a more negative surface charge than pristine biochar because the digestion pro-
cess can alter the redox potential and pH values of the feedstock biomass (Inyang
et al., 2010). The improvement of CEC and AEC suggests the possibility of using bio-
logically activated biochar as ion exchangers that may sequester both positively and
negatively charged ions from water. After anaerobic digestion, the zeta potential of all
the samples was negative, indicating strongly negatively charged surfaces and func-
tional groups that might facilitate the deposition of cations onto these sorbents. The
previous study has found that anaerobic digestion enhances the heavy metals and
phosphate adsorption ability of biochar produced from digested sugar beet tailings,
bagasse, and dairy waste residue relative to undigested ones (Inyang et al., 2011, 2012;
Yao et al., 2011, 2011a, b). Therefore, this method has been used to modify biochar for
use in environmental remediation.

2.2 Physical modification

Generally, the widely used physical modification methods for biochar include steam/
gas activation, magnetic modification, microwave modification, and ball milling.
Physical modification improves pore structure, introduces oxygenic functional
groups, and offers advantages over chemical modification since physical modifica-
tion agents are clean and easy to control (Qian, Kumar, Zhang, Bellmer, and
Huhnke, 2015). The physical modification increases the adsorption capacity of mod-
ified biochar to heavy metal elements, nutrient elements, and organic pollutants by
increasing the specific surface area and creating more micropores and mesopores on
biochar. The advantages of physical modification include no added impurities and
low cost. The basic characteristics of modified biochars produced from different
physical modification treatments and their applications are listed in Table 2.

2.2.1 Steam/gas activation
To enhance the adsorption capacity of biochar, steam/gas activation turned out to
be effective. A technical steam activation of biochar was found to accelerate its pos-
itive effects on nutrient retention and uptake by plants relative to nonactivated bio-
char (Borchard et al., 2012). Steam activation exhibited almost double the positive
effects of biochars in all instances, thus being an interesting option for future bio-
char applications. Steam/gas activation is usually used for making activated carbon,
which is normally made by carbonization and modification using steam or CO2

(Ahmadpour and Do, 1996; Fang, Gao, Zimmerman, Ro, and Chen, 2016). During
carbonization, steam/gases open and develop the porosity of the carbonized
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material at temperatures ranging from 700 to 1100�C (Dias, Alvim-Ferraz,
Almeida, Rivera-Utrilla, and S�anchez-Polo, 2007). This makes the carbonized
material have developed porosity, large surface area, variable characteristics of sur-
face chemistry, and a high degree of surface reactivity (Dias et al., 2007). Now the
technology has been adopted for making engineered biochar (Azargohar and
Dalai, 2008). The steam/gas activation method involves pyrolyzing biochar at a
certain temperature with water vapor, carbon dioxide, air, etc. Many studies have
shown the surface area and porosity largely improved after modification (Chang,
Chang, and Tsai, 2000; Mangun, Benak, Economy, and Foster, 2001). Usually, the
surface area of biochar correlates with its degree of pyrolysis, while the develop-
ment of the porosity and internal surface area is dependent on the modification
operating conditions (Azargohar and Dalai, 2008). Steam activated biochar nearly
doubled the surface area while decreasing the polarity by degrading the carboxyl
and phenol functional groups (Shim, Yoo, Ryu, Park, and Jung, 2015). Modifica-
tion processes and operating conditions largely affect the characteristics of biochar
(Azargohar and Dalai, 2008), including the internal surface area and large yield.
Steam-activated biochars at 700�C had a larger surface area and pore volume com-
pared to their nonactivated counterparts (Rajapaksha et al., 2015). Surface areas
increased with modification from negligible to 136–793 m2 g¡1 of material, with
concomitant pore development (Lima, Boateng, and Klasson, 2010).

The steam/gas activated biochars have been applied for the removal of many
contaminants, such as heavy metals (Ippolito et al., 2012b; Shim et al., 2015), anti-
biotics (Mondal, Aikat, and Halder, 2016; Rajapaksha et al., 2015) and greenhouse
gases (Fungo et al., 2014). Steam activation showed a pronounced effect on biochar
properties that played significant roles in determining sulfamethazine sorption
capacities. The maximum sulfamethazine sorption capacity of 33.81 mg g¡1 was
observed at the lowest pH value for tea waste biochars after steam activation (Raja-
paksha et al., 2014). The metals adsorption capacity of modified biochar was influ-
enced by the modification strategy, increasing for longer modification times and
higher water flow rates, in the presence of a single metal solution (Lima and Mar-
shall, 2005). Lima and Marshall showed that the greatest Cu(II) sorption (93%)
was obtained when the biochar was activated under a specific steam flow rate
(Lima and Marshall, 2005). Steam-activated biochar showed good performance for
Hg removal in the field test (De, Azargohar, Dalai, and Shewchuk, 2013). Mean-
while, CO2–ammonia treatment combines the advantages of both CO2 modifica-
tion and ammonification. The presence of CO2 in CO2–ammonia treatment can
promote ammonification (Zhang et al., 2014c). The surface area of biochar was
increased significantly by CO2 modification, while N-containing compounds on
the char surface were enriched obviously by NH3 modification. As an effective
modified method, steam/gas activation can be used in industrial production of
engineered biochars; however, this method may also have some drawbacks due to
biochar’s strong heterogeneity, such as difficulty to control the reaction tempera-
ture, nonuniform activation, and local overheating (Foo and Hameed, 2011).
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2.2.2 Microwave modification
Microwaves have been used in various technological and scientific fields to heat dielec-
tric materials. Microwave pyrolysis is based on the research of traditional pyrolysis to
take advantages of the development of microwave heating technology. Microwaves are
high-frequency electromagnetic waves at frequencies ranging from 300 MHz to
300 GHz, which can penetrate biomass and send energy rapidly to the functional
groups of the reactants. Microwave pyrolysis is a relatively new pyrolysis technique
which provides many advantages over conventional processes, as it is often more con-
trollable as well as energy and cost efficient (Ma�sek et al., 2013; Morgan et al., 2017). It
can overcome the disadvantages of conventional pyrolysis methods such as slow pyrol-
ysis and the necessity of shredding feedstock into smaller sizes (Zhao et al., 2010).
Because microwave modification is rapid and efficient and allows for a uniform inter-
nal temperature distribution, it is more efficient than conventional pyrolysis. Thus,
microwave modification could produce biochar with more functional groups and
higher surface area than those produced through conventional pyrolysis (Wan et al.,
2009). It was reported that the highest biochar yield was >60 wt% and the maximum
BET surface area was about 450–800 m2 g¡1 for biochar from microwave-assisted
pyrolysis. Various types of biomass have been used to produce biochar which is heated
in a microwave field in a chemically inert atmosphere. Microwave pyrolysis can pro-
duce efficient biochar at low temperature (300�C) and increase soil water holding
capacity (WHC) and CEC (Mohamed et al., 2016). Physical properties and stability of
produced biochar from microwave systems and slow pyrolysis have been analyzed
and compared by Ma�sek et al (Ma�sek et al., 2013), who found that microwave pyroly-
sis can occur even at temperatures of around 200�C, while in the case of conventional
pyrolysis, a higher temperature and residence time was required to obtain similar
results. Thus, microwave pyrolysis biochar shows a better stability than the conven-
tional pyrolysis one. Microwave pyrolysis was also innovatively explored in pretreat-
ment and graft reaction to modify the low-cost and recyclable jute in order to enhance
heavy metal removal (Du, Zheng, Wang, Hao, and Wang, 2016). Microwave modified
biochar has been used to absorb mercury (Shen et al., 2015). The previous study has
been suggested that microwave modification enhanced the Hg0-removal capacity of
the sorbents, whereas chemisorption of Hg0 was the main reaction (Li et al., 2015a).
Microwave-induced pyrolysis is possible if the raw material is mixed with an effective
receptor of microwave energy such as carbon or certain metal oxides (Men�endez,
Inguanzo, and Pis 2002, Men�endez, Domı�enguez, Inguanzo, and Pis, 2004). Recently,
some studies added target chemicals to activated biochar during the process of micro-
wave pyrolysis and achieved good results (Men�endez et al., 2004). Therefore, a future
development trend will be adding other pharmaceutical reagents for modification dur-
ing the microwave pyrolysis process (Li et al., 2015b; Mohamed et al., 2016).

2.2.3 Ball milling
Ball milling is a powerful none equilibrium processing method to refines the grain size
of solids, which can provide a common and simple way to modify carbon materials
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for improved properties (Lyu et al., 2017). Ball milling can grind samples including
biochar into a powder, which decreases the particle size and increases the specific sur-
face area, thus increasing the potential adsorption sites for organic and inorganic ions
(Cai et al., 2016; Lyu et al., 2018a, 2018b). Ball milling is conducted through either
physical or chemical means, with each method modifying biochar in different ways.
Physical ball milling is used to modify the particle size and surface area, while chemical
ball milling is used to modify the functional groups (i.e., through chemical reactions
during the milling) in addition to the modification of surface area and micropores.
Since the ball milled biochar can reach nanoparticle sizes, it has been reported that the
ball milled biochar performed as well as carbon nanotubes and even better than other
common adsorbents, such as activated carbon, in term of removing organic and inor-
ganic contaminants (Shan et al., 2016).The surface area of biochar from corn-stover
feedstock was increased by a factor of 60 to 194 m2 g¡1 by optimizing milling condi-
tions in a planetary ball mill (Peterson, Jackson, Kim, and Palmquist, 2012). There are
also some reports showing that the functional groups greatly improved after ball mill-
ing (K�onya et al., 2002). Lyu et al. found that ball milled biochar showed much better
methylene blue and Ni removal efficiency compared to pristine biochar (Lyu et al.,
2018a, 2018b). The disadvantage of this method is that the ball milled biochar dis-
perses very well in water and can be transported very easily, which restricts its role in
water and soil remediation. Previous studies have shown that transport of biochar
increased with decreasing particle size (Wang, Zhang, Hao, and Zhou, 2013a; Zhang
et al., 2010), and a significant fraction of biochar particles were found to have moved
to lower soil layers in the saturated sandy soil, especially for the biochar particles in
nanometer scales (Wang et al., 2013a). Particles of biochar in soil, being relatively light
materials compared to other soil solids, are likely to be prone to preferential erosion
and off-site transport in surface runoff. The consequences of the movement of biochar
colloids are the off-site migration of pesticides and other contaminants along the soil
profile, which leads to a potential risk to groundwater (Chen et al., 2017; Kookana,
2010). Therefore, the next work is to learn how to make biochar stable after it is used
to adsorb contaminants.

2.2.4 Magnetic modification
Biochar has been widely applied in pollution control, water purification, and
other fields. However, because of its low density and small particle size, it is not
easy to separate from water, which largely limits its application. An effective way
to solve the problem is by combining the biochar with a magnetic medium and
enabling it to realize solid-liquid separation (Chen, Chen, and Lv, 2011; Hu,
Ding, Zimmerman, Wang, and Gao, 2015; Reddy and Lee, 2014; Trakal et al.,
2016; Zhang et al., 2013a). Magnetic biochar composite material not only has the
excellent adsorption properties of carbon materials but also the magnetic material
under the action of external magnetic field controlling its movement, giving it an
easy to separate characteristic. Magnetic biochar has a wide application prospect
in adsorption, purification, and environmental remediation. In general, magnetic

10 B. WANG ET AL.
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media associated with biochar are usually iron or iron oxides such as Fe(0),
gamma-Fe2O3, Fe3O4, CoFe2O4, and so on (Baig, Zhu, Muhammad, Sheng, and
Xu, 2014; Chen et al., 2011; Reddy and Lee, 2014; Zhang et al., 2013a; Zhou
et al., 2014a, 2014b). Cation exchange is an important metal sorption mechanism
for magnetic biochars. The CEC value of magnetically modified biochar signifi-
cantly increased due to the presence of Fe oxides in biochars (Trakal et al.,
2016). Fe oxides in the structure of biochars caused stronger metal binding
(Zhou et al., 2014a). Magnetization technology mainly improved sorption of bio-
chars with well-developed structure. The importance of biochar structure to the
magnetic modification has also been demonstrated in other studies and the mag-
netic biochar showed strong sorption ability to aqueous metal ions such as Cd
(II) (Trakal et al., 2016). Some studies were also conducted by combining chemi-
cal modification with microwave pyrolysis. The modified bamboo biochar has
been used as a starting material to prepare Co-Fe binary oxide loaded adsorbent
(Co-Fe-MBC) through its impregnation in Co(NO3)2, FeCl3, and HNO3 solutions
simultaneously, followed by microwave pyrolysis. The low-cost composite was
characterized and used as an adsorbent for Cr (VI) removal from water. It was
found that a cobalt and iron binary oxide (CoFe2O4) was uniformly formed on
the biochar through redox reactions (Wang et al., 2013b). Chen et al. prepared
three novel magnetic biochars at different temperatures by chemical coprecipita-
tion of Fe3C/Fe2C on orange peel powder and found that magnetic biochars
show much higher sorption capacity for organic contaminants and phosphate as
compared to the corresponding nonmagnetic biochars (Chen et al., 2011). A
magnetic biochar also has been synthesized by pyrolyzing a mixture of naturally-
occurring hematite mineral and pinewood biomass and showed greater ability to
remove aqueous As (Wang et al., 2015e). Strong sorption of phenanthrene to the
activated carbon or biochar surfaces was maintained following magnetite impreg-
nation (Han et al., 2015c). Phenol sorption was diminished by magnetite impreg-
nation, probably due to enhanced carbon oxidation. A high surface area biochar
nearly reached the strong organic pollutant sorption capacity of activated carbon
(Han et al., 2015c). The advantage of this method is that the magnetically modi-
fied biochar can be easily separated from the water after adsorption because of
its magnetism (Chen et al., 2011; Li et al., 2016b; Zhang et al., 2013a). Recent
studies have demonstrated that magnetic modification of biochar may decrease
its surface area and pore volume and thus affect its sorption ability (Yang et al.,
2016). It is thus necessary to optimize the synthesis for the best performance of
the composites (Yang et al., 2016).

2.3 Chemical modification

Chemical modification is a method in which chemicals are added to the feedstock
and then heated in an inert gas medium while being carbonized and activated. It
could also be conducted by using oxidants (acids or bases) to oxidize biochar, which

CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 11
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makes the biochar have more functional groups and micropores as well as a higher
surface area and CEC. Compared to physical modification, the chemical modification
has been significantly promoted. Chemical modification can alter the surface chemis-
try of biochar, thereby leading to an enhanced sorption capacity after modification
(Ding, Hu, Wan, Wang, and Gao, 2016; Usman et al. 2016). Modification of the bio-
mass by treatment with different chemicals enhanced heavy metals uptake and pro-
vided further evidence regarding the role of functional groups (Bai and Abraham,
2002; Inyang et al., 2012; Loukidou, Matis, Zouboulis, and Liakopoulou-Kyriakidou,
2003). After modification, the negatively charged carboxyl groups in the biochars
increased binding with positively charged metals (Marshall, Wartelle, Boler, and
Toles, 1999, 2000; Wang et al., 2015b). Many chemicals have been used to modify
biochar for different purposes, such as KMnO4, HNO3, HCl, H3PO4, H2SO4, KOH,
and NaOH (Rajapaksha et al., 2016). The results show that the alkali treated biochar
possesses larger surface area than those of raw and acid treated biochars. Hg0 removal
by chemical modification was 2–3 times of that by microwave pyrolysis (Li et al.,
2015b). It is reported that biochar modified by methanol or alkali could improve tet-
racycline adsorption capacities and reduce the inherent organic compound content
in the biochar (Jing, Wang, Liu, Wang, and Jiang, 2014). The adsorption of tetracy-
cline is attributed mainly to p–p interactions and hydrogen bonding (Liu et al.,
2012). Biochar has been modified to be a highly efficient and selective absorbent for
copper ions Cu(II) by nitration and reduction. The amino-modified biochar exhibited
excellent adsorption performance for Cu because the amino groups were chemically
bound to the functional groups on the biochar surface. The Cu(II) combined with the
amino groups through strong complexation (Ma et al., 2014; Yang and Jiang 2014).
The basic characteristics of engineered biochars produced from different chemical
treatments and their applications were listed in Table 3.

2.3.1 Hydrogen peroxide modification
Hydrogen peroxide is a strong oxidant that can be used to modify carbon materials
including biochar. Recently, H2O2 modified biochars began to gain attention because
it is cost-effective and environmentally friendly. The previous study has found that
H2O2 treatment of hydrochar could increase oxygen-containing functional groups
on its surface and thus enhance its ability to remove ammonium and heavy metals
from water (Huff and Lee, 2016; Xue et al., 2012). After being oxidized by hydrogen
peroxide, the adsorption capacity of ammonium by oxidized maple wood biochar
largely improved after pH adjustment (Wang, Lehmann, Hanley, Hestrin, and
Enders, 2015a, 2016). Fang et al found that H2O2 can be effectively activated by bio-
char, which produces hydroxyl radical (¢OH) to degrade 2-chlorobiphenyl (Fang
et al., 2014b). Xue et al. found that the modified hydrochar showed enhanced lead
sorption ability with a sorption capacity of 22.82 mg g¡1, which was comparable to
that of commercial activated carbon and was more than 20 times that of untreated
hydrochar (Xue et al., 2012). The advantage of this method is the low cost compared
to other oxidants and the avoidance of introducing any other interfering elements,
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especially when the modified biochar is used in drinking water purification and soil
amendment.

2.3.2 Acid and alkali modification
Appropriate selection of biochar oxidant could produce recalcitrant biochar rich in
carboxyl functional groups for a long-term heavy metal stabilization strategy in con-
taminated water and soils (Uchimiya, Bannon, and Wartelle, 2012). Acid modifica-
tion showed an extensive increase in the BET surface area of burcucumber plants
biochar, which may be due to the increase of micropores. Sulfuric-activated biochar
indicated the highest BET surface area, which was more than 250 times that of pris-
tine burcucumber plants pyrolyzed at 700�C. Acid-activated biochar showed an
obvious enhancement in the sorption of sulfamethazine, especially when activated
by 30% sulfuric acid (Vithanage et al., 2015). Nitric acid oxidation can significantly
increase the content of acidic groups on the surface of activated carbon, improve the
surface hydrophilicity of biochar, reduce the pH value, and cause the structural col-
lapse of biochar and the decrease of specific surface area, which can significantly
affect the biochar adsorption performance of metal ions. Activated biochar produced
from O. ficus indica cactus fibres were used to adsorb Cu(II) ions from aqueous solu-
tions, and it was found that the material presents relatively very high capacity and
chemical affinity for Cu(II) ions even at low pH, which is attributed to the laminar
structures and the carboxylic moieties present on the surface, respectively. The effect
of physicochemical parameters (e.g. pH, ionic strength, temperature) indicates the
formation of outer-sphere and inner-sphere complexes at near-neutral and acidic
pH, respectively (Hadjittofi, Prodromou, and Pashalidis, 2014).

NaOH treatment can increase the percentage of surface graphitic carbon and other
oxygen-containing groups of carbonaceous materials (Fan et al., 2010). After slow
pyrolysis and then further modified with NaOH modification, hickory wood biochar’s
surface area, cation-exchange capacity, and thermal stability were significantly
improved (Ding et al., 2016). The adsorption affinities of different humic acids and tan-
nic acids combinations in natural organic matter (NOM) solutions were evaluated with
activated biochar produced in the laboratory impregnated with a NaOH solution, and
it was found that there was a higher adsorption affinity of tannic acid for activated bio-
char (Jung et al., 2015). By selecting the appropriate modification conditions, it can pro-
duce microporous activated carbons with a micropore volume up to 1.45 cm3g¡1 and a
BET surface area of 3290 m2g¡1 (Lozano-Castell�o, Lillo-R�odenas, Cazorla-Amor�os,
and Linares-Solano, 2001). In addition, it shows that chemical modification with
NaOH can be successfully used to develop activated carbons with high surface area and
micropore volumes (i.e., up to 2700 m2g¡1 and 1 cm3g¡1) (Lillo-R�odenas, Lozano-
Castell�o, Cazorla-Amor�os, and Linares-Solano, 2001). NaOH modified biochar exhib-
ited an enhanced sorption capacity for Cd(II) because of surface electrostatic attraction,
surface complexation, and/or surface precipitation (Li et al., 2017). It was also found
that NaOH treatment of bamboo biochar increased the percentage of surface graphitic
carbon and other oxygen-containing functional groups. The increased chloramphenicol
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adsorption on NaOH modified biochar was ascribed to the enhanced p–p interaction
between the adsorbent and adsorbate (Fan et al., 2010). The porous structure of biochar
was tailored by a modified chemical modification method using KOH (Dehkhoda, Ellis,
and Gyenge, 2016a). The KOH-activated biochar has a predominantly microporous,
mesoporous, or a combined (micro/meso) porous structure (Dehkhoda, Gyenge, and
Ellis, 2016b). KOH-activated municipal solid wastes biochars were more favorable for
As(V) adsorption (Jin et al., 2014a). Sun et al. also found that KOH modification of
hydrochars might have increased the aromatic and oxygen-containing functional
groups, resulting in about a 2–3 times increase of cadmium sorption capacity (30.40–
40.78 mg g¡1) compared to that of unmodified hydrochars (13.92–14.52 mg g¡1) (Sun,
Tang, Gong, and Zhang, 2015a). Biochar from peanut shell was a good precursor for
the preparation of porous biochar through KOHmodification. The BET surface area of
obtained porous biochar was calculated as 640.57 m2g¡1 with 0.76 cm3g¡1 of total vol-
ume (Han et al., 2015b). Another novel approach was developed to prepare an engi-
neered biochar from KMnO4 treated hickory wood through slow pyrolysis (600�C).
Characterization experiments with various tools showed that the engineered biochar
surface was covered with MnOx ultrafine particles. In comparison to the pristine bio-
char, the engineered biochar had more surface oxygen-containing functional groups
and much larger surface area (Li et al., 2017; Wang et al., 2015b). Biochar oxidized by
H2SO4/HNO3 has more carboxyl groups and demonstrated higher immobilization of
Pb, Cu, and Zn (Uchimiya et al., 2012). Fan et al. compared the chloramphenicol
adsorption capacity from acidic treatment and basic treatment and found that H2SO4

treatment led to minimal variation in surface functional groups, and NaOH treatment
increased the percentage of surface graphitic carbon and other oxygen-containing
groups. The increased adsorption of chloramphenicol on NaOH modified biochar was
mainly ascribed to the enhancement of the p–p interaction between the adsorbent and
adsorbate (Fan et al., 2010). In addition to the removal of heavy metals and antibiotics,
KOH modified biochar is also used to adsorb methylene blue. The surface area of the
prepared coconut husk-based activated carbon was relatively high with large pore vol-
ume and was found to be mesoporous. Dyes and heavy metals were found to adsorb
strongly on the surface of the activated carbon (Jin et al., 2014a; Sun et al., 2015a; Tan,
Ahmad, and Hameed, 2008). In general, alkali-treated biochar possesses larger surface
area than those of raw and acid treated biochars (Ding et al., 2016). Therefore, chemi-
cally modified biochar has great potential and performance in the removal of organic
and inorganic pollutants from water.

2.3.3 Coating/impregnation through chemical modification
The coating/ impregnation method is achieved by expanding the surface area of
the biochar surface, increasing the surface functional groups, cation exchange
capacity, and porosity by coating or impregnating different metal oxides or func-
tional nanoparticles to biochar in different ways at different pyrolysis periods.
There are three synthesis methods which are applied to produce nano-metal
oxide/hydroxide-biochar composites, including supporting with functional
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nanoparticles, pretreating biomass using metal salt, and mixing metal oxide nano-
particles after pyrolysis (Tan et al., 2016).

Nanoparticles have a large specific surface area and many functional groups
can provide high-affinity adsorption sites to adsorb various pollutants. However,
the shortcomings of nanomaterials limit the application of nanomaterials, such as
poor solubility and ease of gathering. The coating of functional nanoparticles
onto biochar surface can synthesize a composite material capable of removing
various contaminants by combining the advantages of biochar matrix and func-
tional nanoparticles. These functional nanoparticles could make a great improve-
ment in surface functional groups, surface area, porosity, and thermal stability of
biochar, which contribute to better performance of contaminants removal
(Inyang, Gao, Zimmerman, Zhou, and Cao, 2015; Liu, Gao, Fang, Wang, and
Cao, 2016b; Wang, Gao, Li, Creamer, and He, 2017a; Zhang, Gao, Yao, Xue, and
Inyang, 2012a, 2012c). Compared to the pristine biochar, the biochar derived
from sweetgum biomass pretreated with carbon nanotubes (CNTs) and graphene
oxide (GO) through slow pyrolysis showed improved specific surface area and
enhanced sorption ability to aqueous Pb(II) and Cd(II) (Liu et al., 2016b). The
enhanced adsorption of methylene blue on the graphene-coated biochar is mainly
controlled by the strong p–p interactions between aromatic molecules and the
graphene sheets on biochar surface (Zhang et al., 2012a). Inyang et al. found that
in hybridized CNT–biochar nanocomposites, the addition of CNTs significantly
enhanced the physiochemical properties of the biochars and their methylene blue
(MB) sorption ability, and the electrostatic attraction was the dominant mecha-
nism for the sorption of MB onto the biochar (Inyang, Gao, Zimmerman, Zhang,
and Chen, 2014). Batch sorption experiments showed that the chitosan-modified
biochars enhanced removal of heavy metals from solution compared to the
unmodified biochars (Song, Yang, Wang, Xu, and Cao, 2016; Zhou et al., 2013).

Another method is pretreating biomass using chemical reagents, bio-accumula-
tion in biomass, or clay before pyrolysis. The metal elements enriched in the bio-
mass can be turned into nano-metal oxide/hydroxide after thermal treatment.
Metal salts/clays are usually chosen as the chemical reagents for the pretreatment
of biomass. The metal ions may attach onto the surface or get into the interior
of biomass after it is dipped into the metal salts solution. After pyrolysis, the
metal ions will transform into nano-metal oxide or metal hydroxide, and the bio-
mass impregnated with metal ions will become biochar based nanocomposites
(Yao, Gao, Chen, and Yang, 2013a, 2013b). Particularly, magnetic biochar based
adsorbents can be fabricated by the pyrolysis of iron ion treated biomass (Zhang
et al., 2013a). AlCl3 (Zhang and Gao, 2013), CaCl2 (Fang et al., 2015, Liu et al.,
2016a), MgCl2 (Fang et al., 2015; Zhang, Gao, Yao, Xue, and Inyang, 2012b),
FeCl3 (Li et al., 2017; Zhang et al., 2013a), KMnO4 (Li et al., 2017; Wang et al.,
2015b), MnCl2 (Wang et al., 2015d), and ZnCl2 (Gan et al., 2015) are the com-
monly applied metal salts for the pretreatment of biomass, which result in the
formation of Al2O3, AlOOH, CaO, MgO, MnOx, FeOx, and ZnO nanoparticles
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on biochar surface. For instance, highly porous MgO-biochar nanocomposites
could be synthesized by slow pyrolysis of MgCl2-pretreated biomass (Zhang
et al., 2012b). The results indicated that the MgO nano-flakes dispersed uni-
formly on the biochar surface, and the MgO-biochar nanocomposite showed
excellent removal efficiencies for phosphate and nitrate. The MgO coating deco-
rated magnetic biochar could be separated easily by a magnet, and the capacity
was around 121.25 mg g¡1 for biochar with Mg content around 20% (Li et al.,
2016b). Biochar/AlOOH nanocomposite could be fabricated via thermal pyrolysis
of AlCl3 pretreated biomass (Zhang and Gao, 2013). The nanosized polycrystal-
line AlOOH flakes grown on biochar surfaces dramatically increased the reactive
area and sites to attract heavy metals, organic, and inorganic contaminants from
water. Pine wood feedstock pyrolyzed in the presence of MnCl2¢4H2O and
impregnated with birnessite via precipitation following pyrolysis sorbed more As
and Pb than the unmodified biochar (Wang et al., 2015d). MnOx loaded biochar
exhibited the highest adsorption capacity for Cd(II) due to an increase in micro-
pore sizes and the number of oxygen-containing functional groups as well as sig-
nificantly improved pore structure and specific surface areas, compared to the
unmodified biochar. Cation exchange and cation-p bonding are the main mecha-
nisms responsible for the higher adsorption capacities of BC-MnOx (Li et al.,
2017). It was also reported that zinc–biochar nanocomposites produced from
ZnCl2-pretreated biochar had much higher BET specific surface area and total
pore volume than those of the pristine biochar (Angın, Altintig, and K€ose, 2013),
which exhibited 1.2–2.0 times higher removal efficiency for Cr(VI) (Gan et al.,
2015). Three biomass feedstocks were pretreated with montmorillonite or kaolin-
ite suspensions and then pyrolyzed at 600�C for 1 h in an N2 environment. The
experimental data indicated that the presence of clay particles on carbon surfaces
had dramatically increased (about 5 times) the biochars’ adsorption ability to
methylene blue (Yao et al., 2014).

Biochar-based composites with metal oxide nanoparticles attached to the bio-
char matrix can also be synthesized after the pyrolysis of biomass. Evaporative
method (Cope, Webster, and Sabatini, 2014), heat treatment (Song et al. 2014),
conventional wet impregnation method (Wang, Sheng, and Qiu, 2015c), and
direct hydrolysis (Hu et al., 2015) are the commonly used methods for the treat-
ment of biochar in the presence of metal salts. For instance, biochar could be
amended with iron oxides by Fe(NO3)3¢9H2O via an evaporative method (Cope
et al., 2014), which showed approximately a 2.5 orders of magnitude higher sur-
face area. The heat treatment of the mixture of biochar and KMnO4 could syn-
thesize a novel composite composed of porous biochar and MnOx. The
formation of surface and inner-sphere complexes with MnOx and oxygen-con-
taining function groups were the key factors for increasing the removal capacity
of Cu(II) on the MnOx-loaded biochar (Song et al., 2014). Hydrous-manganese-
oxide-loaded biochar was prepared by a conventional wet impregnation method,
where the amorphous hydrous manganese oxide loaded onto biochar contributed
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to the higher sorption ability for Pb(II) (Wang et al., 2015c). For iron (Fe)-
impregnated biochar, prepared through direct hydrolysis of iron salt onto hickory
biochar, the results suggested that iron hydroxide particles on the biochar surface
served as the main sites for As sorption (Hu et al., 2015). The effects of coating
the biochars with Fe(III) on adsorption of As(III) and As(V) were also studied,
and it was found that biochar coated with Fe(III)could be used for removal of
both As(III) and As(V) (Samsuri, Sadegh-Zadeh, and Seh-Bardan, 2013). Sun
et al. found that the coating of biochar with magnetic Fe3O4 nanoparticles not
only significantly enhanced the adsorption capacity but also substantially
increased the magnetism, thus enabling the recollection of the biochar by a mag-
net (Sun et al., 2015c). By impregnating magnesium hydroxide onto pyrolytic
biochar, Zhang et al. found that salt coexisting in solution slightly increased
directly frozen yellow adsorption capacity (Zhang, Mao, Jiao, Shang, and Han,
2014d), Ruan et al. found fast Cr(VI) adsorption with a Cr(VI) removal efficiency
of 95% within 1 min and high Cr(VI) adsorption capacity with a maximum Cr
(VI) removal up to 81.7 mg g¡1. The remarkable improvement of Cr(VI) adsorp-
tion on Bt/Bc/a-Fe2O3 was attributed to the good dispersion of a-Fe2O3 nanopar-
ticles by the biochar network in comparison with other similar adsorbents (Ruan
et al., 2015). The removal of Pb(II), Cr(VI), and MB by the biochar-supported
ZVI was mainly controlled by both the reduction and surface adsorption mecha-
nisms (Zhou et al., 2014a). Removal of anionic contaminants (As(V) and P) was
likely controlled by electrostatic attraction with the iron particles on the zero val-
ent iron biochar composites surfaces. An additional benefit is that the contami-
nant-laden zero valent iron biochar composites could easily be removed from
aqueous solution by magnetic attraction (Zhou et al., 2014a).

In summary, biochar coated nanomaterials can serve as a good adsorbent, but
its stability and the existing potential environmental risk cannot be ignored. Future
studies should focus more on this aspect.

3. Engineered biochar applications and sustainability

An increasing interest in the beneficial application of biochar has opened up
multidisciplinary areas for science and engineering, particularly with respect
to environmental science and engineering. Biochar is produced from different
feedstocks and then used to treat wastewater and polluted soil. It plays a key
role in improving environmental sustainability because of the widespread
applications in the atmosphere, water, and soil systems (Figure 2). Biochar
has been evidenced to act as an efficient sorbent of various contaminants,
both organic and inorganic, because of its huge surface area and special struc-
ture (Qian et al., 2015, Xie et al. 2015). Up to now, the production and modi-
fication methods, chemical and physical characteristics, and adsorption
mechanisms have been extensively studied. The ultimate purpose is to apply
differently modified biochars into environmental, agricultural, and energy
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sustainability. As a low-cost and efficient amendment, biochar could be used
in different areas. The multiple areas that engineered biochar applications
could potentially be used in include carbon sequestration, soil fertility
improvement, water/soil pollution remediation, energy storage and agricultural
by-product/waste recycling (Ahmad et al., 2014, Tan et al., 2017).

3.1 Environmental remediation

Engineered biochar can potentially be used to reduce the bioavailability and leach-
ability of heavy metals and organic pollutants in soil and water systems through
adsorption and other physicochemical interactions due to its special properties
(Figure 3). Biochar is typically an alkaline material which can increase soil pH and
contribute to the stabilization of heavy metals. Application of engineered biochar
for remediation of contaminated water bodies and soils may provide a new solu-
tion to the soil and water pollution problems (Zhang et al., 2013c). Engineered bio-
char has been widely used for soil/water conditioning, remediation, carbon
sequestration, and water remediation.

3.1.1 Water treatment
A number of studies have demonstrated that biochar can be used as a low-cost adsor-
bent for wastewater treatment, particularly with respect to treating heavy metals in
wastewater (Ahmad et al., 2014, Inyang et al., 2016). Biochar application to water and
wastewater has been reviewed previously (Mohan, Sarswat, Ok, and Pittman Jr,

Figure 2. Engineered biochar for environmental sustainability.
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2014c). Biochar has exhibited a great potential to adsorb water contaminants due to its
low cost and high efficiency. However, raw biochar has limited ability to adsorb con-
taminants from aqueous solutions, particularly for high concentrations of polluted
water. In addition, powdered biochar is difficult to separate from the aqueous solution
due to its small particle sizes and low density. In order to overcome these unfavorable
factors mentioned above, plenty of investigations have also been carried out to produce
engineered biochars with novel structures and surface properties. In recent years, peo-
ple have turned more and more attention to modified biochar. The modified biochar
has been studied by various modification methods because it has more functional
groups and larger specific surface area (Zhang et al., 2012a). Engineered biochars with
novel structures and surface properties have been produced because of its great
improvement in functional groups, pore properties, surface active sites, catalytic degra-
dation ability, and ease of separation (Tan et al., 2016).

With respect to heavy metals removal, a variety of engineered biochars have
been developed to adsorb different heavy metals by chemical and physical meth-
ods, including magnetic biochars, ball milled biochars, steam activated biochars
and biochar-based nano-composites. These engineered biochars have been used to
adsorb different heavy metal ions in wastewater such as As(III), As(V), Cd(II), Cr
(VI), Cu(II), Hg(II) and Pb(II). The main adsorption mechanism is the formation

Figure 3. Summary of the effects of different modification methods on physicochemical properties
of engineered biochars.
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of surface complexation, ion exchange, and surface precipitation with functional
groups on the surface of modified biochar.

Regarding the removal of dyes, the concerned organic contaminants include crys-
tal violet, methylene blue, phenanthrene, phenol, sulfapyridine, tetracycline, naph-
thalene (NAPH) and p-nitrotoluene (p-NT) (Liu et al., 2012). In addition to the
adsorption of heavy metals and organic pollutants, other inorganic pollutants have
also been reported, such as nitrate and phosphate (Li et al., 2016a, Wan, Wang, Li,
and Gao, 2017, Xue et al., 2016, Yao et al., 2013a, Yao et al., 2013b, Zhang and Gao,
2013, Zhang et al., 2012b). The adsorption ability of these inorganic contaminants
varied from 2.47 to 835 mg g¡1 depending on the various nanomaterials, biochar
substrates, and target contaminants (Li et al., 2016a, Wan et al., 2017, Xue et al.,
2016, Yao et al., 2013a, Yao et al., 2013b, Zhang and Gao, 2013, Zhang et al., 2012b).

3.1.2 Soil remediation
Soil pollution has led to many food safety incidents. Therefore, the search for a safe
and reliable soil remediation agent for contaminated soil is necessary. Previous
studies have indicated that biochar could reduce the mobility of some organic and
inorganic pollutants in soil. Biochar with many oxygen-containing functional
groups, large surface areas, and cation exchange capacities have the effect of retain-
ing, stabilizing, and inactivating heavy metal elements and reducing the bioavail-
ability and phytotoxicity of heavy metals in the soil (Beesley et al., 2011, Park et al.
2011, Paz-Ferreiro, Lu, Fu, M�endez, and Gasc�o, 2014, Uchimiya et al., 2010b,
Uchimiya, Chang, and Klasson, 2011a, Uchimiya, Klasson, Wartelle, and Lima,
2010a, Zhang et al., 2013c). Highly alkaline pH and water-soluble carbon can
undesirably immobilize some elements (Beesley et al., 2011). Rees et al. found that
effects of biochar on soil heavy metal mobility are controlled by intraparticle diffu-
sion and soil pH increase (Rees, Simonnot, and Morel, 2014).

Biochar has a strong adsorption capacity for organic and inorganic pollutants
following modification. Currently, most of the literature on the application of bio-
char to soil heavy metal remediation is about pristine biochar, and there are rela-
tively few reports on engineered biochar. Some experiments have been carried out
in the lab; however, large-scale observation and application are still rare. Further
investigations on the stability, cost, collection, and regeneration of engineered bio-
char as well as evaluations of its potential environmental risks are still needed.

3.1.3 Gases adsorption and emission reduction
Climate change is a major challenge facing the world today. Atmospheric CO2, CH4,

and N2O are the most important greenhouse gases, and the contribution rate to the
greenhouse effect is nearly 80%. Since it is estimated that 5% to 20% CO2, 15% »
30% CH4, 80% » 90% N2O in the atmosphere are emitted from soil. Farmland soil
is an important source of greenhouse gases (Robertson, Paul, and Harwood, 2000).

A large number of studies have shown that biochar can inhibit the emission of
N2O, CH4, and CO2 in agricultural soils (Liu et al., 2011), so it has a certain carbon
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sink effect. It also has the potential to reduce greenhouse gases emissions by reducing
soil organic carbon (SOC) decomposition (Lehmann, 2007). It is also well recognized
that adsorption of ammonia (NH3) onto biochar can occur (Taghizadeh-Toosi,
Clough, Sherlock, and Condron, 2012). Changing the surface polarity of biochar can
change the amount of CO2 adsorbed. The surface modification of biochar will bring
about the change of acid functional groups on the surface of activated carbon, which
will inevitably lead to a change in the polarity of the surface of biochar and affect the
characteristic adsorption energy of CO2 on the surface of biochar. Steam activation
also enhances the porosity of the biochar, which increases soil aeration and in turn
affects the production of N2O and CH4 (Fungo et al., 2014). After being impregnated
with aluminum hydroxide, magnesium hydroxide, and iron oxide, the porosity and
specific surface area of biochar composites are improved, which improves their
adsorption capacity for greenhouse gases (Creamer, Gao, and Wang, 2016). By
impregnating Eucalyptus camaldulensis wood with H3PO4, ZnCl2, and KOH, the
CO2 adsorption capacity of the activated carbon prepared with KOH was up to 4.10
mmol/g at 1 bar and 303 K, having an increase of about 63% in comparison with the
commercial activated carbon (Heidari, Younesi, Rashidi, and Ghoreyshi, 2014). Car-
bons obtained under lower oxygen partial pressures and higher temperatures present
narrow microporosity, which is essential for the adsorption of CO2 at low partial
pressures (Plaza, Gonz�alez, Pis, Rubiera, and Pevida, 2014). Besides greenhouse
gases, biochar from different feedstocks has also been modified by the combination
of physical and chemical modification as an alternative method of removing Hg0

from flue gas (Shen et al., 2015), H2S gas adsorption (Shang, Shen, Liu, Chen, and
Xu, 2013, Xu, Cao, Zhao, and Sun, 2014), and VOCs (Zhang, Gao, Creamer, Cao,
and Li, 2017b, 2017c).

3.2 Agricultural sustainability

3.2.1 Reduce contaminant bioavailability
Soil contamination with heavy metals and organic pollutants has increasingly
become a serious global environmental issue in recent years (Alloway, 2013). Con-
siderable efforts have been made to remediate contaminated soils. Biochar has a large
surface area, which allows it to have a high capacity for adsorbing heavy metals and
organic pollutants. Biochar can potentially be used to reduce the bioavailability and
leachability of heavy metals and organic pollutants in soils through adsorption and
other physicochemical reactions. The toxicity and effectiveness of soil heavy metals
are affected by many factors, such as soil pH, soil oxidation and reduction potential,
soil organic matter, rhizosphere environment, and so on. Biochar is typically an alka-
line material which can increase soil pH and contribute to the stabilization of heavy
metals. Application of biochar for remediation of contaminated soils may provide a
new solution to the soil pollution problem (Zhang et al., 2013c). Biochar has recently
been used to remediate soil with both heavy metal and organic pollutants (Ahmad
et al., 2014, Beesley et al., 2011, Tang, Zhu, Kookana, and Katayama, 2013, Zhang
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et al., 2013c). The mechanism is electrostatic interaction and precipitation in the case
of heavy metals, and surface adsorption, partition, and sequestration in the case of
organic contaminants (Tang et al., 2013).

The feedstocks and carbonization conditions of biochar affect its physical and
chemical properties, thus affecting its ability to adsorb heavy metals (Uchimiya, War-
telle, Klasson, Fortier, and Lima, 2011b). Biochar application was effective in metal
immobilization, thereby reducing the bioavailability and phytotoxicity of heavy metals
(Park, Choppala, Bolan, Chung, and Chuasavathi, 2011). Oxygen-containing carboxyl,
hydroxyl, and phenolic surface functional groups of soil organic and mineral compo-
nents play central roles in binding metal ions, and biochar amendment can provide
means of increasing these surface ligands in soil (Uchimiya et al., 2011a).

3.2.2 Reduce nutrient loss
Biochar input into soil could directly or indirectly affect the migration and transfor-
mation of nutrients in the soil. Reducing soil nutrient leaching has become the goal
for agroecosystem researchers. Biochar, produced by pyrolysis of biomass, may help
attain these goals (Ippolito, Laird, and Busscher, 2012a, Yao et al. 2012). The applica-
tion of biochar to the soil not only can increase carbon uptake, soil quality, crop
yield, reduce soil toxicity and harmful heavy metal activity, but also play an impor-
tant role in improving soil nutrients use efficiency and reducing their loss.

As mentioned above, pristine biochar has limited adsorption capacity compared
to activated biochar. Therefore, it is necessary to improve and maximize adsorp-
tion capacity of biochar and its application potential through different modifica-
tion methods.

Steam activation of biochar could accelerate its positive effects on nutrient reten-
tion and uptake by plants relative to nonactivated biochar. Steam activation almost
doubled the positive effects of biochars in all instances, thus making it an interesting
option for future biochar applications (Borchard et al., 2012). Modification increases
the sorption capacity of biochar for nitrate and phosphate, which indicates that acti-
vated biochars could be used as adsorbents for reducing nutrient-leaching in soils
(Zhang, Voroney, and Price, 2017a). Borchard et al. showed that steam activation of
biochar increased retention of NO3

¡-N by up to 55% compared to nonactivated bio-
char (Borchard et al., 2012). Mg and Al modified biochars have high adsorption
capacity on P adsorption. After adsorption, the loaded biochar could be used as a
slow-release fertilizer. Up to now, some engineered biochars have been produced to
be applied in agricultural fields (Li et al., 2016b, Yao et al., 2013a).

3.2.3 Improve soil properties
Biochar is produced from the pyrolysis of carbon-rich plant- and animal-resi-
dues under low oxygen and high-temperature conditions, and it has been
increasingly used for its positive role in soil compartmentalization through
activities such as carbon sequestration and improving soil quality. Biochar
may significantly affect nutrient retention and play a key role in a wide range
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of biogeochemical processes in soils, especially for nutrient cycling (Liang
et al., 2006, Singh, Singh, and Cowie, 2010). Several studies have found that
biochar addition to soil improves its water holding capacity (Abel et al., 2013,
Beck, Johnson, and Spolek, 2011). The water holding capacity of biochar is
attributed to the high porosity, surface functional groups, total pore volume,
porosity structure, and specific surface area (Carrier, Hardie, Uras, G€orgens,
and Knoetze, 2012, Mohamed et al., 2016). These properties of biochar are
increased further by different modification methods (Peterson et al., 2012,
Shan et al., 2016). Van et al. found that biochars from slow pyrolysis of paper-
mill waste significantly increased pH, CEC, exchangeable Ca, and total C in a
ferrosol and significantly increased N uptake in wheat grown in fertilizer
amended ferrosol (Van Zwieten et al., 2010).

Yao et al. explored the potential application of an engineered biochar prepared
from Mg-enriched tomato tissues to reclaim and reuse phosphate (P) from aque-
ous solution cycled back directly to soils as an effective slow-release P fertilizer
(Yao et al., 2013a). Vithanage et al. found that acid modification showed an exten-
sive increase in the BET surface area of Burcucumber biochar, which increased sul-
famethazine adsorption and hence can be used as a potential amendment for soils
contaminated with sulfamethazine (Vithanage et al., 2015).

3.2.4 Reduce the risks of pesticides, herbicide, and atrazine
Biochar is also considered a unique adsorbent due to its high specific surface area and
highly carbonaceous nature. Therefore, soil amendments with small amounts of bio-
char could result in higher adsorption and consequently decrease the bioavailability of
contaminants in microbial communities, plants, earthworms, and other organisms in
the soil (Safaei Khorram et al., 2016). Owing to its properties, its amendment to con-
taminated soils has been considered for the immobilization of organic and inorganic
contaminants. The application of biochar in the soil can, however, also have an unde-
sired effect, e.g., by decreasing the efficacy of pesticides; slowing the degradation of
organic contaminants; and introducing contaminants such as PAH, PCB, and dioxins
(Evangelou, Fellet, Ji, and Schulin, 2015). Biochar has demonstrable effects on the fate
and effects of pesticides and has been shown to affect the degradation and bioavailabil-
ity of pesticides for living organisms (Safaei Khorram et al., 2016). Biochar produced
from agricultural crop residues has proven effective in sorbing organic contaminants
(Cao, Ma, Gao, and Harris, 2009). Previous studies have evaluated the ability of an
unmodified biochar to sorb two triazine pesticides – atrazine and simazine, and
thereby explored the potential environmental value of biochar on mitigating pesticide
pollution in agricultural production and removing contaminants from wastewater
(Zheng, Guo, Chow, Bennett, and Rajagopalan, 2010). Soils rich in Fe and Al oxides
(Ferrosol) that were freshly amended with paper mill sludge and poultry litter biochar
showed a two to five-fold increase in sorption of herbicides as compared to that in the
unamended soil (Martin, Kookana, Van Zwieten, and Krull, 2012). p¡p electron
donor¡acceptor forces play a role in triazine adsorption (Xiao and Pignatello, 2015).
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Pyrolysis at 400�C seems optimal for producing biochar that is an effective herbicide
sorbent (Sun, Keiluweit, Kleber, Pan, and Xing, 2011). The effect of chemical treatment
using phosphoric acid on biochars is higher than in charcoal (Taha, Amer, Elmarsafy,
and Elkady, 2014). Trigo et al. found that the higher surface area and porosity in aged
biochar increased sorption of indaziflam and fluoroethyldiaminotriazine, but interest-
ingly decreased sorption of terbuthylazine and herbicides MCPA (Trigo, Spokas, Cox,
and Koskinen, 2014). The decreased surface polarity and increased bulk polarity of
biochars after deashing treatment indicated that abundant minerals of biochars benefit
external exposure of polar groups associated organic matter. Organic carbon (OC)-
normalized distribution coefficients of phenanthrene by biochars generally increased
after deashing, likely due to enhancement of favorable and hydrophobic sorption sites
caused by mineral removal (Sun et al., 2013a). The activated carbon from N-300 bio-
char presented the faster initial sorption rate and the higher equilibrium concentration
for phenanthrene adsorption, but the activated N-700 biochar exhibited stronger bind-
ing with the sorbate (Park et al., 2013). Two wood-derived biochars produced at 400�C
and 600�C were treated with alumina and montmorillonite to investigate their interac-
tion with biochars and the influence on herbicide sorption. Both minerals exhibited a
pore-expanding effect that was likely relative to the removal of authigenic organic mat-
ter away from the biochars’ surface. Alumina brought more remarkable pore expan-
sion by doubling the surface area of the BC400 biochar and the mesopore area of the
BC600 biochar. Consequently, more adsorption sites were accessible for herbicide
molecules, which resulted in higher sorption of herbicides (acetochlor and metribuzin)
to the mineral-treated biochars than to the untreated biochars (Li et al., 2015c). Acti-
vated biochar was produced from almond shells and used in the field to remove dibro-
mochloropropane from a municipal water well. Results show that activated biochar
removed 100 % of the dibromochloropropane for approximately 3 months and con-
tinued to remove it to below treatment standards for an additional 3 months (Klasson,
Ledbetter, Uchimiya, and Lima, 2013).

3.3 Energy storage

At present, human demand for energy has surged, and energy shortage has
become the main threat to energy supply security. Currently, energy storage mate-
rials and devices mainly use graphitized carbon (Jin et al., 2014c) and carbon
nanotubes because they have good capacity, cycle life, and rate characteristics.
Activated carbons from agricultural byproducts are much cheaper than carbon
nanotubes and graphene. The use of agricultural waste biomass as a precursor for
the production of activated carbons has been on the increase lately because it is
cheap, readily available, and also viewed as a veritable way of combating waste dis-
posal problems in the agricultural industries. Biomass activated carbons could via-
bly be used as electrodes in supercapacitors. Under optimum process conditions,
activated carbons with specific capacitance as high as 374 F g¡1 and high-rate
long-cycle stability at 4 A g¡1 have been produced (Abioye and Ani, 2015).
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However, with the development of high-power portable devices and new energy
vehicles, the market for energy storage materials and devices has put forward
higher requirements, such as high reversible capacity, high current discharge
capacity, and fast charge and discharge capacity. The actual capacity of graphitized
carbon materials does not meet these requirements, so researchers have turned
their attention to other materials such as gravel, nanotubes, graphene, and biochar.
However, gravel, nanotubes, graphene, have relatively high costs compared to bio-
char, and most of the raw materials rely on fossil resources, resulting in greater
environmental pollution and unsustainability. As a result, research and develop-
ment of biochar energy storage materials and devices have become urgent.

Biochar shows good properties of developed pore structure, large specific surface
area, good electrical conductivity, high-temperature resistance, and corrosion resistance.
It has excellent application prospects in energy storage materials and devices. Biochar is
mainly used as an energy storage material because of the following advantages: 1) the
structure is stable and the cycle performance is good; 2) the high specific surface area
and the developed pore structure improve the electrode capacitance; 3) good electrical
conductivity means it can achieve fast charge and discharge rates; and 4) it is cheap and
environmentally friendly. Compared to fossil energy storage materials, it has an obvious
price and environmental advantages. Usually, the biochar used for storage is the engi-
neered ones (e.g., activated carbon), and the means of engineering it include physical
and chemical activation methods that have been mentioned above.

3.3.1 Supercapacitor
Capacitance is the ability to accommodate electric fields. One of the energy storage
devices now undergoing rapid development is a supercapacitor, also known as an elec-
tric double layer capacitor (EDLCs), which uses the material in the electrode and elec-
trolyte interface of the electrostatic double layer to store energy through the rapid and
reversible redox reaction between the electrode interface (Beidaghi and Gogotsi, 2014).

The electrode is the core of the capacitor, which plays a decisive role in the elec-
trochemical performance of the capacitor. Carbon electrode capacitors with char-
coal have a high specific surface area in the carbon material surface, which helps
form an electrostatic double layer to complete energy storage. Thus, by increasing
the electrode surface area, one can significantly improve the capacitance of the
capacitor.

It has been reported that biochar has the potential to produce supercapacitors in
the future (Cha et al., 2016, Gupta, Dubey, Kharel, Gu, and Fan, 2015, Zhao et al.,
2016). In order to get high capacitance, biochar needs to be properly modified.
Some conventional approaches have been used to activate biochar, such as mixing
biochar with a strong base and baking it at a high temperature. However, these
methods have some drawbacks because they are time-consuming and require very
high temperatures (requiring temperatures >900�C). Another way to properly dis-
pose of a heavy metal-containing biochar is converting heavy metals loaded bio-
chars into supercapacitors (Wang et al., 2017b).
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A recent trend in carbon supercapacitor electrodes has been the use of biomass
waste materials to produce activated carbons (Kalyani and Anitha, 2013a, Zhang,
Jiang, Holm, and Chen, 2014a). Supercapacitors with carbon electrodes derived
from biomass such as seaweed biopolymers (Raymundo-Pi~nero, Leroux, and
B�eguin, 2006), waste coffee beans (Rufford, Hulicova-Jurcakova, Zhu, and Lu,
2008), cotton stalk (Chen et al., 2013), banana fibers (Subramanian et al., 2007),
corn stover (Jin, Wang, Shen, and Gu, 2014d), and sugarcane bagasse (Rufford,
Hulicova-Jurcakova, Khosla, Zhu, and Lu, 2010, Wahid, Puthusseri, Phase, and
Ogale, 2014) have been reported. The choice of the carbon precursor and modifica-
tion conditions determine the electrochemical characteristics of double-layer
capacitance, including specific surface area, pore-size distribution, electrical con-
ductivity, and the presence of electrochemically active surface functional groups,
and thus affect its performance (Koutcheiko and Vorontsov, 2013).

KOH-modification of cherry stones at 800–900�C can obtain carbons with large
specific surface areas (1100–1300 m2 g¡1), average pore sizes around 0.9–1.3 nm
(which makes them accessible to electrolyte ions), and conductivities between 1 and 2
S cm¡1. These features lead to capacitances at a low current density as high as 230 F
g¡1 in 2 M H2SO4 aqueous electrolyte and 120 F g¡1 in the aprotic medium 1 M
(C2H5)4NBF4/acetonitrile (Olivares-Mar�ın et al., 2009). The ZnCl2 modification of
bagasse is studied using thermogravimetric analysis and the carbon pore structures are
characterized using N2 and CO2 adsorption. In two-electrode, sandwich-type superca-
pacitor cells containing 1 M H2SO4 the sugar cane bagasse carbons exhibit specific
energy up to 10 Wh kg¡1 and specific capacitance close to 300 F g¡1 (Rufford et al.,
2010). Materials with the highest level of nitrogen enrichment reveal excellent capaci-
tance characteristics if employed as both the negative and positive electrode in an
acidic capacitor (307 and 293 F g¡1, respectively) or the negative electrode in an alka-
line capacitor (368 F g¡1) (Jurewicz and Babe», 2010). Biochar material not only has a
large specific surface area but also has very stable chemical properties. When biochar
is used as a supercapacitor electrode material, not only it creates supercapacitors with
high capacitance and charge and discharge stability, but it also reduces the production
costs involved with supercapacitors. Table 4 lists the different biochars used as a super-
capacitor electrode. All the engineered biochar samples have relatively high surface
area and large specific capacitance. These excellent characteristics of biochar have
made biochar electrode supercapacitors a hot topic for today’s research.

3.3.2 Fuel cell
Electrodes play a fundamental role in facilitating exoelectrogenic biofilm growth
and electrochemical reactions and are essential in improving the functionality and
efficiency of fuel cells. Ideal electrode materials should have high surface area, high
conductivity, low cost, stability, and biocompatibility. Many carbonaceous materi-
als have been reported as promising cathode catalysts for fuel cell applications due
to their high chemical stability, good electric conductivity, and enhanced mass
transport capability. Biochar has a large specific surface area, good porosity,
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and conductivity; these features make it have the potential for high-power
charge and discharge and high reversible capacity. Biochar from waste reduced the
energy and carbon footprint associated with electrode manufacturing (Ganesh and
Jambeck, 2013, Huggins, Wang, Kearns, Jenkins, and Ren, 2014). Biochar cathodes
can be found application in fuel cell systems (Hong, Xiaomin, and Zhengrong,
2013, Huggins et al., 2014, Jiang et al. 2013, Yu, Zhao, and Li, 2014, Yuan et al.
2014, Yuan, Yuan, Wang, Tang, and Zhou, 2013). Table 5 lists specific power den-
sity when different biochar is used as a cathode. By impregnating the biochars pro-
duced via pyrolysis with potassium hydroxide, followed by heat treatment in an
inert atmosphere, the total biofuel yield increased up to 25% while producing high
surface area (>1900 m2 g¡1) activated carbon biochar for use in electrochemical
cells. Coin cell electrodes fabricated with these sustainable activated carbons pro-
vide almost 100% coulombic efficiency over 4000 charge-discharge cycles with a
specific capacitance of 45 F g¡1 at a scan rate of 1 mV s¡1 using a Li-salt electrolyte
(Goldfarb, Dou, Salari, and Grinstaff, 2017). After impregnation of elemental sul-
fur into the micropores of activated carbon fibers, these electrodes demonstrate
good electrochemical performance at high current density attributed to the uni-
form dispersion of sulfur inside the carbon fiber (Elazari, Salitra, Garsuch, Pan-
chenko, and Aurbach, 2011).

4. Perspectives

The latest progress on engineered biochar is reviewed in this study with respect to
its modification methods and its environmental, agricultural, and energy storage
applications in different areas. Some considerations concerning the mechanism of
adsorption have been touched on. Meanwhile, the applications of engineered bio-
char in sustainable environment, agriculture, and energy development fields have
been systematically reviewed. These emerging applications will lay a good founda-
tion for the engineering applications of engineered biochar in the future.

At present, although a great deal of research has been done on modified biochars,
most of the work is concentrated in the laboratory and field theoretical stage. There
are relatively few reports on the large-scale application of engineered biochar and its
performance. Industrial scale production of engineered biochar, as well as the specific
application process, is still in its infancy and requires more engineering support. The
cost of modification is the key to the promotion and application of engineered biochar.

In terms of modified methods, chemical modification may have more
advantages over physical modification because of more specific surface area,
better development of porous structure, and more oxygen-containing surface
functional groups. Strong oxidant, acids, and alkalis are often used as the
chemical modifiers for engineered biochars, which may impose secondary pol-
lution risks to the environment. Environmentally friendly organic acids such
as citric, tartaric, acetic, and peracetic acids have been successfully applied as
the modification agents for engineered biochars (Sun, Chen, Wan, and Yu,
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2015b, Zhu, Fan, and Zhang, 2008). The development and application of low
cost and green chemical reagents for biochar modification thus require more
relevant research in the future.

Currently, many studies have focused on the characterization of biochar nanopar-
ticles composite materials and the removal of contaminants in water. The recovery
and reuse of modified biochar and its impact on the environment and human health
will be the focus of future research. The effect of engineered biochar to the environ-
mental systems such as soil ecosystem and water environment is unclear.

It has been demonstrated that soil amended with biochar, designed specifi-
cally for use as a soil conditioner, results in changes to the microbial popula-
tions that reside therein. These changes have been reflected in studies
measuring variations in microbial activity, biomass, and community structure
(Ducey, Ippolito, Cantrell, Novak, and Lentz, 2013). The effects of engineered
biochar on soil biota have received much less attention than its effects on soil
chemical properties (Lehmann et al., 2011). Experiments suggest that biomass-
derived black carbon (biochar) affects microbial populations and soil biogeo-
chemistry (Warnock, Lehmann, Kuyper, and Rillig, 2007). Engineered biochar
composites contain clay minerals, nanomaterials, and graphene, which may
have a certain toxic effect on the ecosystems including soil microorganisms.
Although several studies have pointed out that biochar can distribute and sta-
bilize colloidal and nanosized particles on its surface within the pore networks
(Hu et al., 2015, Inyang et al., 2014, Wang et al., 2017a), the long-term stabil-
ity of those colloids and nanoparticles have not been investigated. The risk

Table 5. Specific power density when different biochar is used as a cathode.

Biochar
Surface area
(m2 g¡1)

Temperature
(�C)

Power density
(mW m¡2)

Gravimetric
capacity (mAh g¡1) Ref

Bananas 172.3 900 528.2 — (Yuan, Deng, Qi,
Kobayashi, and Tang,
2014)

Wood-based
biomass

42.4 1000 187.9 — (Huggins, Pietron, Wang,
Ren, and Biffinger,
2015)

Almond shell
biochar

30.35 750 0.0127 — (Elleuch, Boussetta, Yu,
Halouani, and Li,
2013)

Compressed
milling residue

469.9 1000 532 — (Huggins et al., 2014)

Forestry residue 428.6 1000 457 — (Huggins et al., 2014)
Sewage sludge

biochar
— 900 500 — (Yuan et al., 2013)

Activated carbons — 800 1410 — (Zhang et al., 2014b)
Corn cob biochar — 750 0.0185 — (Yu et al., 2014)
Pinecone hull 380 450 — 357 (Zhang, Zhang, Li, and

Chen, 2007)
Rice husk 700 — 2507 (Fey et al., 2010)
Coconut shells 682.0 900 — 1714 (Hwang, Jeong, Shin,

Nahm, and Stephan,
2008)

Banana fibers 1285 800 — 3123 (Stephan et al., 2006)
Peanut shells 2098.9 500 — 4765 (Fey, Lee, Lin, and Kumar,

2003)
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management and uncertainty thus need to be further evaluated before the
large-scale application of engineered biochars, especially engineered biochar
composites (Downie, Munroe, Cowie, Van Zwieten, and Lau, 2012).

The potential risks of biochar to the environment and the ecosystems
should be of sufficient attention. It has been suggested that large-scale land
application of biochar for carbon sequestration without proper planning and
management may have negative impacts on ecosystem health (Wang and Cao,
2011). Furthermore, because of the low density and micro-size of biochar, it
may be carried along with the adsorbed organic or inorganic pollutants into
surface water and groundwater systems through surface runoff and soil pro-
files, thus potentially risking the entire environmental ecosystem. Therefore, it
is necessary to further study the collection, recovery, and regeneration of spent
engineered biochar under various conditions.
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