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It is important to understand howmagnetotelluric (MT) modeling can most effectively be performed in general
anisotropic media. However, previous studies in this area have mainly focused on the use of one-dimensional
(1D) and two-dimensional (2D) algorithms. Thus, building on earlier work, it is important to study the perfor-
mance of three-dimensional (3D) modeling in arbitrary conductivity media; therefore, an edge-based finite ele-
ment (FE) method has been developed for 3D MT modeling in arbitrary conductivity media. This approach is
based on the initial derivation of a series of equivalent variational equations that are based onMaxwell equations,
generated using theweighted residualmethod. Specific valueswere then obtained for coefficientmatrixes of this
edge-based FE method using hexahedral meshes, and the algorithm was verified by comparing its results with
finite difference (FD) solutions generated using a 2D anisotropic model. Finally, the results of a 3D anisotropic
model were analyzed detailed for three conditions; another 3D anisotropic model was designed and its results
were compared with two isotropic models'.
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1. Introduction

The magnetotelluric (MT) method is an important geophysical
method that has been widely used in many fields such as mineral re-
sources survey, exploration of oil & gas and the investigation of deep
Earth electrical structures. However, the interpretation of MT data gen-
erally assumes an isotropicmedium, and numerous studies have shown
that the Earth is anisotropic (Christensen, 1984;Wannamaker, 2005). A
general ignorance about the influence of anisotropic media on MT has
thus likely led to misinterpretations, whichmeans that it is both impor-
tant and meaningful to study the modeling and inversion of this ap-
proach in anisotropic media. Although approaches for the modeling
and inversion of MT in one-dimensional (1D) and the modeling in
two-dimensional (2D) anisotropic media are relatively mature, inver-
sions in 2D and three-dimensional (3D) anisotropic media and the
modeling in 3D anisotropic situations urgently need to be developed.
A number of analytical solutions are available for 1D situations on the
basis of numerous studies (O'Brien and Morrison, 1967; Reddy and
Rankin, 1971; Dekker and Hastie, 1980; Yin, 2000; Pek and Santos,
2002),while the electrical andmagnetic field cannot easily be separated
in 2D cases. Nevertheless, a large number of studies have been carried
out in this area (Heise and Pous, 2001, 2003; Yin, 2003; Hu et al.,
2013; Huo et al., 2015); Pek and Verner (1997), for instance, developed
a staggered-grid finite difference (FD) method for application in arbi-
trary 2D anisotropic media, which has had significant influence in the
field. In later work, Li (2002) developed a modeling approach using
the finite element (FD) method in 2D generally anisotropic media; the
results of this research are in close agreement with solutions based on
the FD method. Li and Pek (2008) subsequently developed an adaptive
FE modeling algorithm in 2D general anisotropic media. In 3D aniso-
tropic media, there are some studies of Marine Controlled-source Elec-
tromagnetic (Yin et al., 2014; Cai, et al., 2015). To date, however, just a
handful of studies have applied MT modeling to 3D anisotropic media;
one early example was the work of Martrinelli and Osella (1997) who
presented a Rayleigh-Fouriermethodwhich allows for vertical anisotro-
py, while Weidelt (1999) later developed a staggered-grid FD method
for use in 3D general anisotropic conductivity media that does not re-
quire a significant computational increase. Li (2000) presented a de-
tailed nodal-based FE method for MT modeling, generating variational
equations using the Galerkin weighted residual method, while Wang
and Fang (2001) developed an FD algorithm for multicomponent elec-
tromagnetics in 3D anisotropic formations but did not present a case
study example. Häuserer and Junge (2011) simulated a 3D anisotropic
anomaly based on real data from Uganda, while Löwer and Junge
(2017) studied the spatial and frequency-dependent behavior of
phase tensors and tipper vectors using the FDmethod within an anom-
alous 3D anisotropic conductive body.

There are several serious problems inherent to the use of node-
based elements within an FE model (Jin, 2002). Thus, a 3D MT
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numerical modeling algorithm was implemented using an edge-based
element method in arbitrary conductive media. The system of equa-
tions derived was a large, sparse matrix equation. It was solved
using the bi-conjugate gradient-stabilized (Bi-CGSTAB) method com-
bined with the symmetric successive over-relaxation (SSOR) pre-
conditioner. The modeling method was validated comparing its calcu-
lation results with those obtained using FD method (Pek and Verner,
1997) for a 2D anisotropic model. The results of a 3D anisotropic
Fig. 1. The study space util
model, a 3D anisotropic anomaly embedded in an isotropic half-
space, were analyzed detailed for three conditions and some con-
clusions were obtained. At last, another 3D anisotropic combined
model and two isotropic models were designed, the resistivities of
the two special 3D isotropic model are the same as the resistivities
of the anisotropic model in the x- and y-direction respectively. The
results of this anisotropic model were compared with these two iso-
tropic models'.
2. The modeling of MT in 3D anisotropic media

The study space utilized in this work is shown in Fig. 1, divided into air zone and subterranean zone. The sources are located on the top surface
ABCD.

2.1. Differential equations

In the case of a quasi-stationary approximation, we consider a harmonic time dependence e−iωt, and ignore displacement currents for MT. Thus,
Maxwell's equations are changed, as follows:

∇� E ¼ iωμH ð2:1Þ

∇�H ¼ ~σE ð2:2Þ

∇ �H ¼ 0 ð2:3Þ

∇ � E ¼ 0 ð2:4Þ

where E andH are the electric field and themagnetic field respectively,ω is the angular frequency, μ is themagnetic permeability of themedia (con-
sidered in this case to be equal to the value in a vacuum, μ0), and ~σ is a tensor conductivity in anisotropic medium, as follows:

~σ ¼
σ xx σ xy σxz

σyx σyy σyz

σ zx σ zy σ zz

0
@

1
A ð2:5Þ

Two methods (Yin, 2000; Pek and Santos, 2002) are available to define the conductivity tensor, the latter of which is adopted in this paper.
The magnetic field H can be obtained from Eq. (2.1). Substituting it into Eq. (2.2) generates Eq. (2.6), as follows:

∇� ∇� E−iωμ ~σE ¼ 0 ð2:6Þ
2.2. Variational problem

We applied the Galerkin variant of the weighted residuals method (Xu, 1994) to generate the variational equation. This was done by first multi-
plying Eq. (2.6) by the variation in the electric field, δE, and then integrating across thewhole study space. At the same time, we utilized vector iden-
tity (Eq. (2.7)) and the divergence theorem (Eq. (2.8)):

∇ � A � Bð Þ ¼ ∇� Að Þ � B−A � ∇� Bð Þ ð2:7Þ
ized for this research.
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Z
v
∇ � Adv ¼ ∮ ΓA � ndΓ ð2:8Þ

Thus, we obtained Eq. (2.9), as follows:

Z
v
∇� E � ∇� δEdv−iωμ0

Z
v
~σE � δEdvþ

Z
Γ
∇� E� δEdΓ ¼ 0 ð2:9Þ

We applied Dirichlet boundary condition (the first boundary condition) in this study for outer boundaries; in this case, the third integration of
Eq. (2.9) equals zero. In the case of inner boundaries, the third integration of this equation still equals zero because of counteraction. Thus,
Eq. (2.9) is reverted to Eq. (2.10) as follows:

Z
v
∇� E � ∇� δEdv−iωμ0

Z
v
~σE � δEdv ¼ 0 ð2:10Þ

2.3. An edge-based FE method

We adopted aWhitney vector as the basis for this study. Thus, taking into account the hexahedral elements shown in Fig. 2 that have side lengths
denoted by a, b, and c in the x-, y-, and z-direction, the center coordinates are (x0,y0,z0).

Thus, by assigning a tangential field component to each hexahedron edge, components within the element are expressed as follows:

Ee ¼
X4
i¼1

Nxi
e E

xi
e þNyi

e E
yi
e þ Nzi

e E
zi
e

� �
ð2:11Þ

where Ne
xi, Ne

yi and Ne
zi are the basis (Jin, 2002).

Eq. (2.10) is also divided into constituent elements, as follows:

Xne
n¼1

Z
e
∇� E � ∇� δEdv−

Xne
n¼1

Z
e
iωμ0 ~σE � δEdv ¼ 0 ð2:12Þ

This process was then developed in two stages. In the first place, we analyzed the first integral of Eq. (2.12) for a given element, as follows:

∇� δE � ∇� E ¼ ∇�
X4
i¼1

NxiExi þ NyiEyi þ NziEzi
� � � ∇�

X4
j¼1

NxjExj þ NyjEyj þ NzjEzj
� �

¼
X4
i¼1

X4
j¼1

δExj δEyj δEzj
� �

∂Nxi

∂y
∂Nxj

∂y
þ ∂Nxi

∂z
∂Nxj

∂z
−

∂Nxi

∂y
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∂x
−

∂Nxi
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∂Nzj
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−
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−
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ð2:13Þ
Fig. 2. Diagram of a hexahedral element.
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The first integral of Eq. (2.12) over an element turns into the following:Z
e
∇� δE � ∇� Edv ¼ δET

e K1e½ �Ee ð2:14Þ

Secondly, we analyzed the second integral of Eq. (2.12), as follows:

iωμ ~σE � δE

¼ iωμ
X4
i¼1

X4
j¼1

δEx; j δEy; j δEz; j
� � σxx σxy σ xz

σyx σyy σyz

σ zx σ zy σ zz

0
@

1
A Nx;iNx; j 0 0

0 Ny;iNy; j 0
0 0 Nz;iNz; j

0
@

1
A Ex;i

Ey;i
Ez;i

0
@

1
A

8<
:

9=
; ð2:15Þ

The second integral of Eq. (2.12) over an element turns into the following:

−
Z

e
iωμ ~σE � δEdv ¼ δET

e K2e½ �Ee ð2:16Þ

We then added Eqs. (2.14) and (2.16) and expand it to the whole space, as follows:

δET
Xne
n¼1

K1e þ K2e
� �" #

E ¼ 0 ð2:17Þ

However, taking into account the fact that δET does not always equal zero aswell as the imposition boundary conditions, the equation system is as
follows:

K½ �E ¼ P½ � ð2:18Þ

where [P] is composed of the last term of Eq. (2.17) and the Dirichlet boundary condition. Thus, after finally solving Eq. (2.18), electric field values
were obtained.

2.4. Dirichlet boundaries

In this context, S1 and S2 are two orthogonal sources.

1) The source is located on the top surface (ABCD) and its initial value has no impact on the results, thus:

ES1top ¼ ES1x; ES1y; ES1z
� � ¼ 1;0;0ð Þ;ES2top ¼ ES2x; ES2y; ES2z

� � ¼ 0;1;0ð Þ ð2:19Þ

2) In the case of the four side surfaces (ABFE, BCGF, CDHG, and ADHE), field values are obtained via 2D MT modeling.
3) We assume that themedia below the bottom surface (EFGH) comprise an anisotropic half-space. Thus, values for Ex and Ey values can be obtained

by linear interpolation.
Fig. 3. The 2D anisotropic model.
3. Apparent resistivity and phase

We obtained the magnetic fields using Eq. (2.2), as follows:

Hx ¼ 1
iωμ0

∂Ez
∂y

−
∂Ey
∂z

� 	
; ð3:1Þ

Hy ¼ 1
iωμ0

∂Ex
∂z

−
∂Ez
∂x

� 	
; ð3:2Þ

and;

Hz ¼ 1
iωμ0

∂Ey
∂x

−
∂Ex
∂y

� 	
: ð3:3Þ

Furthermore, the impedance tensor, apparent resistivities, and
phases can be obtained (Li, 2002).

4. Numerical experiments

4.1. 2D anisotropic model

In order to test the adaption of the edge-based FEmethod in conduc-
tivity anisotropicmedia, the results of this algorithm for a 2D anisotrop-
ic model were compared with those obtained by the FD method (Pek
and Verner, 1997). A 2D anisotropic model is presented in Fig. 3; this
model has dimensions of 6000 m × 2900 m and a top depth of
1100 m, the 2D anomaly is embedded in an anisotropic half-space
within this model; the three principal resistivities of this anomaly are
30 Ω·m, 10 Ω·m and 20 Ω·m, respectively, while the three Euler's
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angles are 20°, 45° and 10°, respectively. Similarly, the three principal
resistivities of the anisotropic half-space are 100 Ω·m, 50 Ω·m and
200 Ω·m, respectively and the Euler's angles are 10°, 20° and 30°, re-
spectively. Comparing apparent resistivities and phases with 10 Hz FD
solutions (Fig. 4) reveals very close levels of agreement. The number
of elements is 66,150 and the computational time is 1541 s. All the
calculations in this paper were performed on a computer with Intel®
Core™ i7-4790 3.60 GHz processors, and a 64-bitWindows 7 operating
system.

4.2. 3D anisotropic model 1

A 3D anisotropic anomaly is embedded in an isotropic half-space of
100 Ω·m (Fig. 5). The dimensions of this 3D anomaly are 2000 m ×
2000 m × 1050 m, while the top depth is 240 m. At the same time, ρ1
and ρ2 are 1000 Ω·m and 10 Ω·m, respectively, while ρ3 is 100 Ω·m,
the same as the half-space. We studied these three cases respectively
using a frequency of 0.1 Hz. The number of elements is 80,688 and the
computational time for models in Sections 4.2.1 and 4.2.2 are all be-
tween 40 min and 60 min.

4.2.1. αD = 0, αL = 0 and αS changes
The apparent resistivities of four modes with a different angle αS

(i.e., 0°, 30°, 60° and 90°) are shown in Fig. 6. The first row to the fourth
row corresponding to the four modes (XX, XY, YX and YY) respectively,
and the first column to the fourth column corresponding to αS, which
equals 0°, 30°, 60° and 90° respectively. Several symbols are used in
this diagram: including a white square, which represents the location
Fig. 4. The comparison of FE so
and shape of the 3D anomaly in the horizontal plane, and green solid
lines, which represents the angles from left to right between them and
the Y-direction at 0°, 30°, 60° and 90° respectively. At the same time,
the purple solid lines from left to right represents the angles between
them and X-direction at 0°, 30°, 60° and 90° respectively. The meanings
of these symbols are held unchanged throughout this paper. The results
of the first column and the fourth column show that the apparent resis-
tivities of four modes all indicate clearly the anomaly location. In partic-
ular, when αS equals 0° or 90°, the plane views well resolve the
horizontal shape and size of the anomaly, and the plane views of appar-
ent resistivities are symmetric with the x- and y-axis. In addition, anal-
ysis of the second row and the third row shows that the green solid lines
agreewell with the direction of the longer center lines of the red parts in
the four subplots, and that purple lines agree well with the direction of
the longer center lines of the blue parts. Therefore, the values of angleαS

can be reflected in the plane views of XY mode and YX mode apparent
resistivities.

4.2.2. αS = 0, αL = 0 and αD changes
The apparent resistivities of four modes with a different angle αD

(i.e., 0°, 30°, 60° and 90°) are shown in Fig. 7. The first row to the fourth
row corresponds to the four modes (XX, XY, YX, and YY), and the first
column to the fourth column corresponds to αD equals 0°, 30°, 60° and
90° respectively. The results of the second row, the fourth row, and
the first column all indicate well the horizontal location, size and
shape of the 3D anomaly, while analysis of the second row and the
fourth row reveals that the apparent resistivities of the XY mode
and YY mode are almost unchanged when αD changes. The further
lutions and FD solutions.



Fig. 5. The 3D anisotropic model: (a) Section view (left diagram); (b) Plan view (right diagram).
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theoretical analysis shows that although the resistivities in the y- and z-
direction change, those in the x-direction remain the same when αD

changes. We are therefore able to conclude that the XY mode and YY
mode apparent resistivities are influenced mainly by resistivities in
the x-direction. Furthermore, as X and Y are interchangeable, the XX
Fig. 6. Apparent resistivities
and YXmode apparent resistivities are influencedmainly by resistivities
in the y-direction. XX mode and YX mode apparent resistivities change
when αD changes. Therefore, on the basis of these results, we are able to
conclude that resistivities in the z-direction almost have no influence to
the apparent resistivities of the four modes. This conclusion is verified
with different angle αS.



Fig. 7. Apparent resistivity with different αD angles.
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further below. Results also suggest that when αD equals 90°, the XX
mode and YX mode apparent resistivities show no anomaly. This is be-
cause when αD equals 90°, ρ2 and ρ3 are exchanged, which leads to re-
sistivities in Y-direction remaining unchanged; ρ3 is 100 Ω·m, the
same as the resistivity of the half-space. The result also verified the ap-
propriateness of the algorithmused in this study. Results also show that
when αD equals 30° or 90°, plane views of both XXmode and YX mode
apparent resistivities are symmetrical with the x-axis. Finally, effective
information of αD is not shown in resistivities plane views.

In order to verify the conclusion that resistivity in z-direction almost
does not affect the apparent resistivities of the four modes, we applied
the model in Section 4.2.1 but instead ρ3 (100 Ω·m) with 50 Ω·m.
The computed results with different αS (i.e., 0°, 30°,60° and 90°) are al-
most the same as in Fig. 6, which again verified the conclusion.

4.2.3. αS = 0, αD = 0 and αL changes
In this case, the results are the same as those shown in Section 4.2.1

and corroborate theoretical expectations. Results are not re-presented
here.

4.3. 3D anisotropic model 2

An additional 3D anisotropic model is presented in Fig. 8; this model
includes a 3D anisotropic anomaly and two 3D isotropic anomalies em-
bedded in a half-space of 100 Ω·m. The three principal resistivities of
this 3D anisotropic anomaly (the red block) are 1000 Ω·m, 10 Ω·m,
and 100 Ω·m respectively, while the three Euler angles are all equal
0°. Besides, the resistivities of the two isotropic anomalies, the green
block and the blue block, are 10 Ω·m and 1000 Ω·m respectively. The
frequency computed is 0.1 Hz. The number of elements is 90,972 and
the computational time for the three models are 3206 s, 3180 s and
2932 s respectively.

Fig. 9 shows the apparent resistivities of this model and those of two
isotropic models, of which the anisotropic block is set to be an isotropic
block of 1000 Ω·m (Isotropy 1 model) and 10 Ω·m (Isotropy 2 model)
respectively. The three white rectangles in these figures mark the
location and shape of the three anomalies in the horizontal plane. The
first row to the fourth row corresponds to the four modes (XX, XY, YX,
and YY), and the first column to the third column corresponds to Isotro-
py 1 model, Anisotropy model and Isotropy 2 model respectively. The
results of the second row and the third row both indicate well
the anomaly location and shape. Besides, ρxx and ρyx of the Isotropy 2
model are almost the same as ρxx and ρyx of the Anisotropy model, re-
spectively; ρxy and ρyy of the Isotropy 1 model are very similar to ρxy
and ρyy of the Anisotropy model, respectively. The further theoretical
analysis shows that the resistivities of Isotropy 2 model are the same
as the resistivities of Anisotropy model in the y-direction, and the resis-
tivities of Isotropy 1model are the same as the resistivities of Anisotropy
model in the x-direction. It is consistent with the conclusion in
Section 4.2.2.



Fig. 8. 3D model 2: (a) Section view (left); (b) Plan view (right).
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5. Conclusions

A 3DMT numerical modeling algorithm in arbitrary conductive was
implemented using an edge-based element method. Comparisons with
Fig. 9. Apparent resistivities of four
FD solutions for a 2D anisotropic model confirm the accuracy of our al-
gorithm. Also studied the apparent resistivities of a simple 3D aniso-
tropic model in three different conditions; compared the results of a
combined 3D anisotropic model with two isotropic models, and
modes for these three models.
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presented four main conclusions. First, when αS is not zero and the
other two Euler angles do equal zero, plane views of apparent resistivity
plane well reflect αS information, as the same is true of αL. Second, the
apparent resistivities of both XY mode and YY mode are influenced
mainly by resistivities in the x-direction. Third, XX mode and YX mode
apparent resistivities are mainly influenced by resistivities in the y-
direction, while fourth, resistivities in the z-direction almost have no
impact on the apparent resistivities of the four modes.
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Appendix A. The values of K1e and K2e

1) K1e

K1e ¼
Kxx
1e Kxy

1e Kxz
1e

Kyx
1e Kyy

1e Kyz
1e

Kzx
1e Kzy

1e Kzz
1e

0
@

1
A

where

~σ−1 ¼
σ xx

inv σ xy
inv σxz

inv
σyx

inv σyy
inv σyz

inv
σ zx

inv σ zy
inv σ zz

inv

0
B@

1
CA

Kxx
1e ¼ ac

6b

2 −2 1 −1
−2 2 −1 1
1 −1 2 −2
−1 1 −2 2

2
664

3
775þ ab

6c

2 1 −2 −1
1 2 −1 −2
−2 −1 2 1
−1 −2 1 2

2
664

3
775,

Kxy
1e ¼ − c

6

2 1 −2 −1
−2 −1 2 1
1 2 −1 −2
−1 −2 1 2

2
664

3
775,

Kxz
1e ¼ − b

6

2 −2 1 −1
1 −1 2 −2
−2 2 −1 1
−1 1 −2 2

2
664

3
775,

Kyx
1e ¼ − c

6

2 −2 1 −1
1 −1 2 −2
−2 2 −1 1
−1 1 −2 2

2
664

3
775,

Kyy
1e ¼ bc

6a

2 1 −2 −1
1 2 −1 −2
−2 −1 2 1
−1 −2 1 2

2
664

3
775þ ab

6c

2 −2 1 −1
−2 2 −1 1
1 −1 2 −2
−1 1 −2 2

2
664

3
775,

Kyz
1e ¼ − a

6

2 1 −2 −1
−2 −1 2 1
1 2 −1 −2
−1 −2 1 2

2
664

3
775,

Kzx
1e ¼ − b

6

2 1 −2 −1
−2 −1 2 1
1 2 −1 −2
−1 −2 1 2

2
664

3
775,

Kzy
1e ¼ − a

6

2 −2 1 −1
1 −1 2 −2
−2 2 −1 1
−1 1 −2 2

2
664

3
775,

Kzz
1e ¼

bc
6a

2 −2 1 −1
−2 2 −1 1
1 −1 2 −2
−1 1 −2 2

2
664

3
775þ ac

6b

2 1 −2 −1
1 2 −1 −2
−2 −1 2 1
−1 −2 1 2

2
664

3
775
2) K2e

K2e ¼
Kxx
2e 0 0
0 Kyy

2e 0
0 0 Kzz

2e

0
@

1
A

where

Kxx
2e ¼ Kyy

2e ¼ Kzz
2e ¼ −iωμ

abc
36

4 2 2 1
2 4 1 2
2 1 4 2
1 2 2 4

0
BB@

1
CCA
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