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The Mesozoic Shuikoushan granitoid intrusion in the Jiangnan orogen between the Yangtze and the
Cathaysia blocks in southern Hunan Province, South China, provides an opportunity to probe deep-
crustal composition and structure, and to investigate the geodynamic evolution of South China. The intru-
sion is composed of granodiorite with I-type geochemical affinities and contains zircon with an U–Pb
concordant age of 158.3 ± 1.2 Ma. Rocks from the intrusion have variable SiO2 from 58.4 wt.% to
65.2 wt.%, Al2O3 from 15.0 wt.% to 17.2 wt.%, TiO2 from 0.57 wt.% to 0.76 wt.%, and P2O5 from 0.27 wt.%
to 0.52 wt.%. They have A/CNK from 0.97 to 1.23 (1.04 on average) and are dominantly peraluminous.
They are characterized by enrichment in LREE ([La/Sm]N = 3.47–5.19) and LIL (e.g., K, Rb) and depletion
in HFSE (e.g., U, Th) in primitive mantle normalized trace element diagrams. These geochemical features
indicate that the rocks are I-type granodiorites and have undergone extensive fractional crystallization of
hornblende, biotite, titanite, and apatite. All samples show negative eHf(t) (�10.6 to �8.1) and eNd(t)
(�5.92 to �6.13) values, with relatively high initial 87Sr/86Sr (ISr) (0.7101–0.7102) and d18O ratios
(8.4–9.7‰). These values significantly differ from mantle values, suggesting that they are generated by
the amphibole-dehydration melting of a mafic source in the middle-to-lower crust beneath the
Jiangnan orogen. The emplacement of the Shuikoushan granitoid intrusion is contemporaneous with
the late Jurassic to early Cretaceous extension within the Shi-Hang rift zone, indicating that it may have
been formed under an extensional regime in response to both the Pacific superplume activity and west-
ward subduction of the Pacific Plate. The extensional processes along with asthenosphere upwelling and
basaltic underplating may have triggered the widespread late Jurassic granitoid intrusion in southern
Hunan Province and possibly in South China.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Peraluminous granitoids usually have aluminum saturation
index [ASI = molar Al2O3/(CaO + Na2O + K2O)] higher than 1.0
(Zen, 1986). They are widely spread in orogenic belts (e.g., the
Himalayan and Jiangnan orogenic Belt in China) and certain types
of subduction-related environments (e.g., the Nevada batholith in
USA) (Barbarin, 1996; Sylvester, 1998; Lackey et al., 2006;
Chappell et al., 2012; Zhao et al., 2013;Chen et al., 2014). Recent
studies reveal that these granitoids can also be formed in exten-
sional tectonic settings (Turpin et al., 1990; Sun et al., 2005).
Despite numerous studies, their origins and petrogenesis have long
been matters of debate and remain obscure to most geologists, but
are very important in evaluating crustal growth/reworking, and
addressing thermal and geodynamic evolution (Patiño Douce and
Johnston, 1991; Barbarin, 1996; Sylvester, 1998; Castro et al.,
1999; Clemens et al., 2011; Chappell et al., 2012; Zhao et al.,
2013; Chen et al., 2014).

It is generally accepted that peraluminous granitoids are mainly
composed of S-type rocks. These rocks are assumed to be derived
from the partial melting of supracrustal metasedimentary rocks
and are characterized by the enrichment of aluminum (Al) and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jseaes.2016.04.008&domain=pdf
http://dx.doi.org/10.1016/j.jseaes.2016.04.008
mailto:yangjiehua@mail.gyig.ac.cn
http://dx.doi.org/10.1016/j.jseaes.2016.04.008
http://www.sciencedirect.com/science/journal/13679120
http://www.elsevier.com/locate/jseaes


J.-H. Yang et al. / Journal of Asian Earth Sciences 123 (2016) 224–242 225
potassium (K) (Chappell, 1999; Chappell and White, 1974, 1992,
2001; Chappell et al., 2012). However, many I-type granitoids are
also peraluminous and K-rich, despite having metaluminous
source and not being saturated in Al and K. It remains unclear
how peraluminous I-type granitoids were generated from such
materials. Some models for peraluminous I-type granitoid rock for-
mations have been proposed, such as the partial melting of K-rich
meta-andesites (Roberts and Clemens, 1993); reactive assimilation
of metapelites by high-alumina basaltic magmas (Patiño Douce,
1995); simple mixing of felsic, metasediment-derived, and basaltic
magmas (Davis and Hawkesworth, 1993); the melting of more
mafic source rocks, accompanied by assimilation of sedimentary
rocks (Ugidos and Recio, 1993; Chappell et al., 2012); and
fractional crystallization (Cawthorn and Brown, 1976; Zen, 1988;
Schaltegger and Corfu, 1992).

The Shuikoushan peraluminous I-type granitoids are located in
southern Hunan Province, between the Yangtze and the Cathaysia
blocks, South China. Taking its special tectonic location and geo-
chemical characteristics into consideration, there has long been
an argument regarding their petrogenesis and geodynamic setting.
For example, some studies argued that the Shuikoushan granitoids
likely represent recycled crustal materials within the Cathaysia
Block during the late Jurassic, without crustal growth (Zuo et al.,
2014). By contrast, other studies concluded that the Shuikoushan
granitoids were derived from depleted mantle with minor crustal
contamination, as well as abundant crustal growth in the Yangtze
Block during the early Jurassic period (Wang et al., 2002, 2003a,b;
Ma et al., 2006). Whole-rock compositions provide only cumulative
evidence for the complex processes that ultimately determine
magma compositions. However, robust accessory minerals such
as zircon, which preserves chemical evidence for stable and radio-
genic isotope compositions of their host magmas at the time of
crystallization, can be in situ analyzed to reveal different magmatic
processes at high temporal and spatial resolutions (Li et al., 2014).
Improvements in the micro-analysis of accessory minerals now
allow high-precision, high-spatial resolution in situ analyses of zir-
con isotope compositions to be integrated with U–Pb dating to
reveal a detailed record of magma sources and their evolution
(Valley et al., 2005; Kemp et al., 2007; Li et al., 2010a, 2014).

In this study, high-precision and high-spatial resolution micro-
analytical isotope techniques were applied to determine the
chronology and test the synchronicity of the Shuikoushan granitoid
intrusion relative to regional and tectonic evolution. Within this
framework, in situ zircon Hf and O isotopes and whole-rock geo-
chemistry were used to identify the special magmatic source and
process for granitoids from Shuikoushan intrusion. These new find-
ings were used to examine the interrelated magmatic and tectonic
processes that have caused the distinguishing characteristics of the
Shuikoushan granitoids relative to other granitoids in its adjacent
region.
2. Geological background, samples, and petrography

South China consists of the Yangtze Block in northwest and the
Cathaysia Block in the southeast. These two blocks are commonly
considered to have welded together along the Jiangshan–Shaoxing
Fault (Jiangnan Orogenic Belt) in the middle Neoproterozoic period
(Fig. 1) (Chen and Jahn, 1998; Zhao et al., 2011; Zhao, 2015; Yao
et al., 2015). The Yangtze Block is composed of minor Archean–P
aleoproterozoic crystalline basement rocks that are outcropped
near the Yangtze Gorge Dam, including TTG (tonalite, trond-
hjemite, and granodiorite) gneisses, metasedimentary rocks, and
amphibolites (e.g., the Kongling complex in Hubei Province)
(Chen and Jahn, 1998; Wang et al., 2006; Jiao et al., 2009; Zhang
and Zheng, 2013; Zhao and Asimow, 2014). Variably deformed,
low- to medium-grade metamorphic rocks of late Mesoproterozoic
to early Neoproterozoic are sporadically distributed around the
periphery of the Yangtze Block (Zhang and Zheng, 2013). The
magmatic rocks are unconformably overlain by weakly metamor-
phosed Neoproterozoic strata (e.g., Banxi Group) and unmetamor-
phosed Sinian cover (Zheng et al., 2013). Unlike the Yangtze Block
that contains the Archean basement, the Cathaysia Block is
composed predominantly of Neoproterozoic basement rocks with
a minor occurrence of Paleoproterozoic rocks in the southwest
Zhejiang and north Fujian Provinces, and Mesoproterozoic rocks
in Hainan Island (Zheng et al., 2013; Zhao and Asimow, 2014). Both
basement blocks are overlain by Paleozoic continental to neritic
marine sediments as well as continental redbeds and volcanic-
sedimentary sequences from the late Triassic time onward. The
entire sequence is intruded by voluminous granitoid pluton
(Chen and Jahn, 1998; Wang et al., 2003b; Yan et al., 2003; Qiu
et al., 2016). However, the position of the subsurface boundary
between the Yangtze Block and Cathaysia Block has been debated
because of multiperiod tectonic interference. Previous studies have
roughly defined the position of the suture zone between the
Yangtze and the Cathaysia blocks (Chen et al., 1991; Rao et al.,
2012) (Fig. 1). Mesozoic volcanic and intrusive rocks are widely
exposed in the suture zone in Hunan Province (Fig. 1), some of
which are closely associated with large to giant Cu–Pb–Zn multi-
metal deposits (e.g., the Baoshan granitoid, Tongshanling granitoid,
and Shuikoushan granitoid) (Fig. 2a).

The Shuikoushan granitoid intrusion is located in this suture
zone between the Yangtze and the Cathaysia blocks, and to the
north of the NE-trending Jurassic Shi-Hang rift zone (Fig. 1). This
intrusion is associated with Cu–Pb–Zn deposits, as well as gold
and magnetite ore mineralization (Huang et al., 2015) (Fig. 2b).
The other granitoid intrusions (e.g., Tongshanling and Baoshan)
in the region only host Cu–Pb–Zn deposits. The Shuikoushan intru-
sion occurs as a lopolith with outcrop of 1.2 km wide and 1.6 km
long, and intruded into the Carboniferous and Permian sedimen-
tary sequence that consist of limestone and Carboniferous
(Fig. 2b). The studied samples were collected from the adits of
the Laoyachao mining in Shuikoushan area, and away from ore
lodes. All samples were relatively fresh, free of weathering and
alteration. They are predominately granitoids that consist of pla-
gioclase (35–40%), alkali feldspar (10–15%), quartz (10–20%), bio-
tite (5–10%), hornblende (5–8%), and minor amounts of sphene,
apatite, zircon, Fe–Ti oxides, and allanite (Fig. 3). These granitoids
are mediate grain and show subhedral granular textures. Some
samples, however, show porphyritic textures. The phenocrysts
are commonly plagioclase, quartz, biotite, and hornblende; and
the matrix is mainly composed of fine-grained feldspar and quartz
with minor biotite, hornblende, and opaque oxides. Euhedral to
subhedral plagioclase phenocrysts are 2–4 mm long and display
optical zonation. Hornblende shows brown to green polychroism
(Fig. 3). In general, Shuikoushan granitoids have a higher propor-
tion of biotite and hornblende but less alkali feldspar and quartz
as compared with the other granitoids in the region.
3. Analytical methods

3.1. SIMS zircon U–Pb dating and in-suit O isotope analyses

Zircon concentrates were separated from ca. 2-kg of rock
samples using conventional heavy liquid and magnetic separation
techniques at the mineral separation laboratory of the Bureau of
Geology and Mineral Resources of Hebei Province at Langfang city.
Representative zircon grains were handpicked under a binocular
microscope. Zircon grains were mounted in epoxy mounts,
which was then polished to section the crystals in half for analysis.



Fig. 1. Geological sketch map of South China modified from Chen and Jahn (1998), Sun (2006), Zhu et al. (2006), and Rao et al. (2012), showing distribution of Jurassic,
Cretaceous and Neoproterozoic granitoid. The Shuikoushan granitoid intrusion is located in the suture zone between the Yangtze and the Cathaysia blocks, to the north of Shi-
Hang rift zone (N: the north belt, S: the south belt). Isotopic dating Shi-Hang belt A-type granites from Zhu et al. (2008).
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All zircons were documented with transmitted and reflected light
micrographs as well as cathodoluminescence (CL) images to reveal
their internal structures, and the mount was vacuum-coated with
high-purity gold film prior to SIMS analyses.

U–Pb dating was carried out following oxygen isotope analysis
using a Cameca IMS 1280 SIMS at the Institute of Geology and
Geophysics, Chinese Academy of Sciences in Beijing. Analytical
procedures are the same as those described by Li et al. (2009b).
A ca. 8 nA primary O2� beam was used for zircon analysis with
13 kV impact energy. The analytical pits were about 20 � 30 lm
in size and ellipsoidal in shape. Positive secondary ions were
extracted with a 10 kV potential. Pb ion yields were increased by
a factor of �2 by flooding the sample surface with oxygen. In the
secondary ion optics, a 60 kV energy window was used, together
with a mass resolution of ca. 5400, to separate Pb ion peaks from
isobaric interferences. The field aperture was set to 7000 lm, and
the transfer optic magnification was adjusted to 200. Rectangular
lenses were activated in the secondary ion optics to increase the
transmission at high mass resolution. A single electron multiplier
was used in ion-counting mode to measure secondary ion beam
intensities by peak jumping. Each measurement consists of
7 cycles, and the total analytical time is ca. 14 s. Pb/U calibration
was performed relative to standard zircon 91500 with U and Th
concentrations of ca. 81 and 29 ppm, respectively (Wiedenbeck
et al., 1995). Analyses of the standard zircon Plésovice were carried
out after every 3–4 unknown analyses. U–Th–Pb rations were cal-
ibrated against measured rations of standard zircon Plésovice with
an age of 337 Ma (Sláma et al., 2008). A long-term uncertainty of
1.5% (1SD) for 206Pb/238U measurements of the standard zircons
and the error of the unknown analysis were propagated to the
unknowns. Measured composition were corrected for common
Pb using non-radiogenic 204Pb. Corrections are sufficiently small
to be insensitive to the choice of common Pb composition, and
an average of present-day crustal composition (Stacey and
Kramers, 1975) is used for the common Pb assuming that the com-
mon Pb is largely surface contamination introduced during sample
preparation. Data reduction was carried out using the Isoplot/Ex v.
4.15 programs (Ludwig, 2008).

In order to monitor the external uncertainties of SIMS U–Pb
measurements calibrated against Plésovice standard, Qinghu



Fig. 2. Geological sketch map of the Shuikoushanmining district and adjacent region. (a) Simplified geological map of the southern Hunan Province modified fromWang et al.
(2002) and Zhao et al. (2012), showing the distribution of diorite–granodiorite. Isotopic dating from Lu et al. (2006) and Zhu et al. (2008), and this study. (b) Geological map of
the Shuikoushan mining district modified from Zuo et al. (2014).
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zircon standard was alternately analyzed as an unknown
together with the unknown zircons. A total of 5 measurements
were onducted on Qinghu zircon, and the Concordia Age of
161.2 ± 2.3 Ma (2SD), which is identical within error with the
recommended value of 159.2 ± 0.2 Ma (2SD) (Li et al., 2013).

Zircon oxygen isotopes were also measured using the Cameca
IMS 1280 SIMS at the Institute of Geology and Geophysics follow-
ing the methods described by Li et al. (2010a), with data reported
as per mil (‰) value relative to Vienna Standard Mean Ocean
Water (VSMOW, 18O/16O = 0.0020052). A primary Cs+ ion beam of
about 20 lm diameter was accelerated at 10 kV, and used at inten-
sity of ca. 2 nA. The normal incidence electron flood gun was used
compensate for sample charging during analysis with homoge-
neous electron density over a 100 lm oval area. Negative
secondary ions were extracted with a �10 kV potential. Oxygen
isotopes were measured using multi-collection mode. The mass
resolution used to measure of 20 cycles, each lasting 3 s, with an
internal precision better than 0.2‰ (1r). The instrumental mass
fractionation (IMF) is calibrated against the Penglai zircon standard
(d18O = 5.31 ± 0.10‰) (Li et al., 2010b). In order to monitor the
external uncertainties of SIMS O measurements calibrated against
Penglai standard, Qinghu zircon standard was alternately analyzed
as an unknown together with the unknown zircons. Six measure-
ments of the Qinghu zircon standard during the course of this
study yield a weighted mean of d18O = 5.41 ± 0.15‰ (2SD), which
is consistent within error the reported value of d18O = 5.4 ± 0.2‰
(2SD) (Li et al., 2013).

3.2. LA-MC-ICPMS Lu–Hf isotope analyses

Zircon Hf isotope analysis was carried out on a Neptune
multi-collector ICPMS equipped with Geolas-2005 excimer Arf



Fig. 3. Petrographic characteristics of Shuikoushan granodiorites: the characteristic of hand specimen of Shuikoushan granodiorites; photomicrograph of the Shuikoushan
granodiorite consisting of quartz, plagioclase, biotite, and hornblende (b–f). Images (b), (c), (d), and (e) are in cross-polarized light (CPL), and image (f) is in plane-polarized
light (PPL). Abbreviations: Qtz: quartz; Pl: Plagioclase; Bt: Biotite; Hbl: Horndlende; Zrn: Zircon; Chl: Chlorite.
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laser ablation system (LA-MC-ICPMS) at the State Key Laboratory
of Geological Processes and Mineral Resources, China University
of Geosciences (Wuhan). Lu–Hf isotopic measurements were made
on similar sites of the same zircon grains previously analyzed for
U–Pb and O isotopes, with ablation pit of 44 lm in diameter. Each
measurement comprised 3 s acquisition of the background signal
followed by 50 s signal acquisition. The detailed analytical
procedures were similar to those described by Hu et al. (2012).
Off-line selection and integration of analytic signal, and mass bias
calibrations were performed using ICPMSDateCal (Liu et al., 2010).
The value 176Lu/175Lu = 0.02656 (Blichert-Toft et al., 1997) was
used for interference corrections of 176Lu on 176Hf assuming their
fractionation are identical. Interference of 176Yb on 176Hf was cor-
rected using mass bias obtained on-line and assuming
176Yb/173Yb = 0.79639 (Fisher et al., 2014). Zircon 91500 was
served as the external standard. Zircon GJ-1 and TEM were
analyzed as unknown together with measuring samples to monitor
external uncertainties of LA-MC-ICPMS Hf measurements
calibrated against 91500 standards.

3.3. Major and trace elements

After petrographic examination, the least-altered samples were
selected for geochemical and Sr–Nd isotope analyses. Major ele-
ment oxides were analyzed using a RANalytical Axios-advance
(Axios PW4400) X-ray fluorescence spectrometer at the State Key
Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry,
Chinese Academy of Sciences (IGCAS) on fused glass beads. The
fused glass beads were used and the analytical precision, as deter-
mined on the Chinese National standard GSR-1 and GSR-3, and
analytical uncertainties are between 1% and 5%. Loss on ignition
(LOI) was obtained using 1 g of powder heated at 1100 �C for 1 h.

Trace elements were analyzed using a Perkin-Elmer Sciex ELAN
6000 inductively coupled plasma mass spectrometer (ICP-MS) at
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IGCAS. Analytical procedures are similar to those described by Qi
et al. (2000). About 50 mg of each powdered sample was dissolved
in a high-pressure Teflon bomb for 48 h at ca. 190 �C using a HF
+ HNO3 mixture. An internal standard solution containing the sin-
gle element Rh was used to monitor signal drift during counting.
The international standard, GBPG-1 was used for analytical quality
control, and analytical precision was better than 5% for all
elements.

3.4. Whole-rock Sr–Nd isotopic compositions

Sr–Nd isotopic ratios were measured on a subset of whole-rock
samples using a Finnigan MAT-261 thermal ionization mass spec-
trometer (TIMS) at Tianjin Institute of Geology and Mineral
Resources, China Geological Survey, following procedures similar
to those of Jahn et al. (1996). The powders were treated with
0.3 N HCl for 1 h at about 100 �C and dried after rinsing with puri-
fied water. The sample were weight and spiked with mixed isotope
tracers, dissolved in Teflon capsules with Hf + HNO3 mixture at
120 �C for 7 days. Procedural blanks were <60 pg for Sm and Nd
and <600 pg for Rb and Sr. Mass fractionation corrections for Sr
and Nd isotopic rations were based on 86Sr/88Sr = 0.1194 and
146Nd/144Nd = 0.7129, respectively.
207Pb/235U

0.00
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0225
0.14 0.15 0.16 0.17 0.18 0.19

Sample SKS-31

Fig. 4. CL images of representative zircons analyzed for in situ U–Pb, Hf, and O
isotopes (a) and U–Pb Concordia diagram for zircon from the Shuikoushan
granodiorites (b). Notes: Blue and red ellipses indicate the SIMS analyzing spots
for U–Pb and O isotopes, respectively. Yellow large circles denote the LA-MC-ICPMS
analyzing spots for Hf isotopes. White dashes denote the mineral inclusions in
zircons. Numbers near the analyzing spots are the U–Pb ages and eHf(t)/d18O values.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
4. Results

4.1. SIMS zircon U–Pb dating

Zircons from samples SKS-31 and SKS-36 have similar morphol-
ogy and internal structures under CL. Most grains are euhedral,
transparent, and colorless. They are 150–300 lm in length with
aspect ratios between 2:1 and 4:1. Euhedral concentric zoning is
common in most crystals under CL. They locally contain inherited
cores and mineral inclusions (Fig. 4a).

Twenty-four analytical spots were conducted on 23 zircon
grains from sample SKS-31 (Table 1). They have a relatively con-
stant U (243–761 ppm) and Th (93–476 ppm) with Th/U of 0.30–
1.17. Their common Pb (f206) is lower than 0.3%. Most analyses
yielded a concordant age of 158.3 ± 1.2 Ma (2r, MSWD of concor-
dance = 0.004), which is identical to the weighted mean
206Pb/238U age of 158.2 ± 1.6 Ma (n = 23, MSWD = 0.77). One core
analysis (SKS-31@18) yielded an older 206Pb/238U age of
744.8 ± 10.6 Ma (1r) (Fig. 4b).

4.2. Major and trace elements geochemical characteristics

Rocks from Shuikoushan intrusion have a wide range of SiO2

(58.4–65.2 wt.%), FeO(Total) (3.65–6.68 wt.%), and MgO
(2.31–3.19 wt.%). They have a relatively high Al2O3 (15.0–17.2%),
Sr (>400 ppm, two samples exceptions), and Ba (579–805 ppm)
concentrations. They also display high total alkalis contents (K2O
+ Na2O = 5.60–7.55%) with K2O/Na2O ratios of 1.07–1.87, and low
Rr/Sr (0.21–1.25) ratios (Table 2). Therefore, rocks from the Shuik-
oushan intrusion are plotted predominantly in the granodiorite
field (Fig. 5a) and fall in the domains of high-K calc-alkaline series
and shoshonitic series (Fig. 6h). Their A/CNK values range from
0.97 to 1.23 with an average value of 1.04, and thus plot
predominantly in the prealuminous field (Fig. 5b). Furthermore,
their Al2O3, FeO(Total), MgO, CaO, TiO2, and P2O5 concentrations
are negatively correlated with SiO2. However, they have constant
Na2O, K2O and MnO contents (Fig. 6).

The Shuikoushan granitoids have moderate rare earth element
(REE) contents (

P
REE = 154–222 ppm) (Table 2). Their chondrite-

normalized REE patterns show steep LREE ([La/Sm]N = 3.47–5.19)
and relatively flat HREE patterns ([Gd/Yb]N = 1.47–3.33) with weak
negative Eu anomalies (Eu/Eu⁄ = 0.73–0.95) (Fig. 7a). In the primi-
tive mantle-normalized trace element diagram, all samples exhibit
strong negative Nb–Ta–Ti, Ba, and Sr anomalies and positive Rb, Th,
U, La (LREE), K, and Pb anomalies (Fig. 8a).

Compared with the other granitoids in this region, such as the
Baoshan granitoids and Tongshanling granitoids (Wang et al.,
2003a), the Shuikoushan granitoids have a relatively low SiO2

concentration, but high MgO, FeO(Total), Al2O3, TiO2, P2O5 (Fig. 6),
compatible element (Ni, Co and Sc), and LREE contents. Rocks from
Shuikoushan intrusion are also significantly different from
neighboring contemporaneity peraluminous S-type granitoids
(e.g., Xihuashan and Yaogangxian) (Figs. 6, 8b and 9b). These geo-
chemical characteristics indicate that the Shuikoushan granitoid
intrusion had a unique forming mechanism.
4.3. Sr–Nd isotopic composition

Rocks from the Shuikoushan intrusion have restricted present-
day 87Sr/86Sr (0.711820–0.711864) and 143Nd/144Nd (0.512120–
0.512131) ratios. Their age-corrected initial 87Sr/86Sr (ISr) ratios
range from 0.7101 to 0.7102 (Table 3); and eNd(t) values range from
�5.92 to �6.13. Their two-stage Nd model ages (T2DM) are mostly
between 1.43 and 1.44 Ga (Table 3). These Sr–Nd isotopic values
are the same as those previous reported (eNd(158.3 Ma) = �5.81
to �6.08) (Wang et al., 2003a). Compared with the Tongshanling
and Baoshan granitoids, Shuikoushan granitoids show homoge-
neous Sr–Nd isotopic compositions (Fig. 9a).



Table 1
SIMS zircon U–Pb isotopic data for the Shuikoushan granodiorites (sample SKS-31).

Sample/
spot #

U
(ppm)

Th
(ppm)

Th/U
ratio

f206
(%)

207Pb/235U ±1r
(%)

206Pb/238U ±1r
(%)

207Pb/206Pb ±1r
(%)

t207/206
(Ma)

±1r
(Ma)

t207/235
(Ma)

±1r
(Ma)

t206/238
(Ma)

±1r
(Ma)

SKS-31@01 298 170 0.742 0.33 0.16789 2.88 0.0251 1.56 0.04859 2.42 159.7 2.5 157.6 4.2 159.6 2.5
SKS-31@02 447 267 0.776 0.22 0.16421 2.44 0.0246 1.50 0.04851 1.93 156.5 2.3 154.4 3.5 156.4 2.3
SKS-31@03 464 215 0.312 0.00 0.17205 2.40 0.0245 1.54 0.05089 1.84 155.8 2.4 161.2 3.6 156.2 2.4
SKS-31@04 393 194 0.400 0.31 0.16870 2.81 0.0245 1.79 0.05003 2.17 155.6 2.8 158.3 4.1 155.8 2.8
SKS-31@05 388 234 0.453 0.00 0.16729 2.77 0.0241 1.53 0.05025 2.31 153.6 2.3 157.1 4.0 153.8 2.3
SKS-31@06 413 207 0.591 0.00 0.16972 3.04 0.0253 1.65 0.04874 2.55 160.9 2.6 159.2 4.5 160.8 2.6
SKS-31@07 761 456 0.487 0.04 0.17128 2.86 0.0248 1.51 0.05001 2.42 158.0 2.4 160.5 4.3 158.2 2.4
SKS-31@08 547 300 0.523 0.11 0.16610 2.29 0.0244 1.50 0.04929 1.73 155.6 2.3 156.0 3.3 155.7 2.3
SKS-31@09 462 209 0.297 0.04 0.17584 2.56 0.0249 1.60 0.05126 2.00 158.0 2.5 164.5 3.9 158.4 2.5
SKS-31@10 523 225 0.396 0.00 0.17148 2.47 0.0251 1.52 0.04954 1.95 159.8 2.4 160.7 3.7 159.8 2.4
SKS-31@11 426 167 0.428 0.35 0.16376 3.58 0.0243 1.50 0.04880 3.25 155.1 2.3 154.0 5.1 155.0 2.3
SKS-31@12 424 287 0.748 0.07 0.16208 2.44 0.0241 1.51 0.04883 1.92 153.4 2.3 152.5 3.5 153.4 2.3
SKS-31@13 243 93 0.315 0.00 0.17721 3.11 0.0255 1.52 0.05035 2.72 162.3 2.5 165.7 4.8 162.5 2.4
SKS-31@14 482 175 0.295 0.00 0.17005 2.34 0.0248 1.52 0.04974 1.78 157.8 2.4 159.5 3.5 157.9 2.4
SKS-31@15 564 239 0.667 0.09 0.16772 2.33 0.0253 1.51 0.04803 1.78 161.5 2.4 157.4 3.4 161.2 2.4
SKS-31@16 477 210 0.444 0.15 0.17350 2.61 0.0254 1.54 0.04948 2.11 161.9 2.5 162.4 3.9 161.9 2.5
SKS-31@17 528 282 0.491 0.00 0.17731 2.61 0.0259 1.55 0.04971 2.10 164.6 2.5 165.7 4.0 164.6 2.5
SKS-31@18 391 255 0.553 0.10 1.12558 1.77 0.1225 1.50 0.06665 0.94 742.4 10.8 765.6 9.6 744.8 10.6
SKS-31@19 445 163 0.306 0.07 0.16727 2.81 0.0243 1.53 0.05002 2.36 154.3 2.3 157.0 4.1 154.5 2.3
SKS-31@20 679 476 1.034 0.04 0.16835 2.17 0.0253 1.56 0.04824 1.50 161.4 2.5 158.0 3.2 161.1 2.5
SKS-31@21 690 344 1.172 0.00 0.16952 2.18 0.0259 1.52 0.04744 1.56 165.3 2.5 159.0 3.2 164.9 2.5
SKS-31@22 487 206 0.413 0.00 0.16788 2.35 0.0248 1.50 0.04918 1.81 157.7 2.4 157.6 3.4 157.7 2.3
SKS-31@23 443 282 0.586 0.07 0.16596 2.56 0.0244 1.51 0.04940 2.07 155.1 2.3 155.9 3.7 155.2 2.3
SKS-31@24 402 250 0.957 0.08 0.16809 2.85 0.0253 1.54 0.04825 2.40 161.1 2.5 157.8 4.2 160.9 2.4

Note: f206 is the percentage of common 206Pb in total 206Pb.
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4.4. Zircon Hf–O isotope

In situ Hf and O isotopic analyses were conducted on zircon
grains from samples SKS-31 and SKS-36 (Table 4). Zircons from
sample SKS-31 have fairly homogenous Hf and O isotopic
compositions. Their present 176Hf/177Hf ranges from 0.282391 to
0.282449, corresponding to eHf(t) from �10.2 to �8.1. They have
high zircon d18O (8.7–9.4‰) and middle Paleoproterozoic Hf
two-stage model ages (T2DM = 1.7–1.9 Ga). The measured Hf and
O isotopes form a normal Gaussian distribution and yield low
average eHf(t) values of�9.1 ± 0.2 (2r) (Fig. 10a) and a high average
of d18O values 9.2‰ ± 0.1‰ (2r) (Fig. 10b). Similarly, zircons from
sample SKS-36 also show relatively homogenous Hf and O isotopic
compositions. Their 176Hf/177Hf varies from 0.282376 to 0.282470,
corresponding to eHf(t) = �10.6 to �7.4 and T2DM = 1.7–1.9 Ga.
The normal distribution existed with an average of eHf(t) value
of �8.7 ± 0.3 (2r) (Fig. 10c). They also have a high and
constant d18O value (8.4‰ and 9.7‰) with an average of
d18O = 9.1‰ ± 0.2‰ (2r) (Fig. 10d).
5. Discussions

This study, together with previous data (Ma et al., 2006; Wang
et al., 2002, 2003a; Zuo, 2014), shows that rocks from Shuikoushan
granitoid intrusion have the following characteristic features of
elements and isotope geochemistry: (1) fractionated REE patterns
with low HREE contents, negative high-field-strength elements
(HFSE) anomalies (Nb, Ta, and Ti), and positive anomalies in Pb
and K (Figs. 7 and 9); (2) a late Jurassic age of 158 Ma for magmatic
activity, Neoproterozoic age for the inherited zircon cores (745 Ma)
(Fig. 4b), and middle Paleoproterozoic Hf two-stage model ages
(1.7–1.9 Ga); (3) moderately high initial 87Sr/86Sr ratios of
0.7101–0.7102 and negative eNd(t) values of �5.92 to �6.13; and
(4) relatively homogeneous high zircon d18O ratios of 8.4‰ to
9.7‰ and negative eHf(t) values of �10.6 to �8.1. These new find-
ings were used to examine the interrelated magmatic and tectonic
processes that have resulted in these distinguishing characteristics
of Shuikoushan granitoids as compared with other granitoids in
the adjacent region.
5.1. Genetic type: I-type or S-type?

Based on chemical and mineralogical criteria, granitoid rocks
are classified as I-, S-, A-, and M types (Chappell and White,
1974; White and Chappell, 1983; Whalen, 1985; Whalen et al.,
1987). The Shuikoushan granitoids show high initial 87Sr/86Sr
ratios (0.7101–0.7102) and negative eNd(t) values (�5.92 to
�6.13). They also have negative zircon eHf(t) (�10.6 to �8.1) and
high d18O (8.4–9.7‰) values that are substantially different from
rocks from mantle sources. Therefore, they are not M-type grani-
toids that are generally derived from mantle source or formed by
the partial melting of juvenile crust (Whalen, 1985).

A-type granitoid typically contains high-temperature
anhydrous minerals, such as pyroxene, fayalite, and interstitial
(late-crystallizing) biotite and amphibole (King et al., 1997). Feld-
spar from A-type granitoid is mainly alkali feldspar, commonly
albite–orthoclase solid solutions or intergrowths (Collins et al.,
1982). Additionally, micrographic intergrowth of quartz and alkali
feldspar is very common (Collins et al., 1982; Whalen et al., 1987).
A-type granitoids are characterized by the enrichment of the HFSE
and REE concentrations with Zr higher than 250 ppm and Zr + Nb
+ Ce + Y higher than 350 ppm (Collins et al., 1982; Whalen et al.,
1987). Rocks from the Shuikoushan intrusion were previously
considered as A-type granitoids (Jin and Luo, 2012). However, the
Shuikoushan granitoids contain biotite and hornblende which are
not interstitial minerals (Fig. 3). In addition, they do not have
pyroxene or fayalite. Typical mineral assemblage of A-type grani-
toid has not been identified in Shuikoushan granitoids (Fig. 3).
They also have relatively low Zr, Nb, Ce, and Y contents (Fig. 11).
The mineral assemblage and chemical composition indicate that
rocks from the Shuikoushan intrusion are not A-type granitoids.

S-type granitoids generally contain Al-rich minerals, such as
cordierite or muscovite, whereas I-type granitoids always contain
hornblende, especially at the more mafic end of the compositional



Table 2
Major (wt.%) and trace element (ppm) data for the Shuikoushan granodiorites.

Sample SKS-6 SKS-15 SKS-16 SKS-29 SKS-30 SKS-31 SKS-32 SKS-33 SKS-35 SKS-36 SKS-37 SKS-50 SKS-123 SKS-124 SKS-125

Major element (wt.%)
SiO2 62.3 62.4 65.2 62.1 63.7 64.4 62.8 62.0 62.0 62.3 62.1 62.2 59.6 60.6 58.4
Al2O3 15.8 16.0 15.0 15.7 15.4 16.0 15.4 16.1 15.8 15.7 15.5 15.8 16.2 17.0 17.2
Fe2O3

T 6.21 5.09 4.06 6.27 5.04 6.12 5.80 6.51 5.28 6.04 5.66 6.08 7.42 6.72 7.26
MgO 2.59 2.76 2.09 2.58 3.19 2.67 2.51 2.38 2.29 2.90 2.38 2.46 2.53 2.44 2.32
CaO 3.65 1.50 2.04 3.65 2.87 3.43 4.10 3.30 4.18 3.43 4.64 3.46 5.01 3.90 2.94
Na2O 2.91 3.58 2.66 3.06 2.65 3.18 2.50 3.05 3.32 3.42 3.26 3.43 3.30 2.29 2.12
K2O 4.00 3.97 4.85 4.02 4.00 3.98 3.10 3.88 3.55 3.77 3.62 4.07 2.78 4.29 5.17
MnO 0.09 0.08 0.06 0.09 0.06 0.10 0.11 0.12 0.07 0.07 0.09 0.08 0.11 0.08 0.07
TiO2 0.70 0.68 0.57 0.70 0.70 0.74 0.71 0.76 0.70 0.70 0.71 0.69 0.78 0.86 0.89
P2O5 0.42 0.28 0.27 0.41 0.34 0.36 0.35 0.37 0.34 0.34 0.34 0.34 0.41 0.44 0.52
L.O.I. 2.93 2.83 4.71 2.05 3.91 2.27 4.24 3.06 3.63 2.78 3.17 2.82 2.90 2.41 3.11
Total 101.5 99.1 101.5 100.6 101.3 101.3 101.5 101.5 101.1 101.4 101.5 101.5 101.0 101.0 100.0
K2O/Na2O 1.37 1.11 1.82 1.31 1.51 1.25 1.24 1.27 1.07 1.10 1.11 1.19 0.84 1.87 2.44
A/CNK 1.00 1.23 1.13 0.98 1.10 1.01 1.03 1.06 0.93 0.98 0.98 0.97 0.98 1.09 1.19
K2O + Na2O 6.91 7.55 7.51 7.07 6.65 7.16 5.60 6.93 6.87 7.18 6.88 7.51 6.08 6.58 7.29
Mg# 0.32 0.38 0.36 0.31 0.41 0.33 0.32 0.29 0.33 0.35 0.32 0.31 0.27 0.29 0.26

Trace element (ppm)
Sc 16.6 13.1 15.2 15.6 15.5 17.4 14.4 15.5 15.2 16.3 16.8 16.7 18.0 17.8 20.3
V 135 108 118 129 123 142 115 134 130 131 135 135 138 152 180
Cr 43.0 32.6 57.1 35.0 32.9 40.3 30.2 35.6 36.4 35.7 37.4 36.1 30.8 29.6 42.0
Co 180 109 165 145 168 133 134 143 178 139 145 142 101 99.5 60.0
Ni 14.7 12.5 21.0 11.9 9.6 12.0 11.1 11.8 12.4 12.5 11.2 10.7 10.6 10.7 12.4
Cu 25.5 201.8 123.8 31.4 81.9 32.6 471 12.1 17.4 10.8 27.9 13.2 45.0 38.9 75.6
Zn 90.8 71.7 81.5 97.2 102.5 101.7 64.8 63.6 103.8 62.6 89.8 83.2 90.0 71.1 72.3
Ga 19.2 18.4 19.8 18.2 19.0 19.6 18.3 19.5 18.7 19.0 18.4 19.7 18.5 19.5 17.5
Ge 1.57 1.54 1.35 1.58 1.46 1.52 1.39 1.38 1.32 1.47 1.38 1.59 1.62 1.61 1.31
As 12.36 11.99 12.26 12.01 12.33 12.37 12.65 12.27 12.35 12.74 12.89 12.73 1.75 1.87 2.14
Rb 132 168 144 107 147 135 224 116 112 114 112 133 99 157 165
Sr 491 356 309 494 442 510 180 426 446 441 465 491 478 450 198
Y 24.6 24.0 21.2 23.9 23.0 24.8 24.4 21.4 21.4 22.9 23.9 24.7 26.3 25.1 24.0
Zr 132 139 152 136 133 124 156 130 151 129 127 141 129 125 117
Nb 14.6 15.6 16.9 14.6 14.2 14.5 15.1 15.1 14.5 14.6 14.7 14.8 14.1 15.7 14.0
Mo 1.63 2.03 69.43 2.48 1.35 1.45 1.02 3.12 2.86 3.32 1.46 1.23 0.91 1.00 0.72
Cs 5.16 5.72 6.14 4.01 5.65 5.89 12.14 3.57 4.29 3.62 4.32 5.70 6.27 19.30 14.20
Ba 729 710 777 645 660 729 664 579 619 591 630 681 607 758 805
Hf 3.69 4.00 4.01 3.76 3.49 3.37 4.11 3.69 4.12 3.82 3.71 3.95 3.59 3.65 3.23
Ta 0.92 1.08 1.05 0.96 0.90 0.82 0.87 0.95 0.91 0.98 0.96 0.96 1.60 2.14 1.50
Pb 39.9 16.4 8.7 27.3 67.8 27.6 9.6 29.6 20.9 35.3 21.9 23.2 16.9 22.5 12.8
Th 13.3 17.6 13.1 12.7 12.4 10.4 12.3 13.5 12.5 14.1 13.2 13.8 12.6 12.6 9.56
U 2.97 4.04 3.29 3.27 3.05 2.45 2.71 3.16 2.96 3.32 2.84 3.19 2.40 4.00 2.95
La 43.0 44.3 40.2 36.6 37.2 36.6 38.8 35.2 38.3 39.2 37.4 43.0 45.5 46.3 47.5
Ce 79.1 78.9 72.1 68.5 68.7 69.3 71.6 62.5 70.9 72.2 70.1 81.7 88.7 93.4 92.5
Pr 9.30 8.92 8.14 8.09 8.15 8.49 8.54 7.58 8.35 8.62 8.44 9.50 10.7 11.0 10.8
Nd 34.0 31.7 29.6 30.0 29.8 32.5 31.6 28.1 30.5 31.9 30.6 34.6 40.9 40.4 43.2
Sm 6.38 5.94 5.56 5.74 5.83 6.44 6.16 5.49 5.63 6.13 5.99 6.49 7.96 7.05 7.87
Eu 1.66 1.58 1.41 1.51 1.53 1.62 1.36 1.43 1.46 1.48 1.49 1.63 2.25 1.82 1.72
Gd 4.82 4.54 4.09 4.29 4.41 4.69 4.50 4.00 4.05 4.21 4.23 4.70 6.60 5.81 6.69
Tb 0.87 0.81 0.74 0.79 0.80 0.85 0.86 0.73 0.76 0.83 0.84 0.90 1.06 0.88 0.94
Dy 4.39 4.08 3.75 4.06 4.01 4.27 4.42 3.72 3.73 4.17 4.45 4.45 5.23 4.62 4.71
Ho 0.94 0.92 0.81 0.87 0.84 0.92 0.95 0.80 0.82 0.92 0.94 0.96 1.05 0.94 0.90
Er 2.50 2.43 2.16 2.33 2.27 2.45 2.57 2.09 2.15 2.43 2.49 2.51 2.89 2.85 2.44
Tm 0.35 0.35 0.31 0.34 0.31 0.34 0.35 0.29 0.30 0.35 0.36 0.35 0.43 0.41 0.35
Yb 2.30 2.34 2.11 2.24 2.02 2.19 2.26 1.92 1.97 2.28 2.39 2.38 2.65 2.66 2.09
Lu 0.34 0.34 0.31 0.34 0.30 0.33 0.33 0.28 0.29 0.33 0.36 0.35 0.39 0.40 0.29
P

REE 190 187 171 166 166 171 174 154 169 175 170 194 216 219 222
[La/Sm]N 4.35 4.82 4.67 4.11 4.11 3.66 4.06 4.13 4.39 4.13 4.03 4.27 3.69 4.24 3.90
[Gd/Yb]N 1.73 1.60 1.60 1.58 1.81 1.78 1.65 1.73 1.70 1.52 1.47 1.63 2.06 1.81 2.65
[La/Yb]N 13.4 13.6 13.7 11.7 13.2 12.0 12.3 13.2 13.9 12.3 11.2 13.0 12.3 12.5 16.3
Eu/Eu⁄ 0.92 0.93 0.90 0.93 0.92 0.90 0.79 0.93 0.94 0.89 0.91 0.90 0.95 0.87 0.73
Rb/Sr 0.27 0.47 0.47 0.22 0.33 0.26 1.25 0.27 0.25 0.26 0.24 0.27 0.21 0.35 0.83

Note: Mg# = Mg/(Mg + Fe2+), FeOT = 0.8998 � Fe2O3
T. Total iron as Fe2O3

T. A/CNK = molar Al2O3/(CaO + Na2O + K2O).
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spectrum (Chappell et al., 2012). Shuikoushan granitoids com-
monly contain hornblende. However, no peraluminous minerals,
such as muscovite, garnet, and cordierite, have been identified in
Shuikoushan granitoids (Fig. 3). There is a negative correlation
between P2O5 and SiO2 (Fig. 6e), which is considered as an impor-
tant feature of I-type granitoids, and thus distinguishing them from
S-type granitoids (Chappell and White, 1992). Some trace ele-
ments, such as Pb, also behave distinctly in the I- and S-type melts
(Fig. 6g). Their Sr–Nd isotopic compositions are similar to those of
the I-type granitoids from the Lachlan Fold Belt (Fig. 9a). Therefore,
it seems that the Shuikoushan granitoids are not S-type granitoids,
but rather belong to the I-type. However, some samples were per-
aluminous and K-rich with high A/CNK (>1.0) and K2O/Na2O (>1.0)
ratios (Table 2), whereas typical I-type granitoids usually have low
A/CNK and K2O/Na2O ratios. Peraluminous I-type granitoids may
result from fractional crystallization of hornblende (Cawthorn
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and Brown, 1976) or from partial melting of mafic source rocks
(Chappell et al., 2012) or from crust–mantle interaction (Davis
and Hawkesworth, 1993), which is discussed below.

5.2. Nature of the source region

Previous studies confirmed that the partial melting of supra-
crustal metasedimentary rocks can generate peraluminous silicic
magma and form S-type granitoids (Chappell and White, 1974;
Chappell et al., 2012). However, rocks from the Shuikoushan intru-
sion are I-type peraluminous granitoids. Their whole rock Sr–Nd
and zircon Hf–O isotopic compositions are substantially different
from those of granitoids derived from metasedimentary sources
(Figs. 9a and 12a). Their compositions are also different from those
of contemporaneous peraluminous tungsten-mineralized S-type
granitoids considered to be of metasedimentary origin in the
region (Figs. 6, 8b and 9b). Thus, it is impossible that the Shuik-
oushan peraluminous I-type granitoids were formed from the par-
tial melting of supracrustal metasedimentary rocks. However,
there are two other possibilities that may account for the origin
of the Shuikoushan granitoid rocks: (1) mixing of mantle-derived
mafic source and crust-derived felsic magma (Wang et al., 2001,
2003a); and (2) partial melting of mafic rocks in middle–lower
crust.

Mixing between mantle and felsic magmas may result in a neg-
ative correlation of whole-rock Sr–Nd isotopes and zircon Hf–O
isotopes, respectively (Li et al., 2007, 2009a). Additionally, mafic
microgranular enclaves (MME) may occur in host garnitoids after
mixing between mantle and felsic magmas (e.g., Barbarin, 1988).
However, no mafic enclaves have been identified in the Shuik-
oushan granitoids. They have constant whole-rock Sr–Nd isotopes
(Figs. 6j and 10a) and zircon Hf–O isotopes, respectively (Fig. 12a),
indicating a relatively homogeneous source. It is unlikely that the
mixing of a mafic source and felsic magmas could have yielded
the Shuikoushan granitoids with homogeneous whole-rock Sr–Nd
and zircon Hf–O isotopes. Moreover, the volume of mafic–ultra-
mafic rocks in southern Hunan Province is very small, which also
argues against this possibility. The Shuikoushan granitoid rocks
have negative whole-rock eNd(t) (�5.92 to �6.13) and zircon eHf(t)
(�10.6 to �8.1) values, which are similar to the continental
lower crustal Hf and Nd isotopic compositions, respectively
(Figs. 9b and 12b). Their Nd isotopic compositions are similar to
those of granulite (�6.59 to �7.34) from the southern Hunan
Province and Zhejiang Province, which were considered to be rep-
resentative of middle/lower crustal composition (Fig. 9a) (Kong
et al., 2000; Yu et al., 2003). Thus, the middle to lower crust, as a
relatively homogeneous mafic source, was strongly reworked in
the late Jurassic in generating Shuikoushan peraluminous I-type
granitoids.

The partial melting of mafic middle–lower crust may be
proposed as a mechanism to yield the Shuikoushan granitoid
intrusion. Howmaterials can generate Shuikoushan granitoids that
have high Al2O3 and K2O contents but are of I-type rocks should be
determined. It is known from experimental studies that the K
content of a melt source has a significant influence on the derived
melt. Meta-tholeiitic rocks have a low K2O concentration that can-
not yield high-K calc-alkaline melts (Roberts and Clemens, 1993).
The high K2O concentrations of the Shuikoushan granitoid rocks
could only have been derived from a K-rich mafic source. Experi-
ments reveal that hydrous melting of mafic rocks, such as amphi-
bolites, can generate a peraluminous melt with high K content
(Beard and Lofgren, 1991; Wolf and Wyllie, 1994; Rapp and
Watson, 1995; Chappell et al., 2012). Dehydration melting of
hydrous mineral-bearing mafic rocks yield water-undersaturated
mildly peraluminous granodioritic melts (Beard and Lofgren,
1991; Wolf and Wyllie, 1994). Water-saturated melting of these
rocks generated strong peraluminous melts enriched in Ca and
depleted in Fe, Mg, and K (Beard and Lofgren, 1991). Furthermore,
the Shuikoushan granitoids are characterized by high Fe, Mg, and K
(Fig. 6) and low SiO2 (58.4–65.2%) concentrations. Their A/CNK
values range from 0.92 to 1.23 with an average value of 1.04. These
characteristics are similar to those garnered by water-unsaturated
dehydration melting of mafic rocks, such as amphibolites.
However, residual mineral assembles after melt extraction play a
crucial role in forming magmas with peculiar geochemical charac-
teristics (Beard and Lofgren, 1991; Douce, 1999). Rocks from the
Shuikoushan intrusion show fractionation of REE, flat HREE pat-
terns, low HREE contents, and weakly negative Eu anomalies in
the chondrite normalized REE patterns (Fig. 7a). Low HREE abun-
dance and fractionated REE indicate the possible presence of garnet
in the residuum after melting. However, fractionation of HREE in
the Shuikoushan granitoid rocks is insignificant, as shown by their
relatively flat HREE patterns (Fig. 7a). This is inconsistent with
modern adakites with significant fractionation of HREE (steep
HREE patterns), which are typically considered as a garnet residual
in source (Martin, 1999). These plat HREE patterns suggest that
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amphibole was another residual mineral during the partial melting
of a mafic source. The residual amphiboles can lower the middle
REE (MREE) concentrations because of its high partition coeffi-
cients (KD) for these elements in intermediate to felsic melts
(Arth, 1976; Bea et al., 1994). An amphibole-bearing residue for
the Shuikoushan granitoids is consistent with a low TiO2

concentration (Fig. 6d), low MREE contents (Fig. 7a), and low
Rb/Sr ratio (Table 2). Moreover, weakly negative Eu anomalies
(Fig. 7a) and insignificant Sr enrichment (Fig. 8a) relative to LREE
are observed in majority of the Shuikoushan granitoids, implying
that some plagioclase may have also remained in the magma
chamber (Martin, 1999). Thus, garnet, amphibole and plagioclase
are major residual minerals in mafic source during dehydration
melting of amphibolites.

Dehydration-melting of amphibolite has been widely experi-
mental studied (Beard and Lofgren, 1991; Wyllie and Wolf, 1993;
Wolf and Wyllie, 1994). These studies suggest that the hydrous
mineral amphibole breakdown will initially supply water during
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the first stage of melting, which progressively advances the
dehydration-melting of amphibolite in generating water-
unsaturated melts (Wolf and Wyllie, 1994; Rapp and Watson,
1995). A large increase in melts, along with the loss of amphibole
and the decrease of plagioclase, occurs when clinopyroxene and
garnet increase (Wolf and Wyllie, 1994). Garnet forms from the
breakdown of amphibole and plagioclase: plagioclase + amphi-
bole ± quartz = garnet + clinopyroxene + amphibole + plagioclase
+ melt (Wolf and Wyllie, 1994; Zhao et al., 2007). Thus, the garnet,
amphibole, and plagioclase may be major stable residual phase
after melt extraction. The dehydration melting of mafic rock
requires a temperature greater than 850 �C (Beard and Lofgren,



Table 3
Whole-rock Sr–Nd isotopic compositions of the Shuikoushan granodiorites.

Sample 87Rb/86Sr 87Sr/86Sr ±2r (87Sr/86Sr)i 143Nd/144Nd ±2r 147Sm/144Nd (143Nd/144Nd)i eNd(t) fSm/Nd TDM (Ga) T2DM (Ga)

SKS-6 0.778 0.711854 6 0.7101 0.512231 5 0.107 0.512120 �6.13 �0.46 1.31 1.44
SKS-31 0.764 0.711820 9 0.7101 0.512255 3 0.120 0.512131 �5.92 �0.39 1.45 1.43
SKS-36 0.749 0.711845 7 0.7102 0.512241 3 0.116 0.512121 �6.12 �0.41 1.42 1.44
SKS-50 0.782 0.711864 7 0.7101 0.512248 15 0.113 0.512131 �5.93 �0.42 1.37 1.43

Note: 87Rb/86Sr and 147Sm/144Nd are calculated using whole-rock Rb, Sr, Sm, Nd concentrations determined by ICP-MS. eNd(t) values are calculated using present-day
(147Sm/144Nd)CHUR = 0.1967 and (143Nd/144Nd)CHUR = 0.512638 (Goldstein and Jacobsen, 1988). TDM values are calculated using present-day (147Sm/144Nd)DM = 0.2137 and
(143Nd/144Nd)DM = 0.51315 (DePaolo, 1981). The single-stage Nd model age (TDM) is calculated as same as (Li et al., 2003b); the two-stage Nd model age (T2DM) is calculated
using the same formulation as (Keto and Jacobsen, 1987). The decay constant kSm–Nd = 6.54 � 10�12 per year. Sr–Nd isotopes are corrected at t = 158.3 Ma.

Table 4
Zircon Hf–O isotopic data for the Shuikoushan granodiorites.

Sample and
spot

176Lu/177Hf ±1r 176Hf/177Hf ±1r t
(Ma)

(176Hf/177Hf)
i

eHf(t) ±1r fLu/Hf TDM
(Ga)

±1r
(Ma)

T2DM
(Ga)

±1r
(Ma)

d18O
(‰)

±2r

Sample SKS-31
SKS-31@01 0.00120 0.000015 0.282424 0.000010 159.6 0.282420 �8.9 0.3 �0.96 1.18 13.54 1.77 21.27 9.17 0.30
SKS-31@02 0.00172 0.000038 0.282401 0.000010 156.4 0.282396 �9.9 0.4 �0.95 1.23 14.56 1.82 22.50 9.43 0.46
SKS-31@03 0.00129 0.000014 0.282405 0.000008 156.2 0.282401 �9.7 0.3 �0.96 1.21 11.54 1.81 18.07 9.13 0.32
SKS-31@04 0.00164 0.000030 0.282428 0.000009 155.8 0.282423 �8.9 0.3 �0.95 1.19 13.21 1.77 20.48 9.34 0.28
SKS-31@05 0.00145 0.000019 0.282427 0.000009 153.8 0.282423 �9.0 0.3 �0.96 1.18 13.43 1.77 20.95 9.33 0.41
SKS-31@06 0.00170 0.000026 0.282422 0.000011 160.8 0.282417 �9.0 0.4 �0.95 1.20 16.28 1.78 25.22 9.37 0.32
SKS-31@07 0.00177 0.000020 0.282445 0.000010 158.2 0.282440 �8.3 0.4 �0.95 1.17 15.00 1.73 23.22 9.31 0.32
SKS-31@08 0.00105 0.000039 0.282398 0.000011 155.7 0.282395 �9.9 0.4 �0.97 1.21 15.41 1.83 24.24 8.83 0.41
SKS-31@09 0.00175 0.000044 0.282417 0.000012 158.4 0.282412 �9.3 0.4 �0.95 1.21 16.65 1.79 25.70 8.93 0.33
SKS-31@10 0.00162 0.000016 0.282421 0.000009 159.8 0.282416 �9.1 0.3 �0.95 1.20 12.14 1.78 18.86 9.24 0.34
SKS-31@11 0.00130 0.000023 0.282420 0.000009 155.0 0.282416 �9.2 0.3 �0.96 1.19 12.25 1.78 19.18 9.35 0.38
SKS-31@12 0.00170 0.000060 0.282434 0.000009 153.4 0.282429 �8.8 0.3 �0.95 1.18 12.77 1.75 19.60 9.13 0.31
SKS-31@13 0.00162 0.000027 0.282412 0.000009 162.5 0.282407 �9.3 0.3 �0.95 1.21 13.18 1.80 20.45 8.85 0.37
SKS-31@14 0.00193 0.000025 0.282395 0.000009 157.9 0.282390 �10.1 0.3 �0.94 1.24 13.61 1.84 20.94 9.28 0.28
SKS-31@15 0.00160 0.000041 0.282426 0.000010 161.2 0.282422 �8.9 0.4 �0.95 1.19 14.37 1.77 22.26 9.19 0.47
SKS-31@16 0.00187 0.000112 0.282409 0.000011 161.9 0.282403 �9.5 0.4 �0.94 1.22 15.86 1.81 23.82 9.06 0.37
SKS-31@17 0.00140 0.000043 0.282437 0.000010 164.6 0.282432 �8.4 0.4 �0.96 1.17 14.66 1.74 22.84 8.74 0.39
SKS-31@18 0.00312 0.000028 0.282527 0.000011 744.8 0.282483 6.2 0.4 �0.91 1.09 15.88 1.26 23.85 9.06 0.31
SKS-31@19 0.00121 0.000031 0.282391 0.000010 154.5 0.282387 �10.2 0.3 �0.96 1.23 13.71 1.85 21.48 9.22 0.36
SKS-31@20 0.00201 0.000025 0.282449 0.000009 161.1 0.282443 �8.1 0.3 �0.94 1.17 12.82 1.72 19.69 9.10 0.35
SKS-31@21 0.00158 0.000008 0.282438 0.000009 164.9 0.282433 �8.4 0.3 �0.95 1.17 13.26 1.74 20.64 9.34 0.43
SKS-31@22 0.00170 0.000033 0.282422 0.000009 157.7 0.282417 �9.1 0.3 �0.95 1.20 13.44 1.78 20.79 8.92 0.44
SKS-31@23 0.00175 0.000014 0.282439 0.000010 155.2 0.282434 �8.5 0.4 �0.95 1.17 14.79 1.74 22.90 9.35 0.45
SKS-31@24 0.00134 0.000053 0.282401 0.000009 160.9 0.282397 �9.7 0.3 �0.96 1.21 13.01 1.82 20.20 9.09 0.33
SKS-31@25 0.00164 0.000019 0.282440 0.000009 158.3 0.282436 �8.4 0.3 �0.95 1.17 12.69 1.74 19.70 9.40 0.42
SKS-31@26 0.00150 0.000016 0.282414 0.000010 158.3 0.282410 �9.3 0.3 �0.95 1.20 13.92 1.79 21.69
SKS-31@27 0.00156 0.000026 0.282439 0.000010 158.3 0.282435 �8.5 0.3 �0.95 1.17 13.77 1.74 21.40
SKS-31@28 0.00155 0.000021 0.282439 0.000011 158.3 0.282434 �8.5 0.4 �0.95 1.17 15.40 1.74 23.98

Sample SKS-36
SKS-36@01 0.00156 0.000055 0.282418 0.000009 155.4 0.282413 �9.3 0.3 �0.95 1.20 12.42 1.79 19.14 9.68 0.33
SKS-36@02 0.00094 0.000007 0.282444 0.000009 161.3 0.282441 �8.2 0.3 �0.97 1.14 12.96 1.72 20.51 9.60 0.27
SKS-36@03 0.00113 0.000011 0.282409 0.000011 161.0 0.282406 �9.4 0.4 �0.97 1.20 14.83 1.80 23.34 9.48 0.33
SKS-36@04 0.00113 0.000031 0.282376 0.000010 159.5 0.282373 �10.6 0.4 �0.97 1.24 14.16 1.87 22.24 9.38 0.31
SKS-36@05 0.00185 0.000034 0.282429 0.000009 157.0 0.282424 �8.9 0.3 �0.94 1.19 13.23 1.76 20.38 9.43 0.43
SKS-36@06 0.00153 0.000033 0.282436 0.000009 160.1 0.282431 �8.5 0.3 �0.95 1.17 13.38 1.74 20.80 9.28 0.40
SKS-36@07 0.00128 0.000009 0.282422 0.000010 155.1 0.282418 �9.1 0.4 �0.96 1.18 14.83 1.78 23.26 8.97 0.34
SKS-36@08 0.00149 0.000027 0.282421 0.000012 158.7 0.282417 �9.1 0.4 �0.96 1.19 16.54 1.78 25.78 9.46 0.55
SKS-36@09 0.00160 0.000022 0.282470 0.000013 158.9 0.282466 �7.4 0.5 �0.95 1.12 18.75 1.67 29.17 9.20 0.41
SKS-36@10 0.00100 0.000020 0.282452 0.000010 157.2 0.282450 �8.0 0.4 �0.97 1.13 14.03 1.71 22.17 9.11 0.30
SKS-36@11 0.00135 0.000013 0.282432 0.000011 159.2 0.282428 �8.7 0.4 �0.96 1.17 15.45 1.75 24.19 8.89 0.39
SKS-36@12 0.00148 0.000041 0.282446 0.000009 158.2 0.282441 �8.2 0.3 �0.96 1.16 13.47 1.72 20.94 9.03 0.46
SKS-36@13 0.00146 0.000025 0.282450 0.000011 161.8 0.282446 �8.0 0.4 �0.96 1.15 15.05 1.71 23.48 8.61 0.41
SKS-36@14 0.00160 0.000026 0.282427 0.000010 164.4 0.282422 �8.8 0.4 �0.95 1.19 14.52 1.76 22.55 9.07 0.37
SKS-36@15 0.00156 0.000034 0.282444 0.000011 156.6 0.282439 �8.3 0.4 �0.95 1.16 15.11 1.73 23.49 9.09 0.34
SKS-36@16 0.00206 0.000037 0.282422 0.000012 159.4 0.282416 �9.1 0.4 �0.94 1.21 16.99 1.78 26.04 9.02 0.27
SKS-36@17 0.00119 0.000064 0.282431 0.000010 156.0 0.282427 �8.8 0.4 �0.96 1.17 14.17 1.76 22.06 8.98 0.32
SKS-36@18 0.00158 0.000024 0.282428 0.000010 158.7 0.282423 �8.9 0.4 �0.95 1.18 14.41 1.76 22.40 8.40 0.29
SKS-36@19 0.00145 0.000021 0.282430 0.000010 163.8 0.282426 �8.7 0.4 �0.96 1.18 14.18 1.75 22.13 8.54 0.31
SKS-36@20 0.00148 0.000024 0.282439 0.000010 158.8 0.282434 �8.5 0.3 �0.96 1.17 13.72 1.74 21.38 9.02 0.38
SKS-36@21 0.00130 0.000018 0.282427 0.000009 158.8 0.282423 �8.8 0.3 �0.96 1.18 12.91 1.76 20.23

Note: Hf–O isotopic data were obtained on the same position of zircon grains; the initial Hf ratios were calculated at corresponding SIMS zircon 206Pb/238U age; eHf(t) values
are calculated using present-day (176Lu/177Hf)CHUR = 0.0332 and (176Hf/177Hf)CHUR = 0.282772 (Blichert-Toft et al., 1997). T2DM and TDM values are calculated using present-day
(176Lu/177Hf)DM = 0.0384 and (176Hf/177Hf)DM = 0.28325 (Griffin et al., 2000). The decay constant of 176Lu is 1.865 � 10�11 year�1 (Scherer et al., 2001). 176Lu/177Hf ratio of
0.015 for the averaged continental crust (Griffin et al., 2002).

J.-H. Yang et al. / Journal of Asian Earth Sciences 123 (2016) 224–242 235



0

1

2

3

4

5

6

7

R
elative probability 

N
um

be
r

Mean εHf(t)
= -9.1 ± 0.2 (2σ)

0

1

2

3

4

5

6

-12 -11 -10 -9 -8 -7 -6 -5 -4

R
elative probability 

N
um

be
r

εHf(t)

Mean εHf(t) = -8.7 0.3 (2� )

0

1

2

3

4

5

6

7

8

9

R
elative probability 

N
um

be
r

δ18O (‰)

Mean δ18O = 9.2‰ 0.1‰ (2σ)

0

1

2

3

4

5

6

7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0

R
elative

probability

N
um

be
r

(a) (b)

(c) (d)

SKS-31

SKS-36

-12 -11 -10 -9 -8 -7 -6 8.0 8.5 9.0 9.5 10.0 10.5

SKS-31

SKS-36
7

Mean δ18O = 9.1‰ 0.2‰ (2σ)

Fig. 10. Histogram for zircon eHf(t) and d18O values of rocks from the Shuikoushan intrusion.

1

10

100

1000

10 100 1000 10000

(K
2O

+N
a 2

O
)/C

aO

Zr+Nb+Ce+Y (ppm)

This study
From Wang et al.,2003a 
From Zuo et al.,2014 A-type

FG

OGT
0

100

200

300

400

500

600

700

55 60 65 70 75 80

Zr
 (p

pm
)

SiO2 (wt%)

A-type

I-type

Fig. 11. (Na2O + K2O)/CaO vs. Zr + Nb + Ce + Y classification diagram of Whalen et al. (1987). FG = fractionated M-, I-, and S-type granites; OGT = unfractionated M-, I-, and S-
type granites. Zr vs. SiO2 classification diagram of Collins et al. (1982).

236 J.-H. Yang et al. / Journal of Asian Earth Sciences 123 (2016) 224–242
1991). However, the temperature for lower crustal melting,
triggered by underplating, should not be higher than 950 �C
(Huppert and Sparks, 1988). At 850–950 �C, the pressure for stabil-
ity of garnet granulite, as a residual rock containing garnet, amphi-
bole, plagioclase and clinopyroxene, are 1.0–1.5 Gpa in depths of
25–40 km (Drummond et al., 1996; Zhao et al., 2007). Geophysical
information suggested that the thickness of crust in southern
Hunan Province during Jurassic is less than 40 km (Zhou et al.,
2012), which leads us to assume that the crust in this region
may probably be middle–lower crust. These estimates have been
confirmed by the mafic granulite enclaves in the Jurassic Daoxian
basalt at southern Hunan Province, which was conducted under
P–T conditions of 0.73 Gpa and 845–950 �C at depths of 25 km
(Kong et al., 2000). Thus, we infer that the Shuikoushan
peraluminous I-type granitoid samples, as water-unsaturated melt,
may be generated from dehydration-melting of amphibolites in
middle–lower crust at relatively high temperature conditions.

5.3. Reworking of middle to lower crust beneath Jiangnan orogen

The zircon SIMS U–Pb data of the Shuikoushan granitoids imply
magma emplacement at 158 Ma. As previously discussed, it was
likely derived from the middle to lower crust. However, it is
unclear whether the middle to lower crust is ancient or juvenile.
Previous studies suggest that juvenile crust is characterized by a
positive eHf(t) value with a young model Hf age, and a low d18O
value (Zheng et al., 2007). Most of the zircon from Shuikoushan
granitoids exhibit a negative eHf(t) value and a high d18O value
(8.4–9.7‰) with a model Hf age of 1.7–1.9 Ga, thus suggesting a
Paleoproterozoic middle–lower crustal origin. The Shuikoushan
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granitoid intrusion is located in the southwest of the suture zone in
Hunan Province, which was formed by the amalgamation of the
Yangtze and the Cathaysia blocks along the Jiangnan orogen at
ca. 830 Ma (Zhao et al., 2011; Zhao, 2015). It is unclear whether
the Paleoproterozoic middle–lower crustal source for generating
Shuikoushan granitoid intrusion is similar to the crust of the
Yangtze Block, Cathaysia Block or Jiangnan orogen (Li et al.,
2003a; Wang et al., 2003b; Rao et al., 2012). Paleoproterozoic crust
has been extrapolated within the Yangtze, Cathaysia, and Jiangnan
orogen based on detrital zircon ages and Hf isotopes (Zheng and
Zhang, 2007; Wang et al., 2010; Yu et al., 2010; Zhang and
Zheng, 2013). However, there is a Neoproterozoic fingerprint in
the Shuikoushan granitoids with an inheriting zircon age of
745 Ma (Fig. 4b). The Neoproterozoic rocks (830–740 Ma) are
intensively and extensively distributed in Jiangnan orogen, and
their Hf model ages are primarily middle Paleoproterozoic
(Zhang and Zheng, 2013). The Shuikoushan granitoid magmas
may have been contaminated by insignificant Neoproterozoic wall
rocks in the Jiannan orogen during emplacement. Additionally,
available geochronological data for Mesozoic granitoid rocks and
mineralization events statistically in the Jiangnan orogen cluster
to 150–160 Ma (Peng et al., 2008), with peaks of 158 Ma (Yang
et al., 2012; Wang et al., 2013), coincide with the timing of the
Shuikoushan granitoid intrusion. The Sr–Nd isotopic compositions
of Shuikoushan intrusion especially coincide with some contempo-
raneous intrusions from the Jiannan orogen (e.g., the Qitianling
intrusion) (Fig. 9a). Thus, we prefer that the Shuikoushan grani-
toids resulted from the reworking of ancient middle–lower crust
beneath the Jiangnan orogen during the late Jurassic period.

5.4. Fractional crystallization

The Shuikoushan granitoids have variable major and trace ele-
ment compositions. They show negative correlations for FeO(Total),
MgO, TiO2, Al2O3, and P2O5 against SiO2 (Fig. 6). In addition,
Nb–Ta–Ti negative anomalies in the primitive-mantle normalized
diagram are present as well (Fig. 8a). A positive correlation
between La/Yb and Dy/Yb ratios can also be seen in Fig. 13a. Fur-
thermore, the La/Sm ration remains constant as La concentration
increases (Fig. 13b). Previous studies suggest that these composi-
tional variations may have resulted from fractional crystallization
(Allègre and Minster, 1978). The progressive decrease in FeO(Total),
MgO, and Al2O3 as SiO2 content increases indicates the fractiona-
tion of mafic minerals. A positive correlation between Nb/Ta and
Dy/Yb ratios in the Shuikoushan granitoids strongly suggests
amphibole fractionation (Fig. 13c), owing to its KD(Nb)/KD(Ta)
and KD(Dy)/KD(Yb) values exceeding 1.0 (Sisson, 1994; Tiepolo
et al., 2001). The fractionation of amphibole can lower the Nb/Ta
and Dy/Yb ratios and cause a positive correlation between Nb/Ta
and Dy/Yb ratios in the remaining melt. Biotite has an extremely
high KD for Sc and V, but a low value for Th (Bea et al., 1994).
Additionally, it contains a high Al2O3 concentration. Thus, biotite
fractionation can increase SiO2/Al2O3 but lower Sc/Th and V/Th
ratios in residual melts.

Negative correlations between Sc/Th, V/Th, and SiO2/Al2O3

ratios in the Shuikoushan granitoids may possibly be related to
biotite fractionation (Fig. 13d–e). Moreover, negative anomalies
of Nb, Ta, and Ti are considered to be related to the fractionation
of the Ti-bearing phase, such as titanite. The progressive decrease
in P2O5 content in granitoid samples may result from apatite
fractionation. The REE partition coefficients of these fractionated
minerals in intermediate–acid melts increase with atomic number,
especially for MREE (Arth, 1976; Bea et al., 1994); and the amphi-
bole and titanite have a weak but positive Eu anomaly (Arth, 1976).
This mineral assemblage fractionated from magmas will produce a
dramatic depletion in MREE and a concomitant decrease in HREE
(Fig. 6i) with an insignificant negative Eu anomaly, which is consis-
tent with the REE pattern of the Shuikoushan granitoids (Fig. 8a).
Therefore, varying degrees of hornblende, biotite, titanite, and apa-
tite fractional crystallization may be the main mechanism respon-
sible for the variations in the chemical composition of the
Shuikoushan granitoids.

5.5. Geodynamic setting for generating Shuikoushan granitoids

South China is characterized by widespread exposed granitoids
and intermediate–acid igneous rocks of the Jurassic and Cretaceous
age (also named Yangshanian period in Chinese literature) (Fig. 1).
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Many models were proposed to explain the Mesozoic magmatism
in the last few decades (Gilder et al., 1996; Zhou and Li, 2000; Li
et al., 2003a; Xie et al., 2006; Wang et al., 2007; Sun et al., 2010).
These models can be summarized into two groups, interplate
extension/rifting and westward subduction of the paleo-Pacific
plate. The westward subduction of the paleo-Pacific plate beneath
the Eurasian continental plate is the most popular model for
understanding the Yanshanian tectonics in the South China as of
the present, although different subduction patterns of the Pacific
plate have been proposed (Jahn et al., 1990; Zhou and Li, 2000; Li
et al., 2007). However, no geochemical record of the Pacific oceanic
crust has been found in late Jurassic igneous rocks from the south-
ern Hunan Province. Some researchers suggested that the Jurassic
mantle beneath the southern Hunan Province was homogeneous
and undisturbed, and therefore unaffected by the paleo-Pacific
subduction system (Chen et al., 2008). Alternatively, it has also
been suggested that an extensional tectonic regime in interior of
South China may have initiated in the Jurassic (Gilder et al., 1996
and references therein). However, the intraplate extension model
fails to explain what tectonic process and dynamic mechanism
drove intraplate extension. Thus, the tectonic regime and geody-
namic mechanism in South China during the Mesozoic remain to
be disputed and a subject of controversy.

Based on our study, the Shuikoushan granitoids from southern
Hunan Province of South China were probably derived from dehy-
dration melting of amphibolite in the middle to lower crust of this
region. As aforementioned, dehydration melting of mafic middle to
lower crust requires temperatures in excess of ca. 850 �C (Beard
and Lofgren, 1991; Zhao et al., 2007). The heating of crustal rocks
to such temperatures demands an additional heat supply from
the mantle (Patiño-Douce and McCarthy, 1998). Previous studies
suggest that the Mesozoic superplume event was of a global scale
and related to mantle overturn (Machetel and Humler, 2003). The
Pacific superplume event, as an important constituent, may have
occurred beneath the Eurasian continent and supplied the excess
heat to fuse the lithospheric mantle and overlying crust in the tar-
get areas (Zhao et al., 2007). The coeval mafic–ultramafic rocks in
the southern Hunan Province serve as evidence that the basaltic



Fig. 14. Cartoon illustrating the formation of the Mesozoic granodiorites in the Jiangnan orogen between the Yangtze and the Cathaysia blocks in southern Hunan Province,
South China. The late Jurassic Shuikoushan granodiorites were generated by the amphibole-dehydration melting of a mafic source in the middle-to-lower crust due to
lithospheric extension.
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magma may have acted as a heat source to trigger the dehydration
melting of a mafic source in the middle–lower crust.

At the same time, the opening of the south Atlantic and India
oceans were drove by the Pacific superplume, which forced the
Pacific plate subducted beneath the Eurasian continent (Golonka
and Bocharova, 2000). However, the direction of the Pacific plate
subduction beneath the Eurasian plate altered from northwest to
west between the late Jurassic and early Cretaceous periods, corre-
sponding to the conversion of the tectonic system from EW to NNE
trend in South China (Ratschbacher et al., 2000). Regional exten-
sion and thinning of the suture zone between the Yangtze and
Cathaysia blocks also occurred in this period along the Jiangnan
orogen. Accordingly, direction and magnitude of mantle convec-
tion beneath the eastern part of the Eurasian continent may
have altered as well. As a result, the large-scale magmatism took
place between the Jurassic and Cretaceous in South China.
The Shuikoushan granitoid intrusion was emplaced during the late
Jurassic (158 Ma) and occurred near the Jurassic Shi-Hang rift zone
with A-type granitoids of the same age (Fig. 1). This is considered
to be formed at an extensional regime (Gilder et al., 1996). Thus,
it is reasonable to conclude that the Shuikoushan granitoids were
formed from the partial melting of the middle–lower crust due
to lithospheric extension, in response to both the Pacific super-
plume activity and the subduction of the Pacific plate (Fig. 14).

The suture zone is thought to be of arc-continent collision belt
between the two blocks (Zhang and Zheng, 2013; Zheng et al.,
2013). When the direction of the Pacific plate subduction was con-
verted and the mantle overturned, lithospheric extension suscepti-
bly developed along the ancient orogeny at late Jurassic. Under this
condition, the bulging of the asthenospheric mantle may have
resulted in remelting and major crustal reworking. The gravita-
tional instability of over-thickened lithospheric mélange of the
suture zone favored the detachment that likely occurred in the
more ductile parts of the lower crust (Zhao et al., 2007). As previ-
ously mentioned, the Shuikoushan granitoids in the southern
Hunan Province were generated from dehydration-melting amphi-
bolite at depths of 25–40 km. This is more than the present average
crustal depth of ca. 30 km in the southern Hunan Province (Zhou
et al., 2012). Thus, it is possible that this crustal thinning was
caused by detachment in association with the formation of the
granitoids, thus resulting in the detachment of mafic residues.
The mafic residues formed after the partial melting at middle/
lower crust depths had high densities and were thus susceptible
to detachment from the suture zone (Fig. 14). Therefore, the
detachment of mafic residues took place after the partial melting
of the middle/lower crust, which was triggered by thermal pulse
related to the mantle upwelling event.
6. Conclusions

New SIMS zircon U–Pb ages confirm that the Shuikoushan gran-
itoid intrusion was emplaced during late Jurassic period with an
age of 158.3 ± 1.2 Ma. Based on petrography, geochemistry,
whole-rock Sr–Nd isotopic, and zircon Hf–O isotopic studies, it
can be concluded that the Shuikoushan granitoids are peralumi-
nous I-type granodiorite and were derived from the partial melting
of the middle–lower crust beneath Jiangnan orogen. The extensive
fractional crystallization of hornblende, biotite, titanite, and apa-
tite may have played an important role in forming the Shuikoushan
granitoids with diverse compositions.

The Shuikoushan granitoid intrusion is located in the suture
zone between the Yangtze Block and the Cathaysia Block, but
was generated from dehydration melting of amphibolites within
the Jiangnan orogen. It was produced by the lithospheric extension
in response to the subduction of the Pacific plate and the Pacific
superplume event. During lithospheric extension, basaltic under-
plating and asthenospheric upwelling contributed significant heat
to trigger partial melting of the middle/lower crust. The detach-
ment of mafic residues took place after the dehydration-melting
of amphibolite.
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