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Introduction

Apatite, Ca5(PO4)3X (X = F, Cl, OH), is an abundant and 
common phosphate phase and an important accessory min-
eral, that widely exists in sedimentary, igneous and meta-
morphic rocks with various implications for mineralogy 
and geochemistry. Due to its unique structure and chem-
istry, apatite can accommodate numerous cations substitu-
tions for Ca2+ (Hughes and Rakovan 2002; Pan and Fleet 
2002), yielding many apatite-group minerals (Huminicki 
and Hawthorne 2002; White et al. 2005; Pasero et al. 2010; 
Hughes and Rakovan 2015). Alforsite is one of apatite-group 
minerals with chemical formula of Ba5(PO4)3Cl, which was 
first discovered in contact metamorphosed evaporitic rocks 
associated with fluorapatite and many other rare barium 
minerals, as reported by Newberry et al. (1981). In fact, 
alforsite Ba5(PO4)3Cl containing rare earth element dopants 
is widely studied as fluorescent and laser materials (Yu et al. 
1988; Sato et al. 1994; Noginov et al. 2000; Yoo et al. 2009; 
Ju et al. 2013; Kim et al. 2016). The crystal structure of 
Ba5(PO4)3Cl was determined by Hata et al. (1979) and is 
represented in Fig. 1. Similar to fluorapatite, alforsite has 
a hexagonal structure with space group of P63/m, in which 
two kinds of Ba2+ cations are Ba1 located on a threefold axis 
with nine coordinate and Ba2 in distorted pentagonal bipy-
ramidal geometry with one bond to Cl and six bonds with O 
neighbors. The phosphorous is in tetrahedrally coordinated 
geometry with a central P atom.

The abundance of apatite in the lithospheric mantle may 
be greatly underestimated (O’Reilly and Griffin 2000). The 
physical properties of apatite-group minerals under high 
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pressures are fundamental for mineralogy since apatites 
can exist in the deep mantle through subduction. Previ-
ous high-pressure studies of apatite-group minerals mostly 
focused on fluorapatite, hydroxylapatite and chlorapatite 
(Allan et al. 1996; Williams and Knittle 1996; Brunet et al. 
1999; Comodi et al. 2001a, b; Matsukage et al. 2004; Fan 
et al. 2013a, b). Some studies on lead fluoapatite (Liu et al. 
2008; Fleet et al. 2010; He et al. 2012), vanadinite (Gatta 
et al. 2009; Fan et al. 2013a, b), lead bromapatite (Liu et al. 
2011a), carbonated hydroxylapatite (Liu et al. 2011b; Forien 
et al. 2015), mimetite (Wei et al. 2013), pyromorphite (Wei 
et al. 2013), stronadelphite (He et al. 2013; Zhai et al. 2015a) 
under high pressures were reported. It’s noted that most 
of these studies concentrate on the compressibility. Only 
three studies reported the high-pressure Raman spectra 
of fluorapatite (Williams and Knittle 1996; Comodi et al. 
2001a) and stronadelphite (Zhai et al. 2015a). More pres-
sure-dependent vibrational investigations of apatite-group 
minerals are strongly needed in order to better understand 
their physical properties under high pressures.

In this paper we report the first high-pressure micro-
Raman spectroscopic study on Ba5(PO4)3Cl up to 34.9 GPa 
at room temperature using a diamond-anvil cell. The study 
has been performed over the frequency range from 150 
to 1200 cm−1. The effect of pressure on the characteristic 
Raman active modes of alforsite is analyzed. Combined with 
previous results of isothermal bulk moduli for synthetic and 
natural hexagonal apatites, the isothermal mode Grüneisen 
parameters of alforsite are calculated and compared with 
other phosphate minerals including fluorapatite, tuite, whit-
lockite, stronadelphite.

Experimental

High-purity alforsite Ba5(PO4)3Cl was prepared by solid-
state reactions from NH4H2PO4, BaCO3 and BaCl2. Rea-
gent-grade NH4H2PO4, BaCO3 and BaCl2 powders were 
mixed in the proportion corresponding to the Ba5(PO4)3Cl 

stoichiometry, and the mixture was ground for 2 h in an agate 
mortar and pressed into pellets with a diameter of 5 mm 
under a uniaxial pressure of 30 MPa. The pellets were first 
sintered at 1273 K for 36 h, and then ground and calcined at 
1273 K for 36 h again, to form a single phase. The synthe-
sized product was ground finely and characterized by powder 
X-ray diffraction. The X-ray diffraction pattern confirmed 
the synthetic product is a single Ba5(PO4)3Cl phase. The 
refinement yields unit cell parameters as a = 10.2627(11) Å, 
c = 7.6511(12) Å, and V = 697.9(1) Å3, which are consist-
ent with previous studies (Hata et al. 1979; Newberry et al. 
1981; Babu et al. 2011).

By using a symmetric type of diamond-anvil cell (DAC) 
with a pair of 300 μm culet diamond anvils, the high-pres-
sure Raman spectra of Ba5(PO4)3Cl were collected at room 
temperature. The experimental method used in this study 
was same as previous study (Zhai et al. 2015a). A stainless 
steel plate with an initial thickness of 250 μm was used as 
gasket. The central area of the gasket was pre-indented to a 
thickness of about 30 μm, and a hole of 100 μm in diameter 
was drilled at the center to serve as sample chamber. The 
synthetic sample and ruby (Cr3+ doped α-Al2O3) spheres 
(for pressure calibration), were loaded into the sample cham-
ber. Ar was used as the pressure medium. The experimental 
pressures were determined by the ruby fluorescence method 
(Mao et al. 1978). Micro-Raman spectra were collected in 
backscattering geometry by a custom-built Raman system 
with a liquid nitrogen cooled CCD detector, 20× objective, 
at University of Western Ontario. The spectrometer focal 
length is 500 mm and the grating is 1800 g/mm. An argon-
ion laser with a wavelength of 514.5 nm was used as excit-
ing source and a spectrometer with a liquid nitrogen cooled 
CCD detector was used to collect the Raman data. The 
spectrometer was calibrated by a neon lamp and the preci-
sion of the frequency was about 1 cm−1. The data collection 
time was 120 s for each spectrum. The spectrometer posi-
tion was moved to 529 nm to collect external and bending 
modes (ν2 and ν4), and to 538 nm for the stretching modes 
(ν1 and ν3). The Raman shift of each band was obtained by 
Lorentzian curve fitting using the PeakFit program (SPSS 
Inc., Chicago).

Results and discussion

Raman spectrum at ambient conditions

An isolated PO4 tetrahedron has Td symmetry and four nor-
mal internal modes of vibration: ν1(A1) symmetric stretch-
ing vibrations of the P–O bond (938 cm−1), ν2(E) sym-
metric bending vibrations of the O–P–O angle (420 cm−1), 
ν3(T2) anti-symmetric stretching vibrations of the P–O bond 
(1017 cm−1) and ν4(T2) anti-symmetric bending vibrations 

Fig. 1   Crystal structure of alforsite, the image was obtained using 
VESTA (Momma and Izumi 2011)
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of the O–P–O angle (567 cm−1), where the species E vibra-
tions are doubly degenerate and T2 vibrations are triply 
degenerate (Griffith 1969). The effect of the crystal field in 
the alforsite lattice on the internal modes may be understood 
by considering the phosphate site symmetry. The Td symme-
try of a free PO4 tetrahedron is reduced to Cs in the crystal 
lattice. This symmetry change reduces some of the degen-
eracies of the vibrational wave functions which would have 
characterized free PO4 tetrahedra. According to the factor 
group analysis (Klee 1970) based on the P63/m space group 
(C2

6h
) of fluorapatite, the isostructural Ba5(PO4)3Cl yields the 

following Raman active vibrations: 

Therefore, a total of 33 Raman vibrational modes are pre-
dicted. Among these, the phosphate tetrahedron shares the 
following internal and external modes (Toumi et al. 2000): 

As illustrated in Fig. 2, the Raman spectrum of alfor-
site at ambient conditions shows 13 peaks, which is less 
than the predicted number due to overlapping or/and the 
weak intensity of some peaks. The band originating from 
the ν2 symmetric bending vibrations splits into two bands 
at 411 and 426 cm−1, the band connected with the ν4 anti-
symmetric bending vibrations splits into three bands at 563, 
570 and 585 cm−1, the bands at 982, 1004, 1016, 1028 and 
1046 cm−1 are attributed to the ν3 anti-symmetric stretching 

Γ = 12Ag + 8E1g + 13E2g.

Γ
(

PO4 internal
)

= 6Ag + 3E1g + 6E2g.

Γ
(

PO4external
)

= 3Ag + 3E1g + 3E2g.

mode. The single band observed at 935 cm−1 is assigned to 
the ν1 symmetric stretching mode. And two external modes 
were observed as 194 and 210 cm−1. Both the site-group 
and Davydov (factor-group) splittings of PO4 vibrations 
were observed in alforsite, which is similar to other phos-
phates such as chlorapatite (O’Shea et al. 1974), fluorapa-
tite (Williams and Knittle 1996; Comodi et al. 2001a, b), 
Pb5(PO4)3Cl (Frost and Palmer 2007), tuite (Zhai et al. 
2010), Sr3(PO4)2 and Ba3(PO4)2 (Zhai et al. 2011a), strona-
delphite (Zhai et al. 2015a), whitlockite (Zhai et al. 2015b).

Pressure dependence of Raman spectra

High-pressure Raman spectra of Ba5(PO4)3Cl were collected 
up to 34.9 GPa and some Raman spectra were measured dur-
ing decompression. Typical Raman spectra of Ba5(PO4)3Cl 
at high pressures are shown in Fig. 3. The quality of Raman 
spectra obtained during decompression is not as good. Dur-
ing compression and decompression some bands become 
unresolvable due to their weak intensity, especially for the 
external modes. It is obvious that, with increasing pressure, 
the Raman peaks of Ba5(PO4)3Cl gradually shift to higher 
frequencies. This is reasonable since the P–O and Ba–O 
bond lengths become shorter with increasing pressure and 
shorter bond lengths imply stronger bonds, i.e., larger force 
constant, and consequently higher vibrational frequency 
according to Hooke’s law.

On the other hand, it is notable that a new Raman peak 
near the ν2 symmetric bending modes appears at 20.5 GPa, 
and new bands near the ν1 symmetric stretching and ν4 anti-
symmetric bending modes occur at 24.1 GPa, respectively. In 
this study Ar was used as pressure medium, and the pressure 

Fig. 2   Raman spectrum of 
Ba5(PO4)3Cl at ambient condi-
tions
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gradients in the sample chamber increase more rapidly above 
~ 20 GPa (Klotz et al. 2009) indicating a non-hydrostatic sit-
uation which may affect the Raman spectra. The new bands 
become more intense and remain up to the highest pressure 
in this study, but become weak during decompression and 
disappear after complete decompression to ambient pres-
sure. These new bands might be regarded as new splittings 
of PO4 internal modes under high pressures. In this case, 
the new splittings in Ba5(PO4)3Cl increase with pressure, 
as shown in Fig. 3, which indicates that the tetrahedral PO4 
distortion increases during compression. This observation 
is contrary to previous high-pressure Raman spectroscopic 
studies on Ca5(PO4)3F fluorapatite, which showed merging 
of the split bands, which indicated a decrease of tetrahedral 
PO4 distortion during compression (Williams and Knittle 
1996; Comodi et al. 2001a, b). The phenomenon is different 
from that of Sr5(PO4)3F stronadelphite, which showed new 
splitting of the ν3 anti-symmetric stretching and ν4 anti-sym-
metric bending vibrations during compression (Zhai et al. 
2015a). This could result from the different local crystal field 
surrounding the PO4 tetrahedra in Ba5(PO4)3Cl, Ca5(PO4)3F 
and Sr5(PO4)3F under high pressures. However, currently 
there is no information about the evolution of PO4 tetrahedra 
in the crystal structure of Ba5(PO4)3Cl and Sr5(PO4)3F dur-
ing compression.

In a previous study, fluorapatite was investigated by in-
situ single crystal X-ray diffraction and Raman spectral 
measurements to clarify the crystal evolution and vibrations 

of tetrahedral PO4 at pressures up to 7 GPa (Comodi et al. 
2001a, b). Their results showed a trend to standardization of 
PO4 tetrahedra in fluorapatite since the tetrahedral quadratic 
elongation and tetrahedral angle variance decrease under 
high pressures, which causes the decreased splitting of PO4 
tetrahedra under high pressures. According to the method 
reported by Baur (1974), the distortion indices for PO4 tetra-
hedra in alforsite, fluorapatite and stronadelphite at ambient 
conditions are calculated. The distortion indices of alforsite 
are identical with those of fluorapatite, but different from 
those of stronadelphite. The new splittings observed above 
20 GPa may be caused by enhanced distortion of the PO4 
tetrahedra in Ba5(PO4)3Cl, which needs to be confirmed by 
further high-pressure X-ray diffraction measurements.

Alternatively, the newly observed Raman bands in 
Ba5(PO4)3Cl above 20 GPa may be attributed to two crys-
tallographically unique PO4 tetrahedral sites that have differ-
ent site distortions and site volumes. In this case the overall 
symmetry of the alforsite crystal structure could be lower, 
yielding the observed splitting. Further study is needed to 
clarify the evolution of PO4 tetrahedra in alforsite under high 
pressures.

The Raman shift versus pressure plot of Ba5(PO4)3Cl is 
illustrated in Fig. 4. It is noted that, due to the relatively low 
intensities of the external vibrations and ν3 anti-symmetric 
stretching mode of Ba5(PO4)3Cl at higher pressures, it is dif-
ficult to locate their peaks precisely. The quality of Raman 
spectra during decompression is not as good. Therefore, only 

Fig. 3   Representative Raman spectra of Ba5(PO4)3Cl at high pressures and room temperature
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available data for the external vibrations and ν3 anti-symmet-
ric stretching mode under high pressures during compression 
are shown in Fig. 4. The Raman shifts of active modes in 
Ba5(PO4)3Cl increase continuously with pressure, but the 
slopes vary with different modes.

As mentioned above, new Raman bands are observed 
above 20 GPa, may be attributed to enhanced distortion of 
the PO4 tetrahedra during compression. On the other hand, 
the pressure gradients increase more rapidly above ~ 20 GPa 
(Klotz et  al. 2009) since Ar was adopted as pressure 
medium. Therefore, the data points before the new splitting 
are quantitatively analyzed. As listed in Table 1, the pres-
sure coefficients (β) of PO4 internal modes in Ba5(PO4)3Cl 
alforsite indicate that ν3 and ν1 stretching modes in the high-
frequency region are more sensitive to pressure compared 
to the ν4 and ν2 bending modes in the low-frequency region. 
The pressure coefficients of ν3 and ν1 modes in Ba5(PO4)3Cl 
alforsite are 4.24–5.46 and 3.77 cm−1/GPa, whereas the 
pressure coefficients for ν4 and ν2 modes are 1.16–2.04 and 
1.97–2.92 cm−1/GPa, respectively. Meanwhile, the external 
modes show the largest pressure coefficients, which may 
be partially due to the more compressible barium poly-
hedra compared to PO4 tetrahedra. The trends of pressure 

coefficients for different modes of Ba5(PO4)3Cl alforsite 
are similar to previous studies on Ca5(PO4)3F, γ-Ca3(PO4)2, 
Sr3(PO4)2, Ba3(PO4)2, β-Ca3(PO4)2, and Sr5(PO4)3F (Wil-
liams and Knittle 1996; Comodi et al. 2001a; Zhai et al. 
2010, 2011a, 2015a, b).

The pressure coefficients of the different Raman vibra-
tions can be used to obtain the mode Grüneisen parameters, 
γiT, which can be determined from the following expression 
(Gillet et al. 1989): 

where νi is the vibrational frequency of the ith band and KT 
is the isothermal bulk modulus. Though no experimental 
value for the isothermal bulk modulus for Ba5(PO4)3Cl alfor-
site has been reported, it can be estimated using the general 
relationship K0 × V0 = constant (Anderson and Anderson 
1970) for a crystal structure. Based on the previous results of 
isothermal bulk moduli for synthetic and natural hexagonal 
apatites (Brunet et al. 1999; Comodi et al. 2001b; Matsukage 
et al. 2004), the isothermal bulk modulus for Ba5(PO4)3Cl is 
estimated as 71.6 GPa. Using this value, the γiT for different 
modes of Ba5(PO4)3Cl are calculated and shown in Table 1.

An average γiT value of 0.314 can be determined for 
the PO4 modes in Ba5(PO4)3Cl alforsite, which is smaller 
to previous studies of PO4 modes in some apatite-group 
minerals including fluorapatite (0.358, Williams and Knit-
tle 1996; and 0.445; Comodi et al. 2001a) and stronadel-
phite Sr5(PO4)3F (0.332, Zhai et al. 2015a), and comparable 
to some other phosphate minerals including tuite (0.363, 

�
iT
= K

T
(� ln �

i
∕�P)

T
,

Fig. 4   Pressure dependence of the Raman bands of Ba5(PO4)3Cl at 
room temperature

Table 1   Parameters determined in the expressions of νP = νi0 + βP 
and �

iT
= K

T
(� ln �

i
∕P)

T
 for Ba5(PO4)3Cl alforsite

νP and νi0 are in cm−1 and β is in cm−1 GPa−1. ν0 was observed fre-
quency (in cm−1) at ambient conditions. R2 is the correlation coef-
ficient. Grüneisen parameter γiT was calculated with isothermal bulk 
modulus of KT = 71.6 GPa estimated in this study

ν0 νi0 β R2 γiT

PO4 modes
 ν3 1046 1046.3 (1) 5.22 (4) 0.992 0.357

1028 1030.3 (3) 5.46 (1) 0.990 0.379
1016 1017.9 (1) 5.31 (2) 0.987 0.374
1004 1009.8 (2) 4.24 (3) 0.984 0.301
982 982.6 (2) 5.20 (5) 0.991 0.379

 ν1 935 939.6 (1) 3.77 (1) 0.966 0.287
 ν4 585 586.4 (1) 2.04 (1) 0.965 0.249

570 571.9 (1) 1.26 (1) 0.979 0.158
563 564.9 (1) 1.16 (1) 0.960 0.147

 ν2 426 428.3 (1) 2.92 (1) 0.959 0.488
411 411.8 (1) 1.97 (1) 0.971 0.343

External modes
210 213.1 (2) 4.71 (7) 0.962 1.583
194 195.5 (1) 5.54 (2) 0.988 2.030
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Zhai et al. 2010), whitlockite (0.343, Zhai et al. 2015b), 
and Sr3(PO4)2 (0.303, calculated using reported results of 
Zhai et al. [2011a, b]). The different average γiT value may 
partially indicate a different distortion and compressibility 
of the PO4 tetrahedron in phosphates. Compared with the 
SiO4 internal modes in some silicate minerals (Gillet et al. 
1992, 1997), PO4 internal modes in phosphate minerals 
show lower average isothermal mode Grüneisen parameters, 
which is reasonable since phosphates are more compressible 
than silicates.

The bulk thermochemical Grüneisen parameter, which 
is equal to αKTV/Cv (where α is the thermal expansion, KT 
is the bulk modulus, V is the molar volume and Cv is the 
volume constant heat capacity), can be estimated based on 
available parameters. Based on the results of Chernorukov 
et al. (2011), the thermal expansion coefficient α for alfor-
site is calculated as 3.62(9) × 10−5 K−1, and the volume 
constant heat capacity Cv can be determined by the rela-
tionship between Cp and Cv (Cp = Cv + a2KTVT), where Cp 
of Ba5(PO4)3Cl alforsite was reported as 383.5 J/mol K−1 
in a previous study (Babu et al. 2011). Thus, the bulk ther-
mochemical Grüneisen parameter is calculated as 1.44 for 
alforsite. Indeed a previous study has shown that the bulk 
Grüneisen parameters are usually in the range from 0.8 to 2 
for incompressible oxide compounds without polymerized 
tetrahedra (Shankland and Bass 1988). It is known that the 
evolution of the PO4 tetrahedral modes is not representative 
of the whole structural evolution of Ba5(PO4)3Cl alforsite. 
The external modes, including the vibrations associated with 
the barium polyhedra in alforsite, can strongly affect the bulk 
Grüneisen parameter. As listed in Table 1, the available Grü-
neisen parameters of the external modes are much larger 
than those of the PO4 internal modes. Therefore, for alforsite 
and other phosphates, the relatively low average mode Grü-
neisen parameter of PO4 tetrahedra indicates that the lattice 
modes are related to divalent cation substitutions that largely 
contribute to the bulk Grüneisen parameter.
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