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Abstract Synchrotron-based high-pressure and temperature single-crystal X-ray diffraction experiments
were conducted on two hydrous orthoenstatite samples (oEn#1: Mg1.004Si0.996O3, ~619 ppm water; oEn#2:
Mg0.947Ni0.055Si0.998O3, ~696 ppm water) to ~34 GPa and 700 K, using resistively heated diamond anvil cells.
The α-opx (Pbca space group)→β-opx (P21/c space group) phase transition of oEn#1 occurs at 12.90(2) GPa,
and the β-opx phase persists to 34.25(1) GPa. The α-β transition of oEn#2 occurs at 13.50(1) GPa, and a new
isosymmetric β-opx→β-opxII transition takes place at 29.80(4) GPa. The β-opxII phase is preserved down to
24.53(3) GPa during decompression. The transition to the monoclinic β-opxII phase is interpreted as a result
of incorporation of Ni2+ into the orthoenstatite structure. Fitting the third-order Birch-Murnaghan thermal
equation of state to the single-crystal P-V-T data yields the thermoelastic parameters of the α- and β-opx
phases for both orthoenstatite samples. This study is the first attempt to determine the thermal equation of
state of the β-opx phase. Our results suggest that several hundred ppm of water has negligible effects on the
bulk modulus of orthoenstatite but notably enhances the thermal expansion. The potential effects of
metastable orthoenstatite on subduction zone dynamics are discussed, and the possible contributions of
displacive phase transitions to enhancement of the transformational faulting mechanism of the deep-focus
earthquakes in subducted slabs are considered. The presence of metastable orthoenstatite within cold slabs
could promote slab stagnation above the 660-km discontinuity.

1. Introduction
MgSiO3 is one of the most abundant chemical compounds present in the mantle of the Earth and other rocky
planets (Anderson, 1989). Major structure types characteristic of deep planetary interior and able to accom-
modate this composition include pyroxene (enstatite), ilmenite (akimotoite), perovskite (bridgmanite), and
postperovskite (e.g., Fei & Bertka, 1999; Walter et al., 2011). Orthoenstatite (oEn, space group Pbca) is a
low-pressure orthopyroxene (opx) polymorph of MgSiO3. Opx family with compositions of (Mg1�xFex)SiO3

is an important component of Earth’s upper mantle (Frost, 2008; Ringwood, 1982). Opx is also a major
constituent of harzburgite and lherzolite, which are important petrological components of subducting slabs
(Frost, 2008; Ringwood, 1982). At high pressure and temperature (7.28(9) GPa and >1000 K), oEn100 trans-
forms to monoclinic (space group C2/c) clinoenstatite (cEn) (e.g., Akashi et al., 2009; Shinmei et al., 1999;
Woodland, 1998). oEn100 transforms to protoenstatite (pEn) (space group Pbcn) at ambient pressure and high
temperatures (~1400 K) (Murakami et al., 1982; Smyth, 1971), and a different high-temperature phase (Cmca
space group) has been reported at ~1363 K (Jackson et al., 2004).

At room temperature, pressure-induced phase transitions of opx are complex and several metastable poly-
morphs have been reported (Finkelstein et al., 2015; Jahn, 2008; Lin, 2004; Lin et al., 2005; Zhang, Jackson,
et al., 2013; Zhang et al., 2011; Zhang & Bass, 2016; Zhang et al., 2012). oEn87 opx transforms to a monoclinic
phase (P21/c) named β-opx (the ambient opx phase was named as α-opx, Dera, Finkelstein, et al. (2013)) at
pressures between 10 and 14 GPa, and the transition pressure depends on the composition (Zhang,
Reynard, et al., 2013). At higher pressures two further polymorphs (named α-post-opx [α-popx] and β-post-
opx [β-popx]) of oEn90 with space group Pca21 were reported at 29.9 and 40.3 GPa (Finkelstein et al.,
2015). According to this phase-naming convention, opx refers to phases in which the original tetrahedral
coordination of Si4+ is preserved, whereas in popx (post-opx) phases the coordination number of Si
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increases to a mixture of IV and V or VI. The β-opx phase has monoclinic symmetry, but the opx (instead of
cpx) designation emphasizes preservation of the orthopyroxene stacking.

Fe-rich opx (En16) transforms to the β-opx phase at 11.1(1) GPa, and the second transition occurs at
13.0(1) GPa, to a phase with Pbca symmetry named γ-opx (Dera, Finkelstein, et al., 2013). Fe-end-member
opx, ferrosilite (FeSiO3, oFs100), was found to undergo a reconstructive transition at ~4.2 GPa and room
temperature, and the high-pressure phase has a space group of C2/c (Hugh-Jones et al., 1996).

For the Mg end-member opx, previous high-pressure powder X-ray diffraction and Raman spectroscopy
studies observed two phase transitions at pressures of about 7–15 GPa and 38–40 GPa, respectively (Lin et al.,
2005; Serghiou et al., 2000). Molecular dynamics simulations predicted two high-pressure phase transitions
from the original Pbca structure to metastable P21ca and Pbca at ~9 GPa and ~20 GPa, respectively
(Jahn, 2008).

Based on this evidence it is clear that the transition metal cations like Fe2+ can strongly influence the phase
transition pressure and the structure of the high-pressure phases in the Ca-poor pyroxene system. Ni2+ is
another transition metal cation that commonly occurs in natural opx, but its content is generally much lower
than that of Fe (e.g., Ishimaru & Arai, 2008; Pearson et al., 2003). No reports on the high-pressure phase transi-
tions in Ni-bearing opx are available.

Studies of natural and synthetic mantle-derived nominally anhydrous minerals (NAMs) suggest that hydro-
gen could be incorporated in these minerals’ crystal structures (e.g., Aubaud et al., 2004; Hirschmann et al.,
2005; Warren & Hauri, 2014) and has significant effects on the physical and chemical properties of NAMs
(e.g., Chang et al., 2017; Jacobsen, 2006). Among these NAMs, olivine, wadsleyite, and ringwoodite received
probably the most attention. Previous studies indicated that water can decrease the pressure of olivine-
wadsleyite transition, hence shift the upper mantle-transition zone boundary (Frost & Dolejš, 2007), and
increase the pressure of ringwoodite→bridgmanite + ferropericlase transformation (Ghosh et al., 2013;
Litasov et al., 2005). The effects of water on the elastic properties of olivine have also been investigated,
and 0.8 wt % H2O reduces the bulk modulus by 6% (Smyth et al., 2005).

Pyroxene is the second most abundant mineral in the upper mantle. Numerous studies have suggested that
water contents in pyroxene can be higher than in olivine (e.g., Aubaud et al., 2004; Peslier & Bizimis, 2015;
Warren & Hauri, 2014), yet investigations of the effects of water on the phase transitions and elastic properties
of pyroxenes are limited. In situ high-pressure single-crystal X-ray diffraction experiments to ~8 GPa on syn-
thetic hydrous cEn (MgSiO3) indicated that ~900 ppmwater could lower the pressure of the P21/c-C2/c phase
transition, but the effects on elastic properties are negligible (Jacobsen et al., 2010). Similar investigations of
synthetic hydrous diopside (CaMgSi2O6) also showed that ~600 ppm water has undetectable effects on elas-
tic properties (Gavrilenko et al., 2010).

Although the phase relations of oEn have been extensively studied at high pressures and temperatures
(typically >1000 K) (e.g., Akins et al., 2004; Fei & Bertka, 1999; Hirose et al., 2006; Ito & Navrotsky, 1985;
Murakami et al., 2004; Oganov & Ono, 2004; Presnall, 1995), the work on metastable phase evolution of
oEn on compression in lower temperature regime (<1000 K) is limited. Understanding the phase transi-
tions at such conditions is of similar/equal importance for modeling the dynamics of the Earth’s interior
as knowledge about the equilibrium phase relations, because such cold high-pressure conditions are pre-
sent in old and rapidly subducting slabs. Some geophysical models suggested that relatively low tem-
peratures (below 1000 K) could be retained to a depths as great as ~800 km (Bina et al., 2001; Bina &
Navrotsky, 2000). In addition, a recent study demonstrated that the thermal conductivity of hydrated oli-
vine would be significantly suppressed at pressures above 5 GPa, suggesting a much colder slab center
extending to transition zone depths than previously expected (Chang et al., 2017). Such cold slab center
temperatures could allow metastable olivine and pyroxene to survive thermally insulated to depths
greater than considered before (Mosenfelder et al., 2001; Nishi et al., 2013; Van Mierlo et al., 2013).
Several experiments have demonstrated that dissolution of pyroxene in garnet is much slower than the
olivine phase transitions (e.g., Nishi et al., 2008, 2013; Van Mierlo et al., 2013); the metastable persistence
of pyroxene in subducted slabs is therefore more likely than that of any other low-pressure mineral
phases. Recent studies have suggested that the presence of metastable pyroxenes could cause some
slabs to stagnate above the 660 km discontinuity (Agrusta et al., 2014; Bina, 2013; King et al., 2015;
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Nishi et al., 2013; Van Mierlo et al., 2013; Xu, Zhang, Dera, et al., 2017; Xu, Zhang, Fan, et al., 2017).
Therefore, studying opx at high pressures and temperatures relevant to cold slab conditions is imperative
to understanding the subduction zone dynamics.

In this study, we used single-crystal X-ray diffraction method combined with resistively heated diamond anvil
cells (DACs) to study the phase evolutions of hydrous oEn and Ni-oEn at high pressures and temperatures,
simulating conditions within the coldest part of a subducting slab.

2. Materials and Methods
2.1. Synthesis of Hydrous oEn

Two H2O-bearing oEn samples (oEn#1 and oEn#2) were synthesized in a multi-anvil pressure apparatus at the
Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China. The sample assembly was similar to
that described by Zhou et al. (2001). A stoichiometric mixture of high purity MgO and SiO2 was used for the
starting material and was encapsulated in a platinum capsule with 13 wt % ultrapure water. In order to obtain
Ni-bearing oEn samples, a Ni foil was used as the oxygen buffer in the synthesis of the oEn#2 samples, as
described by Rauch and Keppler (2002), while no oxygen fugacity buffer was used in synthesis of oEn#1.
High pressure was generated by simultaneously advancing six hydraulic rams as described by Fan et al.
(2013). Pressure was calibrated using melting curves of Au (Fu & Zhu, 1980) and four other metals (Cu, Al,
Pb, and Zn) (Shan et al., 2007), and the pressure measurement error margin is less than 1.5%. High tempera-
tures were generated by a graphite heater and measured by a W95Re5-W74Re26 thermocouple, and the
temperatures during the experiment fluctuated within ±5 K. During synthesis of oEn#2, the sample was first
compressed to 3.5 GPa over 35 min and then heated to 1623 K with a heating time of 30 min. After run
duration of 75 h at 3.5 GPa and 1623 K, the oEn crystals (100–400 μm size) were obtained from the quenched
run product. During synthesis of oEn#1, the startingmaterial was first compressed to 3.2 GPa and then heated
to 1393 K at the same compression and heating rates as for oEn#2, the run duration time was 2 hr, and the
obtained crystals (50–150 μm size) were smaller than oEn#2.

2.2. Electron Microprobe and FTIR Analysis

Selected crystals (about 100 and 300 μm for oEn#1 and oEn#2, respectively) were used for chemical analysis
by electron microprobe. A JEOL Hyperprobe JXA-8500F microscope was used for analysis, operating at a
15 kV accelerating voltage and 20 nA beam current, and the beam size of 10 μm. The results suggested
chemical formulas of [Mg1.004Si0.996O3] and [Mg0.947Ni0.055Si0.998O3] for oEn#1 and oEn#2, respectively.

Analysis of water in oEn was conducted by unpolarized Fourier transform infrared (FTIR) measurements.
Normally, quantitative FTIR measurements of water content for anisotropic crystals require measurements
of polarized spectra along the crystallographic axes a, b, and c (e.g., Bell et al., 1995; Rauch & Keppler,
2002). However, unpolarized measurements were also used in a few cases, depending on the samples, espe-
cially for quenched crystals from high-pressure synthesis (e.g., Jacobsen et al., 2010; Padrón-Navarta et al.,
2014; Rauch & Keppler, 2002). Infrared spectra were acquired using a Bruker Vertex FTIR spectrometer
coupled with a Hyperion 2000 microscope. FTIR measurements on double polished crystals (~40 μm in thick-
ness for oEn#1; ~85 μm in thickness for oEn#2) were conducted only on optically clean areas and without any
inclusions and fractures. The aperture size was 50 × 50 μm. Figures S1a and S1b in the supporting information
show the representative infrared spectra of oEn#1 and oEn#2 with random orientation. The sharp absorption
features of oEn#2 spectra are very consistent with the hydrous oEn100 synthesized by Rauch and Keppler
(2002), while the spectrum of oEn#1 is different, with relatively broad features, which might indicate complex
speciation of water in this sample. The synthetic run duration time of oEn#1 was much shorter than that of
oEn#2 and oEn100 samples from Rauch and Keppler (2002) (40–264 hr), which may be the reason for the
observed broad bands of oEn#1. Water content was estimated from the infrared spectra (Figures S1a and
S1b), using the mineral-specific calibration factor for opx proposed by Bell et al. (1995) and an orientation
factor of 13 (Paterson, 1982), resulting in ~619 and ~696 weight ppm H2O for oEn#1 and oEn#2, respectively.

It should be noted that sufficient grains (the more the better) of random orientation are needed for estima-
tions of water contents from unpolarized FTIR measurements of anisotropic crystals (e.g., Rauch & Keppler,
2002). In this study, the number of available crystals with big enough size and free of inclusions was very
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limited (one and two for oEn#1 and oEn#2, respectively); therefore, the water contents estimated in this study
were more qualitative than quantitative.

2.3. Single-Crystal X-Ray Diffraction Experiments and Data Processing

Small chips (30 × 25 μm2 for oEn#1 and 60 × 40 μm2 for oEn#2) of single-crystal samples with thicknesses
about 10 μm were extracted from FTIR samples for this study. Single-crystal samples were first mounted
onto a polymer micromesh sample holder (MiTeGen) for ambient X-ray diffraction. One single crystal
was used for each high-pressure/temperature experiment. In the ambient temperature and high-pressure
experiments, a BX90 DAC (Kantor et al., 2012) was used for oEn#1 while a four-pin DAC was used for
oEn#2. The BX90 and four-pin DACs were equipped with two Type-I diamonds (300 μm culets) mounted
on Boehler-Almax-type WC seats, and these two DACs had ±30° and ± 34° opening angles, respectively.
Rhenium gaskets were used and preindented to ~45 μm thicknesses before laser drilling of ~190 μm
diameter holes. The single-crystals of oEn#1 and oEn#2 were loaded into the sample chambers with Au
as the pressure calibrant (Fei et al., 2007). At each pressure, Au diffraction patterns were collected before
and after the sample data collection and the average pressure values were used. A small ruby sphere of
~10 μm was also loaded into each DAC sample chamber and used as the pressure indicator for the gas
loading with neon as the pressure-transmitting medium using the GSECARS (GeoSoilEnviroCARS) gas-
loading system (Rivers et al., 2008). Externally heated DACs equipped with two 500 μm culet diamonds
were used for diffraction experiments at high pressures and temperatures and had ±17° opening angles.
High temperatures (up to 600 and 700 K for oEn#1 and oEn#2, respectively) were generated by a resistive-
heating system and measured by a K-type thermocouple attached to one of the diamond anvils ~500 μm
away from the diamond culet. The gaskets and pressure transmitting media, and pressure calibrants were
the same as in the ambient-temperature DACs.

All of the X-ray diffraction experiments were conducted at the experimental station 13-BM-C of the Advanced
Photon Source, Argonne National Laboratory. The incident X-ray beamwasmonochromated to a wavelength
of 0.4340 Å and had a focal spot size of 15 × 15 μm2. Diffraction images were acquired on a MAR165 CCD
(Charge-coupled Device) detector, and the tilting and rotation of the detector and the sample-to-detector
distance were calibrated using ambient LaB6 powder (Zhang et al., 2017). Multiple detector positions (D1,
D2, D3, and D4) were used to obtain adequate number of diffraction peaks. At D1 position the detector is per-
pendicular to the incident X-ray direction, D2 was achieved by rotating the detector about the horizontal axis
by 20°, and D3 and D4 involved rotation of the detector about the vertical axis by 10° and�10°, respectively.
For ambient diffraction experiments, wide and step φ-rotation exposures were collected over a range from
�90° to 90°, and the exposure time was 1 s/deg. Additionally, wide segment exposures with 10° rotation step
were collected at each detector position, and the exposure time was 2 s/deg. At high pressure, wide and step
φ-rotation exposures were collected in a rotation range depending on the DAC opening angle, and the expo-
sure time was 3 s/deg. Likewise, the wide segment exposures with 10° rotation step were collected at each
detector position, while the exposure time was 6 s/deg. The φ scan rotation axis was horizontal and perpen-
dicular to the incident X-ray direction.

Diffraction images were analyzed using the ATREX software package, successor of GSE_ADA (Dera,
Zhuravlev, et al., 2013). The lattice parameters and the orientation matrix were determined with the RSV
software, and the reduced reflection data from the four detector positions were merged together.
Table S1 shows the unit-cell parameters at each pressure-temperature condition. Crystal structures were
refined from the intensity data using the SHELXL software, facilitated by WinGX and Olex 2 user interfaces
(Dolomanov et al., 2009; Farrugia, 2012; Sheldrick, 2007). According to the electron microprobe data and
previously reported oEn structural model (Periotto et al., 2012), the site occupancies were refined without
vacancies. Pyroxenes have a general formula of M2M1T2O6, in the structural refinement of oEn#1; the M2,
M1, and T sites were set with full occupancy by Mg2+, Mg2+, and Si4+ atoms; and the site occupancies
were not refined. In the oEn#2 refinement, M2 and M1 sites were set to fully occupied by a mixture of
Mg2+ and Ni2+ with refinable ratio. Cations residing at the same site were constrained to share the same
atomic displacement parameters and the same fractional coordinates. Because of the limited opening
angle (±17°) of the externally heated DACs, the structural refinements were not possible, and only unit cell
data were used for thermal EoS fitting.
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3. Results and Discussion
3.1. Phase Transitions

Diffraction data of oEn#1 and oEn#2 collected at ambient conditions were successfully indexed using the
orthorhombic Pbca α-opx unit cell. The unit-cell volume of oEn#2 is slightly smaller than that of oEn#1
(Tables 1 and 2). The ionic radii of Ni2+ and Mg2+ are 0.69 and 0.72 Å, respectively (Shannon, 1976), so the
difference in the unit cell volume is likely due to the presence of Ni2+. The results of the site occupancy refine-
ment for M2 and M1 sites in oEn#2 are consistent with the microprobe analysis (Table S2).
3.1.1. Phase Transitions of Ni-Free oEn#1
Ambient-temperature diffraction data for oEn#1 collected at pressures 0–11.20 GPa were successfully
indexed using the unit cell of α-opx. The diffraction pattern changed with new diffraction peaks appearing
at 12.90(2) GPa (Figure S2a). The peaks were indexed with a monoclinic unit cell that has lattice parameters
shown in Table S1 and is very similar to β-opx Fe-bearing oEn87 described by Zhang et al. (2012). This struc-
ture change was accompanied by a volume drop of 2.4%. The diffraction data remained consistent with β-
opx on compression to 34.25(1) GPa (Table S1). The previously detected pseudomerohedral twinning caused
by the α-β opx phase transition in oEn90 and oEn16 (Dera, Finkelstein, et al., 2013; Finkelstein et al., 2015) was
also observed for oEn#1. The diffraction data collected at 27.40(2) GPa were used to refine the structure of the
high-pressure phase of oEn#1, using the model of the β-opx oEn87, and the refinement results were satisfac-
tory (R1 = 0.0493, see Table S3). Like the β-opx phase of oEn90, oEn87, and oEn16, the β phase of oEn#1 also has
a monoclinic P21/c symmetry and is structurally closely related to the original α-opx, as described by Zhang
et al. (2012) and Dera, Finkelstein, et al. (2013).
3.1.2. Phase Transitions of Ni-Bearing oEn#2
At room temperature two phase transitions were observed in oEn#2 within the pressure range of
0–29.80 GPa, as indicated by the diffraction patterns (Figure S2B). The first transition occurred between

Table 1
Metastable Phase Transformations of Orthopyroxenes

Mineral descriptions Phase transitions Pressure range References

aoFs100, Pbca ~4.2 GPa, C2/c 0–4.2 GPa (1)
boEn87, Pbca β-opx, 14.26 GPa, P21/c 0–14.53 GPa (2)
coEn16, Pbca β-opx, 11.1(1) GPa, P21/c γ-opx, 13.0(1) GPa, Pbca 0–32.3 GPa (3)
doEn90, Pbca β-opx, 14.6 GPa, P21/c α-popx, 29.9 GPa, Pca21 0–48.5 GPa (4)
eoEn100, Pbca β-opx, 12.90(1) GPa, P21/c 0–34.25 GPa (5)
foEn94, Pbca β-opx, 13.50(1) GPa, P21/c β-opxII, 29.80(4) GPa, P21/c 0–29.80 GPa (6)

Note. References: (1) Hugh-Jones et al. (1996), (2) Zhang et al. (2012), (3) Dera, Finkelstein, et al. (2013), (4) Finkelstein et al. (2015), (5) This study (oEn#1), and (6) This study
(oEn#2).
aFeSiO3.

b(Mg0.870Fe0.080Al0.025Ca0.020Cr0.005)(Si0.970Al0.030)O3.
c(Fe2+0.91Mg0.93Ca0.01Mn0.02Al0.08Fe

3+
0.07)(Si0.85Al0.15)O3.

dMg0.900Fe0.088Ca0.003Mn0.003
Al0.004Si0.999O3.

eMg1.004Si0.996O3.
fMg0.947Ni0.055Si0.998O3.

Table 2
Equation of State Parameters of the α-opx Phases of Synthetic MgSiO3 oEn and the β Phases of oEn#1 and oEn#2

Mineral descriptions V0 (Å
3) K0 (GPa) K00 (∂K0/∂T)P (GPa/K) α0 × 10�5 (K�1) References

MgSiO3 831.4(2) 108(2) 7.9(8) (1)
MgSiO3 832.5(2) 105.8(5) 8.5(3) (2)
MgSiO3 832.7(1) 102.8(2) 10(1) �0.037(5) 2.9(3) (3)
MgSiO3 832.44(5) 105(3) 7.9(9) �0.04(2) 5.7(10) (4)

832.44(5) 105(3) 8.2(9) (4)b

810(4) 155(15) 3.1(6) �0.02(2) 4.7(15) (4)a

810(5) 154(16) 3.1(7) (4)a,b

Mg0.947Ni0.055Si0.998O3 832.02(7) 110(1) 7.0(4) �0.044(7) 5.3(4) (5)
832.02(7) 110(2) 7.1(6) (5)b

807(6) 165(24) 3(1) �0.03(1) 3.5(8) (5)a

806(7) 170(31) 3(2) (5)a,b

806(7) 170(31) 3(2) (5)a,b

Note. References: (1) Periotto et al. (2012), (2) Angel and Jackson (2002), (3) Zhao et al. (1995), and (4) and (5) are oEn#1 and oEn#2 in this study.
aβ phases derived from ambient temperature data. bResults derived from ambient temperature data.
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11.70(2) and 13.50(1) GPa, with a volume reduction of 2.3%, which is simi-
lar to the previously reported Pbca (α-opx)→P21/c (β-opx) transitions of
oEn#1, oEn90, oEn87, and oEn16. This phase transition was accompanied
by the presence of the pseudomerohedral twinning, as described by
Dera, Finkelstein, et al. (2013) in oEn16 opx. The second high-pressure
phase was observed at 29.80(4) GPa with a volume decrease of 3.5%,
and this phase was retained during decompression to 24.53(3) GPa.
Unlike the oEn90 and oEn16 opx, which exhibited the second phase transi-
tions to orthorhombic structures (orthorhombic Pca21 and Pbca space
groups for oEn90 and oEn16, respectively) at high pressures (Dera,
Finkelstein, et al., 2013; Finkelstein et al., 2015), the oEn#2 underwent a
monoclinic→monoclinic transition (Table S3). We named the second
high-pressure phase as β-opxII, because it has a structure only slightly
modified, compared to β-opx, which is different from the α-popx and γ-
opx. The pseudomerohedral twinning introduced by the β phase disap-
peared through the second phase change, just as what happened for
the monoclinic-orthorhombic transitions in oEn17 and oEn90 opxs (Dera,
Finkelstein, et al., 2013; Finkelstein et al., 2015). The structure of the β-
opx oEn#2 was successfully refined from the structure model of the β-
opx oEn#1, and the results yielded a satisfactory refinement (Table S3).
Similarly, the β-opxII structure was successfully refined from the structure
model of the β-opx oEn#2 (see Table S3), and the refinement yielded rea-
sonable figures of merits (Table S4).
3.1.3. Axial Compression Through the Phase Transitions
The axial compressibilities of oEn#1 and oEn#2 are anisotropic, and the
compression behaviors of both samples are similar (Figures 1a and 1b).
For the α-opx phases of oEn#1 and oEn#2, the a direction is the least com-
pressible while the b direction is the softest, which is similar to the oEn90
and oEn16 opx (Dera, Finkelstein, et al., 2013; Finkelstein et al., 2015).
However, the c direction and the a direction experience the most and
the least compression over the whole pressure range studied, respectively.
After the first phase transition the a direction expands by 0.1% and 0.2%
for oEn#1 and oEn#2, respectively, while the b direction expands by
0.4% and then shrinks by 0.1%. The c direction has the maximum reduc-
tions of 2.3% and 2.2% for oEn#1 and oEn#2, respectively.

After the second phase transition in oEn#2, the a direction shrinks by 0.7%,
while the b direction expands by 1%, and the c direction again shows the
largest reduction by 2.9%. The evolution of the monoclinic β angle of

oEn#1 and oEn#2 is clearly different within their experimental pressure ranges (Figures 2a and 2b). In
oEn#1 β-opx, the β angle continuously increases from 92.99(3)° to a maximum of 94.00(3)° at 34.25(1) GPa,
while oEn#2 experiences a drop of 2.9% through the β-opx→β-opxII transition (Figures 2a and 2b and
Table S1).
3.1.4. Comparison With Previous Studies
Several earlier studies have described the pressure-induced phase transitions in synthetic Mg-end-member
oEn100 at ambient temperature. Serghiou et al. (2000) reported a high-pressure Raman study with single-
crystal oEn100 opx samples to a maximum pressure of ~70 GPa, and two pronounced structure changes were
detected at pressures between 7 and 15 GPa and between ~38 and 40 GPa. In addition, combined powder
X-ray diffraction and Raman spectroscopy high-pressure experiments on oEn100 up to ~22 GPa conducted
by Lin et al. (2005) indicated a phase transition at ~10 GPa. In the current study we conducted high-pressure
single-crystal X-ray diffraction experiments on a synthetic oEn100 (En#1) opx, and the structural refinements
demonstrate that the sample underwent the α→β opx transition similar to behavior observed in oEn90, oEn87,
and oEn16 opx. No further phase transitions were detected up to 34.25(1) GPa. As described by Serghiou et al.
(2000) the second phase transition of oEn100 opx occurred at ~40 GPa, and the drastic change in the Raman

A

B

Figure 1. Pressure evolutions of normalized unit-cell volume and lattice
parameters for (a) oEn#1 and (b) oEn#2. Data collected during decompres-
sion are indicated by open symbols. The error bars of the data points are
smaller than the symbols.
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spectra indicated the presence of octahedrally coordinated Si. Thus, our
results on oEn#1 are generally consistent with that reported in Serghiou
et al. (2000). The β-opx phase of oEn#1 (619 ppmwater) occurs at a pres-
sure of 12.90(2) GPa, which is within the transition pressure range
(7–15 GPa) observed by Serghiou et al. (2000), but higher than reported
by Lin et al. (2005). Thus, we suggest that several hundred ppm of water
has insignificant effect on the transition pressure, although the
pressure-transmitting media from Serghiou et al. (2000), Lin et al.
(2005), and this study are different (argon, deionized water, and
neon, respectively).
3.1.5. The β-opx→β-opxII Phase Transition
From previous and this experimental studies on pressure-induced meta-
stable phase transformations on opx, it is clear that the first transition is
from the α-opx to β-opx (except for the oFs100, Hugh-Jones et al., 1996),
which is the result of the tetrahedral rotation (Dera, Finkelstein, et al.,
2013; Zhang et al., 2012) (Figure 3a). It is also clear that the pure
Mg-oEn has no further phase transitions after the β-opx phase within
0–30 GPa, as indicated by high-pressure single-crystal X-ray diffraction
(this study) and Raman spectroscopy (Serghiou et al., 2000). However,
opx containing transition metal cations (Fe or Ni) undergoes a second
phase transition after the β-opx at the pressures lower than 30 GPa.
Similar to the α→β opx transition, this phase change involves mainly
tetrahedral rotation (Dera, Finkelstein, et al., 2013) (as shown in β-opxII,
Figure 3b), although Finkelstein et al. (2015) suggested that the coordi-
nation number of Si was partially increased to V in the α-popx structure.

It should be noted that the second high-pressure phases (α-popx and
γ-opx) of the Fe-bearing opx including oEn16 and oEn90 have orthor-
hombic symmetries, while the β-opxII is monoclinic (Table 1), although
the β angle is very close to 90°. This result indicates that the effects of
Ni2+ and Fe2+ on the symmetry of high-pressure opx phases are differ-
ent. Indeed, Ni2+ and Fe2+ show differences in many aspects of crystal
chemistry. Fe-end-member opx is a naturally occurring mineral, whereas
the (Ni, Mg)SiO3 cannot be synthesized with more than 50 mol % Ni
(Schwab, 1968). In the FeSiO3-MgSiO3 opx systems, Fe2+ is strongly
enriched in the M2 site (e.g., Dera, Finkelstein, et al., 2013; Nestola
et al., 2008; Zhang et al., 2011, 2012), while Ni2+ shows slight preference
for M1 site (Burns, 1970), and in our samples Ni2+ was distributed nearly
equally between the M1 and M2 sites (Table S2). The stability of the
monoclinic β-opxII phase observed in Ni-bearing oEn#2 at high

pressures could be interpreted by crystal field theory. In an octahedral crystal field Ni2+ is energetically more
stable than any other high-spin divalent 3-d transition metal cation, because of its electronic configuration
(Burns, 1970).

Although natural opx in mantle xenoliths are normally poor in Ni content (e.g., Ishimaru et al., 2006;
Yamamoto, Hirano, et al., 2009; Yamamoto, Nakai, et al., 2009; Yamamoto et al., 2012), Ni could be enriched
in opx at some particular geological conditions of the Earth’s interior (Ishimaru & Arai, 2008). Experimental
studies on Ni partitioning between peridotite and melt have proven that Ni can be enriched in opx and
olivine at high pressures (Burns, 1973). Therefore, the discovery of the β-opxII adds one more piece of infor-
mation to our understanding of Ni-bearing silicates at deep Earth conditions.

3.2. Equation of State
3.2.1. Equation of State at Ambient Temperature
The third-order Birch-Murnaghan equations of state (BM3 EoS) was fit to the P-V curves of oEn#1 and oEn#2
using the EosFit7c program (Angel et al., 2014; Figures 4a and 4b). The EoS parameters of oEn#1 and oEn#2

A

B

Figure 2. Pressure evolution of the β angle for (a) oEn#1 and (b) oEn#2. Data
collected during decompression are indicated by open symbols. The error
bars of the data points are smaller than the symbols.
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are consistent with previous reports (Table 2). For the α-opx phase, the isothermal bulk modulus (K0) and its
pressure derivative (K00) of the pure Mg-end-member (En#1) in this study are very close to the results reported
by Angel and Jackson (2002) and Periotto et al. (2012). However, the K0 values derived from Zhao et al. (1995)

Figure 3. Comparison of crystal structures of high-pressure metastable phases for (a) oEn#1 and (b) oEn#2.
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are clearly lower, probably because of the narrower experimental
pressure range (0–5 GPa). For both the α-opx and β-opx phases, the
Ni-bearing oEn#2 has significantly higher K0 values than that of
oEn#1. For isostructural minerals, one containing larger metal cations
usually has a lower K0 (Anderson & Anderson, 1970), and Ni2+ has a
smaller ionic radius than Mg2+ (Shannon, 1976). All of the oEn100 sam-
ples used in studies from Zhao et al. (1995), Angel and Jackson (2002),
and Periotto et al. (2012) were crystalized from a melt in the system
MgO-SiO2-lithiumvanadomolybdate at ambient pressure (Ito, 1975)
and were likely free of water. Hence, we conclude that the influence
of several hundred ppm of water on isothermal bulk modulus of
oEn is small and comparable to that described in diopside and cEn
(Gavrilenko et al., 2010; Jacobsen et al., 2010) and less pronounced
than the variations accompanying changes in the major element
chemistry (e.g., substitution of Mg for Ni).

The incorporation of Ni also affects the axial compression behavior of
the α-opx phase. The linear moduli of a, b, and c for oEn#1 and oEn#2
were also calculated using the linear BM3 equation and EosFit7c
program. The compressibilities (β) (Angel, 2000) of each axis were
calculated (Table 3) yielding βa:βb:βc = 1:1.25:1.21 and 1:1.67:1.13 for
oEn#1 and oEn#2, respectively. The incorporation of Ni clearly
increases the compression anisotropy of α-opx phase of oEn
(Figures 1a and 1b and Table 3).

3.2.2. Thermal Equation of State
The unit-cell volume data (Table S1) of oEn#1 and oEn#2 measured at
high pressures and temperatures were also used for subsequent ther-
mal EoS calculations. The high-temperature Birch-Murnaghan equa-
tion was used to fit the P-V-T data, which is given by the following
form:

P ¼ 3=2ð ÞKT0 VT0=Vð Þ7=3 � VT0=Vð Þ5=3
h i

� 1þ 3=4ð Þ K ’
T0 � 4

� �
VT0=Vð Þ2=3 � 1

h in o
;

(1)

where KT0, KT00, and VT0 are bulk modulus, its pressure derivative, and
the unit cell volume at ambient pressure and temperature (in Kelvin).
The effects of temperature on KT0 and VT0 are expressed as follows:

VT0 ¼ V0 exp∫
T
300αTdT (2)

KT0 ¼ K0 þ ∂K0=∂Tð ÞP� T � 298ð Þ (3)

αT ¼ α0 (4)

where (∂K0/∂T)P and αT are the temperature derivative of the bulk modulus and the volumetric thermal expan-
sion at ambient pressure. In general, thermal expansion changes with temperature. However, in view of the
relatively low experimental temperature range and the limited high-pressure and temperature data in this
study, αT is often assumed to be constant over the temperature range, that is, αT = α0 (e.g., Fan et al., 2015,
2017; Nishihara et al., 2003; Xu et al., 2016). The V0, KT0, and K0T0 values obtained by fitting the P-V-T data
are in agreement with EoS fit at ambient temperature within the uncertainty (Table 2).

Compared to the KT0 of oEn, which is significantly influenced by the incorporation Ni, the thermal expansion
coefficients (αT) of oEn#1 and oEn#2 for both phases are very comparable (Table 2). Previous thermal expan-
sion studies on synthetic oEn100 (with no analysis of water content) show a large variation range of αT

A

B

Figure 4. Unit cell volume of (a) oEn#1 and (b) oEn#2 as a function of pressure and
temperature. Data collected during decompression are indicated by open sym-
bols. The error bars of the data points are smaller than the symbols.
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(2.4–4.23 × 10�5 K�1) (e.g., Hugh-Jones, 1997; Yang & Ghose, 1994,
1995; Yang & Prewitt, 2000; Zhao et al., 1995), all are lower than the
values we obtained (5.7(10) and 5.3(4) × 10�5 K�1; Table 2). In
summary, oEn#1 and oEn#2, which have comparable estimated water
contents, are very close in thermal expansion coefficients. Their αT
values are significantly larger than reported in previous studies on syn-
thetic oEn100, which is most likely a consequence of the incorporation
of water, because water is known to enhance thermal expansion in oli-
vine and pyrope (e.g., Fan et al., 2017; Suzuki et al., 1980; Trots et al.,
2012; Ye et al., 2009). We conclude that the bulk modulus KT0 of oEn
is more sensitive to the variation of Ni content, while the thermal
expansion αT changes in response to variations in the water content.

4. Implications
4.1. The Phase Relations of MgSiO3

oEn is the second most abundant mineral in harzburgite, and its equilibrium phase boundaries have been
well constrained by laboratory experiments above 1000 K. Recent experimental study suggested that oEn
transforms to cEn (C2/c space group) at 7.28(9) GPa and >1000 K, and at higher pressures this phase transi-
tion requires higher temperatures (Akashi et al., 2009). Under high pressures within transition zone depths,
transformations of cEn→majorite garnet and cEn→wadsleyite + stishovite are kinetically inhibited at low
temperatures. These two transformations on a laboratory timescale require comparable temperature condi-
tions (at least 1800 K) (Hogrefe et al., 1994; Nishi et al., 2008; Van Mierlo et al., 2013). At ~21 GPa andmoderate
temperatures (above 1500 K), cEn rapidly transforms to akimotoite (Hogrefe et al., 1994). At extremely low
temperatures (below 1000 K) within the coldest part of old slabs, however, there are limited experimental stu-
dies on the oEn phase transitions (Figure 5).

At 700 K, our experiments suggest that oEn could be metastably
retained to a maximum pressure of ~13 GPa (~400 km depth), where
it transforms to the β-opx phase, which survives at least to ~34 GPa.
Geophysical models suggested that the mantle of different regions
has different thermal structures (e.g., Dalton et al., 2014), and the tem-
perature in the center of the slab at 600 km depth ranges from 900 to
1600 K (Frohlich, 1994; King et al., 2015; Kirby et al., 1996). At tempera-
tures higher than 1000 K, the metastable β-opx phase is not expected
within downgoing slabs, due to the oEn to cEn transformation (Akashi
et al., 2009). On the other hand, extremely low temperatures (below
1000 K) are believed to be preserved within the coldest part of the
old and rapid slabs (Bina & Navrotsky, 2000; Frohlich, 1994; King
et al., 2015; Kirby et al., 1996). Our experiments suggest that the
α- to β-opx transition is most likely expected to occur in the harzbur-
gite layer of a cold and old slab, which is not only the coldest part in
the slab (Ganguly et al., 2009) but also contains up to 40 vol % oEn.

We estimated whether this metastable phase can be preserved over
geologic time based on the following assumptions: (1) above 1000 K
temperatures, the β-opx phase is unstable, because oEn to cEn and
cEn to akimotoite transitions proceed rapidly on laboratory timescale
(Akashi et al., 2009; Hogrefe et al., 1994); (2) in a cold and old slab,
extremely low temperatures (below 1000 K) can be retained to a
maximum depth of 600 km (Frohlich, 1994; King et al., 2015; Kirby
et al., 1996); (3) the lifetime of the β-opx phase depends on howmuch
time the slab requires to pass through the depth range of
400–600 km. We adopted an old and rapidly subducting slab model
(the rate is 14 cm/year and the dip is 60°, Bina and Navrotsky

Table 3
Linear BM3 Fitting Parameters and Axial Compressibilities of the Lattice Parameters
a, b, and c for the Initial Pbca Phases of oEn#1 and oEn#2

oEn#1 a b c

M0 (GPa) 351(30) 289(12) 297(13)
M0

0 42(13) 12(3) 36(6)
β0 (GPa

�1) 0.0028(2) 0.0035(1) 0.0034(2)
oEn#2 a b c
M0 (GPa) 415(14) 251(5) 369(17)
M0

0 30(5) 17(2) 19(5)
β0 (GPa

�1) 0.0024(1) 0.0040(1) 0.0027 (1)

Figure 5. The phase relations of MgSiO3 system and the results of this study. The
metastable region of oEn is colored, and the open symbols and solid symbols
represent stability of α-opx oEn and β-opx oEn, respectively. This Figure is modi-
fied after Finkelstein et al. (2015). The source data include the phase diagram of
MgSiO3 (Fei & Bertka, 1999; Presnall, 1995), the normal mantle (Brown &
Shankland, 1981), and cold slab (Bina & Navrotsky, 2000) geotherms. Note that the
cold slab geotherm from Bina and Navrotsky (2000) represent the coldest part of
the old and fast slabs. oEn = orthoenstatite; pen = protoenstatite; lpcen = low-
pressure clinoenstatite; hpcen = high-pressure clinoenstatite; Maj = majorite gar-
net; Wad = wadsleyite; St = stishovite; Rwd = ringwoodite; Akm = akimotoite;
Bdg = bridgmanite.
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(2000)) for the estimation, and the results suggest that the slab requires
1.65 Myr to pass through 400–600 km depth range. Considering other fac-
tors like latent heat-induced temperature increase (Kirby et al., 1996), we
concluded that the lifetime of metastable β-opx phase should be less than
1.65 Myr.

4.2. Possible Relevance of Deep-Focus Earthquakes to the Metastable
Phase Transitions of oEn

Deep earthquakes, whose hypocenter depths are greater than ~70 km
(Frohlich, 1989) and constitute a large portion of all earthquakes, are often
associated with subduction zones. A prominent feature of the deep earth-
quakes is the depth distribution, which decays exponentially down to
~400 km, then increases till ~600 km, and then terminates abruptly at
about 690 km (Frohlich, 1989). One of the key factors that significantly
influence the deep-focus earthquakes is temperature (e.g., Frohlich,
2006; Zhan, 2017). Indeed, about two thirds of all deep-focus earthquakes
(hypocenter depths greater than ~350 km) occur in the Tonga-Kermadec
region, which contains a well-known cold slab (Frohlich, 2006). However,
the real mechanism of deep-focus earthquakes is still under debate (e.g.,
Frohlich, 1989; Green & Houston, 1995; Wang et al., 2017). Proposed
mechanisms include dehydration embrittlement (e.g., Leclère et al., 2016;
Peacock, 2001), thermal shear instability (e.g., Karato et al., 2001), transfor-

mational faulting (e.g., Kirby et al., 1991), and differential volume reduction between the basalt and harzbur-
gite layers of the subducting slab (Liu & Zhang, 2015). Deep-focus earthquakes have been interpreted in
terms of transformational faulting, which originates from metastable phase transition of olivine (e.g., Green
& Houston, 1995; Green et al., 1990; Kirby et al., 1991), although different scenarios were considered (e.g.,
Karato et al., 2001; Koper et al., 1998).

The metastable phase transitions of olivine have been treated as the most likely trigger of deep-focus earth-
quakes because olivine is the most abundant mineral of the oceanic lithosphere and has phase transitions
within this depth range (Houston, 2015). This study of metastable phase transition of oEn at temperatures
below 1000 K suggests that the α- to β-opx transition occurs around ~13 GPa (corresponding to ~400 km
depth) accompanied by volume reductions of ~2–4%, also within the depth range of deep-focus earth-
quakes. Therefore, in an extremely cold (below 1000 K) part of an old and fast slab, the α- to β-opx transition
of oEn might be an option to enhance the transformational faulting mechanism for earthquakes around the
400 km depth.

4.3. Metastable oEn and Stagnation of Cold Subducted Slabs

We calculated the density of oEn along 900 and 1300 K temperature utilizing the thermal equation of state
parameters of oEn and its β-opx phase obtained in this study and the high-temperature third-order Birch-
Murnaghan equation (formulas (1)–(4)), and the results were compared with the preliminary reference
Earth model (PREM, Dziewonski & Anderson, 1981) density model (Figure 6). The 900 K temperature repre-
sents the coldest part of harzburgite layer of a cold slab (e.g., Tonga slab, King et al. (2015)), where the α-
to β-opx transition of oEn is expected, and 1300 K represents a hot slab (e.g., central Chile, King et al.
(2015)). At 1300 K, cEn instead of oEn is the stable phase below ~250 km (Akashi et al., 2009), and on the
laboratory timescale cEn could be preserved to 21 GPa because cEn→majorite garnet and
cEn→wadsleyite + stishovite reaction would be kinetically inhibited at this temperature (Hogrefe et al.,
1994). Therefore, at 1300 K, oEn in the harzburgite layer likely transforms to cEn before the slab sinks into
the transition zone, and the metastable α- to β-opx phase transition is not expected.

The extremely low temperature (below 1000 K) could be retained within the coldest part of the old and fast
slabs to a maximum depth of 600 km (Frohlich, 1994; King et al., 2015; Kirby et al., 1996). Based on our study,
oEn is expected to be metastably preserved to such a depth within the harzburgite layer. As is shown in
Figure 6, oEn#2 is denser than oEn#1 by ~3% at 600 km. Compared with the PREM density model, both
oEns have notably smaller densities, even if one accounts for the density jump induced by the α- to β-opx

Figure 6. Calculated density profiles of orthoenstatite (oEn#1 and oEn#2)
and clinoenstatite (cEn) along 900 and 1300 K and comparison with the
PREM (Dziewonski & Anderson, 1981). Data of oEn and its high-pressure
phase are from this study, while cEn data are from Shinmei et al. (1999).
PREM = preliminary reference Earth model.
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transition, and the PREMmodel is ~9% denser than oEn#1 at 600 km. Geophysical models suggested that the
temperature of stagnant slabs in the lower transition zone can be as low as 900 K in regions such as North
Honshu and Tonga (King et al., 2015). Therefore, the existence of the low-density metastable oEn increases
the buoyant force of the subducted slab and may slowdown the subduction rate and contribute to the slab
stagnation in the transition zone. It should be noted that the effect of metastable oEn and its β-opx phase
could be limited to the coldest part of the old and rapidly subducted slabs (e.g., Tonga slab, Fukao and
Obayashi (2013)).

5. Conclusions

We have investigated the metastable phase transitions of two orthoenstatite samples (oEn#1 and oEn#2) at
high pressures and temperatures to ~34 GPa and 700 K. The pure Mg-end-member oEn#1 undergoes the
α→β-opx transition and retains the β-opx structure to ~34 GPa, while the Ni-bearing oEn#2 experiences a
further transition at ~30 GPa. The presence of the new monoclinic β-opxII phase can be interpreted by the
higher crystal field stabilization energy of Ni2+, compared to Fe2+. The incorporation of several hundred
ppm water has negligible effects on the bulk modulus of oEn but could significantly alter the thermal expan-
sion. On the contrary, the incorporation of Ni could increase the bulk modulus but has negligible effects on
thermal expansion. The metastable phase transitions of oEn may be relevant to the deep earthquakes in the
cold subduction zones and contribute to the deep-focus earthquakes occurring at depths around 400 km
depth. In a cold subduction zone, the presence of metastable oEn could promote the slab stagnation above
the 660 km discontinuity.
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