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ABSTRACT
Knowing the sources and behaviors of particulate organic carbon (POC) is essential for calculating 
the carbon pool of riverine systems, the natural properties of which have been strongly affected 
by damming. In this study, we investigated POC and related environmental factors in the Wujiang 
cascade reservoirs, southwest China, to understand sources and fluxes of POC under cascade-
damming conditions. The results indicated that POC concentration and δ13CPOC had obvious 
temporal and spatial variation, with average values of 0.39 mg L−1 and −28.98‰, respectively. 
Evidence from δ13CPOC indicated that POC in the reservoirs was largely from phytoplankton-derived 
POC. POC flux was estimated as 2.17 × 109 g yr−1, of which allochthonous POC flux was about 1.5 × 
109 g yr−1 in the study area. The reservoir retained a large amount of POC, and the intercept rate of 
Wujiangdu Reservoir was up to 64.94%. These findings suggest that cascade damming significantly 
impacts the sources and fluxes of POC in the impounded Wujiang River, southwest China.

Introduction

Rivers serve as a link between ocean and land and carry 
weathering products from land to ocean in the form of 
dissolved substances and particulate matter. The concen-
trations and fluxes of these materials are a function of 
environmental factors such as regional climate, bedrock, 
soil, agricultural activities, and anthropogenic emissions 
(Liu 2007). Rivers play a vital role in the global carbon 
cycle, and globally about 0.4 Gt of organic carbon is 
transported by rivers to the ocean annually, 37.5–42.5% 
of which is particulate organic carbon (POC; Schlesinger 
and Melack 1981, Ludwig et al. 1996, Hedges et al. 1997). 
Riverine export of POC to the ocean is not only a signif-
icant factor in balancing the carbon budget (Smith and 
Hollibaugh 1993) but also influences the atmospheric 
carbon inventory over a wide range of timescales (Galy 
et al. 2015).

 Knowing the sources and behaviors of POC is essential 
for calculating the carbon pool of riverine systems (Blair 
et al. 2003, Galy et al. 2008, Hilton et al. 2010, Bouchez et 
al. 2014). Riverine POC consists partly of detrital com-
pounds but can also be a product of in situ algal activity 
(Bouchez et al. 2014). The extent of in situ production 
of POC may influence the aqueous carbon cycle by 

consuming dissolved inorganic carbon (Atekawana and 
Krishnamurthy 1998), and stable carbon isotope analysis 
is a useful tool for understanding these processes in river-
ine systems (Cifuentes et al. 1988, Bernasconi et al. 1997, 
Moschen et al. 2009).

Damming interrupts the river continuum and is the 
most important anthropogenic perturbation of rivers. 
Human activities have significantly changed the carbon 
budget of inland waters (Regnier et al. 2013). Dam inter-
ception increases the retention time of river water and 
changes the geochemical cycle and flux of nutrients such 
as phosphorus and silicon (Maavara et al. 2014, 2015); 
however, its influence on POC has rarely been reported. In 
this study, we investigated POC and related environmen-
tal factors in the Wujiang cascade reservoirs, southwest 
China, to understand sources and fluxes of POC under 
cascade-damming conditions.

Methods 

Study area

The Wujiang River is a tributary of the Changjiang 
(Yangtze) River, with a total length of 1037 km and a drain-
age area of 88 267 km2 to the south of the Changjiang. The 
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Sampling and analytical methods

The survey was conducted twice a month in the Wujiang 
River catchment between May 2011 and May 2012. Water 
samples were collected from the surface (upper 0.5 m). 
Water temperature, pH, and dissolved oxygen were meas-
ured in situ with an automated multiparameter profiler 
(model: YSI 6600; YSI Inc., Yellow Springs, OH, USA). 
Concentration of chlorophyll (μg L−1) was measured with 
a Phyto-PAM (WALZ, Germany). Water samples were 
filtered through glass fiber filters (0.70 μm, Whatman 
GF/F) within 24 h at room temperature, freeze-dried, and 
fumed with hydrogen chloride before analysis to remove 

Wujiang River has a fall of 2124 m and is one of the main 
rivers in a west-to-east power transmission project. The 
study area is characteristic of the subtropical monsoon 
humid climate; its average annual temperature is 12.3 
°C with extreme temperatures of 35.4 °C in summer and 
−10.1 °C in winter. The annual precipitation ranges from 
1100 to 1300 mm, and precipitation from May to October 
accounts for about 75% of the annual total. The predomi-
nant lithological character of the Wujiang River catchment 
is pre-Jurassic strata, and carbonate rock is widespread. 
Eleven reservoirs have been built on the main stream of 
the Wujiang River, Guizhou Province, 3 of which were 
selected for study (Fig. 1).

Figure 1.  Location of sampling sites on the Wujiang River. H1 and H6 are rivers; H2, H4, and H7 are reservoirs; and H3, H5, and H8 are 
released waters.
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inorganic carbon. For δ13C of POC (δ13CPOC) measure-
ments, organic carbon on the filters was converted to car-
bon dioxide (CO2) at 850 °C for 5 h in sealed quartz tubes 
containing copper oxide as an oxidant (Buchanan and 
Corcoran 1959, Tao et al. 2009), and the 13C/12C ratio of 
CO2 was then determined on an MAT252 mass spectrom-
eter. The δ13CPOC measurements were normalized to a Pee 
Dee Belemnite standard (PDB) with an analytical precision 
of ±0.1‰. POC content was measured using an elemen-
tal analyzer (Vario macro cube, Germany). The biomass 
of algae was estimated using the conversion factor of 40 
mg carbon per mg chlorophyll (Giorgio and Gasol 1995). 
The proportion of algal (autochthonous) POC (PAuto) to 
the total POC was calculated as: PAuto = Biomas/POC. The 
proportion of nonalgal (allochthonous) organic carbon 
(PAllo) was calculated as: PAllo = 1 − PAuto. Pearson’s correla-
tion coefficient analysis was calculated using the Statistical 
Package for Social Science (SPSS) software 18.0 (SPSS Inc.).

Results

Physical, chemical, and biological parameters

The average water temperature and pH were 17.28 °C and 
7.90, respectively (Table 1). Average concentrations of dis-
solved oxygen and chlorophyll (Chl) were 8.30 mg L−1 and 

3.57 μg L−1, respectively. Usually, temperature and pH were 
higher in reservoirs than in the released waters (Table 1).

Temporal and spatial variation of POC

The POC concentration ranged from 0.03 to 1.84 
mg L−1 with an average of 0.39 mg L−1. The tempo-
ral changes of POC concentration differed among 
the sampling sites: site H7 had the largest ampli-
tude (Fig. 2). In general, the POC concentration dur-
ing May to October was higher than that during 
November to April. The maximum value (1.84 mg L−1)  
occurred in August and the minimum (0.03 mg L−1)  
in April. Comparing the different types of samples, the aver-
age POC concentrations were 0.33, 0.53, and 0.30 mg L−1  
in rivers, reservoirs, and released waters, respectively.

Temporal and spatial variation of δ13CPOC

The average value of δ13CPOC was −28.98‰ and ranged 
from −35.30‰ to −25.03‰. Overall, the pattern of 
δ13CPOC in the Wujiang River changed seasonally but dif-
fered at each sampling site with time (Fig. 2). In rivers, 
δ13CPOC varied from −30.78‰ to −25.03‰, with a mean 
value of −26.95‰. In reservoirs, δ13CPOC varied within a 
wide range from −33.89‰ to −26.09‰, with a mean value 

Table 1.  Annual means and variation of hydrogeochemical parameters at 7 sites on the Wujiang River, southwest China. T = water 
temperature; DO = dissolved oxygen; Chl = chlorophyll.

aGeometric average.

Site Site type T (°C) pH DO (mg L−1) Chl (μg L−1)
H1 River Min 8.11 7.99 7.42 1.05

Max 23.75 8.61 11.08 2.78
Aver 17.16 8.23a 9.17 1.6
SD 4.94 0.13 1.06 0.44

H2 Reservoir Min 9.11 7.76 6.41 1.41
Max 25.82 8.49 9.74 3.42
Aver 18.55 8.11a 7.94 2.38
SD 5.6 0.21 0.75 0.63

H3 Released water Min 9.21 7.38 4.64 1.21
Max 21 8.1 9.76 3.26
Aver 14.77 7.73a 7.63 2.02
SD 3.54 0.18 1.38 0.51

H4 Reservoir Min 9.59 7.73 7.65 1.61
Max 26.09 8.42 10.55 10.33
Aver 18.44 8.14a 9.22 4.73
SD 5.4 0.17 0.84 2.54

H5 Released water Min 9.67 7.55 7.18 1.4
Max 23.62 8.11 11.81 4
Aver 16.34 7.85a 8.64 2.31
SD 4.29 0.15 1.26 0.72

H6 River Min 9.7 7.69 7.8 0.92
Max 24.37 8.15 10.68 7.6
Aver 16.81 7.91a 9.14 2.23
SD 4.14 0.11 0.72 1.28

H7 Reservoir Min 9.7 7.53 3.76 1.35
Max 29.66 8.54 12.38 40.64
Aver 19.75 7.86a 7.38 11.31
SD 5.97 0.3 2.56 10.11

H8 Released water Min 9.84 7.36 3.15 1.11
Max 24.62 8.01 10.19 4.94
Aver 16.4 7.66a 7.27 2.01

SD 4.76 0.18 2.09 0.9
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and plant litter (Bianchi 2011). The δ13C value is an effec-
tive tool to trace these carbon sources. The allochthonous 
POC in the studied area has a δ13C of about −23‰ (Peng 
2013) while the autochthonous algae have an average δ13C 
of −30.8‰ (Wang et al. 2013). Soil organic matter often 
originates from decomposition of C3 plant debris with a 
δ13C value of about −27‰, and riverine algal fractions 
are often more 13C-depleted than the detrital fractions 
in POC (e.g., Hamilton and Lewis 1992). In natural river 
waters (site H1), the δ13CPOC (average about −26‰) is 
close to allochthonous POC, suggesting that riverine POC 
is mainly derived from soil and plant litter in the catch-
ment. The range of riverine δ13CPOC here was consistent 
with that in the River Scheldt (average about −29.44‰; 
Hellings et al. 1999). The low Chl concentration and con-
tribution of algae to POC in H1 also support this finding 
(Figs. 4 and 5). Downstream of several dams, however, 
δ13CPOC at river site H6 was more depleted than at H1 
(Fig. 4), suggesting that the intervening dams affected the 
source of POC, whereas for the reservoirs and the released 
waters, phytoplankton contributed a major part of POC.

 The POC concentration showed clear seasonal var-
iation, with high values during May to October (rainy 
season) and low values during November to April (dry 

of −29.81‰. In released waters, the δ13CPOC varied from 
−35.30‰ to −26.28‰, with a mean value of −29.53‰. 
The released water showed a similar temporal variation 
to that in the reservoirs, and δ13CPOC was more negative 
than that in the rivers.

Temporal and spatial variation of PAuto

The average value of PAuto was 0.33, ranging from 0.06 
to 0.95. The temporal changes of PAuto differed among 
the sampling sites; site H7 showed the largest ampli-
tude (Fig. 3). In general, PAuto was higher during May to 
October than during November to April. The maximum 
value (0.95) occurred in July and the minimum (0.06) in 
December. PAuto ranged from 0.06 to 0.58 with an average 
of 0.26 in the rivers, from 0.13 to 0.95 with an average of 
0.39 in the reservoirs, from 0.13 to 0.65 with an average 
of 0.32 in the released waters.

Discussion

Sources of POC

The POC included autochthonous POC derived from algal 
photosynthesis and allochthonous POC derived from soil 
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Figure 2.  Temporal and spatial variation of POC concentration and δ13CPOC in the study reservoirs and their related rivers. Black circles 
represent river; orange squares represent reservoirs; and blue triangles represent released water.
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season), in part because high temperatures in the rainy 
season can simulate algal growth. Accordingly, a signif-
icant relationship was found among the POC, Chl, and 
temperature (Table 2). Another reason for the seasonal 
POC concentrations is that during the rainy season, ero-
sion within the catchment will bring more soil and plant 
litter into the river.

Flux of POC

Globally, riverine carbon flux (0.45 × 109 t yr−1) has a sim-
ilar estimated magnitude to that from burning fossil fuels 
(5.20 × 109 t yr−1) and a net carbon flux between the atmos-
phere and ocean (1.70 × 109 to 2.80 × 109 t yr−1; Milliman 
and Meade 1983, Detwiler and Hall 1988, Sarmiento 
and Sundquist 1992, Siegenthaler and Sarmiento 1993). 
Carbon flux can be used to understand the changes in 
the natural environment, especially the riverine POC flux, 
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Table 2.  Results of Pearson’s correlation coefficient analysis.  
T = water temperature; DO = dissolved oxygen; Chl = chlorophyll; 
POC = particulate organic carbon.

*Significant correlations at 0.05 level (2-tailed); ** significant correlation at 
0.01 level (2-tailed).

T pH DO Chl POC
pH 0.150*
DO −0.0382** 0.579**
Chl 0.339** 0.192** 0.031
POC 0.232** 0.205** −0.030 0.805**
δ13CPOC −0.023 0.352** 0.328** −0.138* −0.106
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et al. 2005); however, the extent of influence of land cover 
in this area is still lacking.

Conclusions

POC concentration and δ13CPOC showed marked tempo-
ral and spatial variation in the Wujiang cascade reser-
voirs, with average values of 0.39 mg L−1 and −28.98‰, 
respectively. Evidence from δ13CPOC indicated that POC 
in rivers is mainly derived from allochthonous soil and 
plant litter while POC in reservoirs is mainly derived from 
the autochthonous phytoplankton, especially in the rainy 
season. Our estimate of annual POC flux in the Wujiang 
River suggests that 2.17 × 109 g is transported, of which 
about 1.5 × 109 g (nearly 70%) is allochthonous. At the 
same time, the reservoirs have a high interception rate for 
POC, and the intercept rate of Wujiangdu Reservoir is up 
to 64.94%. Our study indicates that cascade damming has 
a significant impact on the sources and fluxes of POC in 
the impounded Wujiang River.
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