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Abstract: This work restored the erosion thickness of the top surface of each Cretaceous formations
penetrated by the typical well in the Hari sag, and simulated the subsidence burial history of this well
with seftware BasinMod. It is firstly pointed out that the tectonic subsidence evolution of the Hari sag
since the Cretaceous can be divided into four phases: initial subsidence phase, rapid subsidence phase,
uplift and erosion phase, and stable slow subsidence phase. A detailed reconstruction of the tectono—
thermal evolution and hydrocarbon generation histories of typical well was undertaken using the EASY
R,% model, which is constrained by vitrinite reflectance (R,) and homogenization temperatures of fluid
inclusions. In the rapid subsidence phase, the peak period of hydrocarbon generation was reached at c.a.
105.59 Ma with the increasing thermal evolution degree. A concomitant rapid increase in
paleotemperatures occurred and reached a maximum geothermal gradient of about 43-—45°C/km. The
main hydrocarbon generation period ensued around 105.59-80.00 Ma and the greatest buried depth of
the Hari sag was reached at c.a. 80.00 Ma, when the maximum paleo—temperature was over 180°C.
Subsequently, the sag entered an uplift and erosion phase followed by a stable slow subsidence phase
during which the temperature gradient, thermal evolution, and hydrocarbon generation decreased
gradually. The hydrocarbon accumulation period was discussed based on homogenization temperatures
of inclusions and it is believed that two periods of rapid hydrocarbon accumulation events occurred
during the Cretaceous rapid subsidence phase. The first accumulation period observed in the Bayingebi
Formation (K;b) occurred primarily around 105.59-103.50 Ma with temperatures of 125-150°C. The
second accumulation period observed in the Suhongtu Formation (K;s) occurred primarily around
84.00-80.00 Ma with temperatures of 120-130°C. The second is the major accumulation period, and the
accumulation mainly occurred in the Late Cretaceous. The hydrocarbon accumulation process was
comprehensively controlled by tectono—thermal evolution and hydrocarbon generation history. During
the rapid subsidence phase, the paleo temperature and geothermal gradient increased rapidly and
resulted in increasing thermal evolution extending into the peak period of hydrocarbon generation,
which is the key reason for hydrocarbon filling and accumulation,
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1 Introduction

The Hari sag of the Yingen—Ejinagi Basin has attracted
much attention after it was selected as a new important
target area during strategic planning of the Chinese
hydrocarbon energy reserves. The China Geological Survey
(CGS) has conducted basic geological research in the
Yingen—Ejinagi Basin and accomplished many
achievements in the recent decade. The CGS began working
closely with the Shaanxi Yanchang Petroleum (Group) Co.,
Ltd in 2013 and has since then obtained a daily open flow
output capacity of high-production industrial gas of
9.15x10* m®, which has led to a great breakthrough in the
exploration of hydrocarbon reserves in the Yingen—Ejinaqi
Basin and has shown great promise for exploration and
development (Zhao Chunchen et al., 2017; Chen Zhijun et
al.,, 2018). The organic matter content and type,
hydrocarbon  reservoir  formation condition, trap
characteristics, and favorable zones in the Hari sag of the
Yingen—Ejinaqi Basin have only been partly analyzed to
date (Wang Xiaoduo et al., 2015; Yang et al., 2017a). Chen
Zhijun et al. (2016) predicted and evaluated the source of
rocks using geophysical methods. Zhao Chunchen et al.
(2017) studied the geological setting of the YHC-1 well in
the Cretaceous reservoir by combining geological and
geophysical methods with drilling, logging, seismic,
paleontological, and geochemical data. Yang et al. (2017a)
and Chen Zhijun et al. (2017, 2018) reported the
geochemical characteristics of the Lower Cretaceous source
rocks, and Yang et al. (2017a) further suggested that the sag
reached a maximum geothermal gradient at the end of the
Early Cretaceous. However, few detailed studies have
investigated the tectono—thermal evolution and hydrocarbon
accumulation phases of the Hari sag in the Yingen—Ejinaqi
Basin of Inner Mongolia, northern China.

The tectono—thermal evolution history of sedimentary
basins is closely related to hydrocarbon migration and
accumulation, and is also one of the frontiers and
challenges in basin analysis and petroleum geology (Allen,
P., and Allen, J.R.,1990; Zhao Zhongyuan et al., 1990;
Ren Zhanli, 1991, 1992, 1999; Ren Zhanli et al., 2008,
2014a, 2014b, 2015b; Belaid et al., 2010; Carminati et al.,
2010; Hudson and Hanson, 2010; Sahu et al., 2013; Yang
Peng et al., 2017b). The method is highly precise which
determined the period and phases of hydrocarbon filling
and accumulation based on the accurate reconstruction of
erosion thickness, a fine description of burial history,
tectono—thermal evolution history, and a combination of
petrographic  characteristics and geological ages
corresponding to the homogenization temperature of the
formation process of brine inclusion comparable to
hydrocarbon inclusion (Haszeldine et al., 1984; Horsfield

and Mclimans, 1984; Mclimans, 1987; Karlsen et al. 1993;
Nedkvitne et al., 1993; Liu Shaobo and Gu Jiayu, 1997a,
1997b; Lu Huangzhang and Guo Dijiang, 2000; Lu
Huangzhang et al., 2004; Li Rongxi et al., 2006; Liu
Xinshe et al., 2007; Liang Yu et al., 2010, 2011;Xu
Guosheng et al., 2014; Shi Baohong et al., 2014, 2015;
Zheng Lei et al., 2015; Li Hongtao, 2016; Luo Xiao et al.,
2015;Xu Fanghao et al., 2016).

In this study, the erosion thickness of the top of the
Cretaceous formations in typical well was reconstructed
and a corresponding burial history model was established
using interval transit time (AC), vitrinite reflectance (R,),
and inclusion homogenization temperatures methods. We
recovered the tectono—thermal evolution history of typical
well constrained by vitrinite reflectance (R,) and inclusion
homogenization temperature and based on the widely used
model of EASY R,% (Sweeney and Burnham, 1990).
According to the burial history, tectono—thermal evolution
history and the petrographic analysis and the
homogeneous temperature distribution characteristics of
inclusions, a mnew understanding of hydrocarbon
accumulation phases in the Hari sag was elucidated.

2 Geological Setting

The Yingen—Ejinaqi Basin is one of the most important
continental basins in China (Fig. la). The Hari sag is
located in the northern part of the Yingen-Ejinagi Basin
(Fig. 1 b), Inner Mongolia, and covers an area of 1350 km?
(Lu Jincai et al., 2010, 2011a; Wang Xiaoduo et al., 2015).
The whole sag is oriented in a northeastern direction with
a narrow strip distributed on the plane. It is surrounded to
the west by the Dagu Depression, to the south by the
Zongnaishan Uplift, and to the north by Mongolia (Lu
Jincai et al., 2011b; 2011c) (Figs. 1b and 1c). It is a Meso—
Cenozoic faulted sag that developed on the basement of
the Hercynian fold. The Jurassic and Triassic strata are
absent in most areas of the sag, and the Jurassic strata
occur only inparts of the southern region (Wang Xiaoduo
et al., 2015). The sedimentary strata from bottom to top
are Lower Cretaceous (Kb, K;s, and Yingen Formation
(K1), Upper Cretaceous Wulansuhai Formation (K,w)
and Cenozoic strata. All strata are in unconformable
contact with each other. The formation mainly comprises
mudstone with a small amount of sandstone. The
mudstone is mainly composed of dolomitic mudstone,
gray mudstone, and gypsum rock (Fig. 2).

The drilling wells No. S—1 and HR-1 show signs of
some hydrocarbons at the bottom of the thin sandstone
section in the K;s. The wells HC-1and HC-2 were drilled
in 2015 and better indicate the presence of hydrocarbon at
the bottom of the K,y and the top of the K;s and K;b. The
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Fig. 1. (a), Major oil and gas basins on land in China (modified from Zuo et al., 2015b); (b) and (c), Structural location and well
distribution of the Hari sag in the Yingen-Ejinaqi Basin.
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Fig. 2. Photos of cores taken from the Hari sag.

(a), Depth: 436 m, stratum: Ky, lithology: mudstone; (b), Depth: 1106m, stratum: K;s, lithology: mudstone; (c), Depth: 2592m, stratum: Kb, lithology:
mudstone; (d), Depth: 1722m, stratum: K5, lithology: gray sandstone; (), Depth: 3073m, stratum: Kb, lithology: gray sandstone.
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well HC-1, in particular, has obtained a daily open flow
output capacity of high-production industrial gas of
9.15x10* m®, which confirms the promising prospect of
hydrocarbon exploration and development. However, the
Hari sag lacks studies regarding its tectono—thermal
evolution history and hydrocarbon accumulation phases.
The research presented in this paper has important
significance for further analysis of hydrocarbon generation
conditions, hydrocarbon accumulation laws, and
comprehensive evaluation of hydrocarbon exploration and
development prospects of the sag.

3 Samples and Methods

3.1 Methods of analysis of the inclusions

The particle size of the Cretaceous strata in the Hari sag
is relatively fine and the lithology is dominated by
mudstone, which is unfavorable for the observation and
analysis of the inclusions under microscope. As such, the
coarse-grained sandstone cores from the K;b and K;s were
selected to conduct temperature measurements and to
determine the formation stages of the inclusions (Fig. 2¢).
The specific methods of homogenization temperature
measurements and formation stages of inclusions have
been studied extensively (Li Rongxi et al., 2006; Tao
Shizhen, 2006; Xiao Hui et al., 2012; Jiang Youlu et al.,
2016; Fang Ronghui et al., 2017; Shen Lijian et al., 2017;
Zheng Chaofei et al., 2017). It should be noted that due to
the variability and uncertainty of the homogenization
temperature of hydrocarbon inclusions, it is necessary to
select the brine inclusions that correspond to the
hydrocarbon inclusions as the observation and test objects
(Lu Huangzhang et al., 2004; Tao Shizhen, 2006; Tian
Tao et al., 2015).

3.2 Methods to determine erosion thickness and
reconstruct subsidence burial history

Different subsidence and burial histories of tectonic
units will lead to different thermal evolution processes,
which play key roles during the process of hydrocarbon
generation, filling, and accumulation (Ren Zhanli et al.,
2000, 2014a). It is necessary to reconstruct the burial
history of a study area before the reconstruction of the
tectono—thermal evolution and hydrocarbon generation
history, and the first step in establishing burial history is to
estimate erosion thickness (Ren Zhanli et al., 2000; Tian
Tao et al., 2014; Malaza Ntokozo et al., 2016; Yang Peng
et al., 2016). The estimation of erosion thickness and the
reconstruction model of burial history are especially
important for further analysis of thermal evolution history,
hydrocarbon generation history, and hydrocarbon filling
and accumulation phases. The methods used for estimating

erosion thickness include stratigraphic correlations,
settlement velocity, AC, R,, inclusion homogenization
temperatures, wave equations, apatite fission track (AFT)
and comprehensive sedimentary structure analysis
methods (Magara, 1976; Dow, 1977, Kaiz, 1988; Liu
Guocheng et al., 1995; Liu Yiqun and Zhou Lif2,1997; Hu
Shaohua, 2004; Zhao Libin et al., 2006; Ren Zhanli et al.,
2008, 2014a, 2014b, 2015a, 2015b; Qiu Nansheng et al.,
2010, 2011, 2012a, 2012b; Shi Changlin et al., 2011; Zuo
Yinhui et al., 2011; He Sheng and Wang Qingling, 2012;
Yin Jiyuan et al., 2015). Due to ongoing developments
and improvements, AC, R, and inclusion homogenization
temperatures are the most precise methods (Chen Zengzhi
et al., 1999; Hu Shengbiao et al., 1999; Tong Yanming et
al., 2005; Tong Yanming and Zhu Guanghui, 2006; Cao

‘Zhanpeng et al., 2016; Tian Tao et al., 2016). This study

focuses on using these three methods to estimate the
erosion thickness of Cretaceous strata.
3.3 Homogenization temperature of inclusions
estimated from erosion thickness

The homogenization temperature of inclusions in
minerals during the process of basin sedimentation and
subsidence is relatively higher, and the inclusions
homogenization temperature is relatively lower after
undergoing geological process of uplifting, erosion and
cooling. The difference in homogenization temperatures of
fluid inclusions before and after stratigraphic uplift and
erosion, combined with the geothermal gradient, are used
to estimate the erosion thickness of some strata. The
erosion thickness estimation formula is given as:

T,-T,

b &)
dT/dZ

Where H is the erosion thickness, 7T, is the

paleotemperature before uplifting, erosion, and cooling, T},
is the paleotemperature after uplifting, erosion, and
cooling, and d;/d; is the paleo—geothermal gradient during
the process of uplifting, erosion and cooling (Shi Changlin
et al., 2011; Tian Tao et al., 2016).

3.4 AC estimate for erosion thickness

The lithology of the Hari sag K,y Formation which
deposited over the K;s Formation is dominated by
mudstone and lacks inclusions that are suitable for
observing formation stages and testing homogeneous
temperatures. In addition, the method of R, is restricted.
Accordingly, in this study, AC was used for the estimation
of total erosion thickness. When estimating erosion
thickness using AC, the sedimentation rate before and
after the denudation event must be considered and the
compaction law under the unconformity surface cannot be
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damaged by the over compensating deposition (Fu Xiaofei
et al., 2004; Zhou Lu et al., 2007; Tian Tao et al., 2016).
The commonly used method of judging the relative
sedimentation rate before and after the uplift event, via
segmentation characteristics of R, versus depth, is not
applicable. However, it can be inferred from the
geotectonic position of the Hari sag and the evolution law
of the Yingen—FEjinagi Basin, Inner Mongolia. The
Yingen—Ejinaqi Basin is located at the junction of the
Paleo-Asian Ocean and Tethys Ocean, where is amoung
the Siberia plate, north China plate, Tarim microplate, and
Qaidam microplate (Ren Jishun, 1999; 2003). During the
later period of the Early Cretaceous, the tectonic setting of
the Yingen—Ejinaqi Basin influenced by the Yanshan
movement which changed from the NW extension into
strong compression, and most areas incurred occurred
uplift and erosion (Zhai Guangming, 2002; Ye Jiaren and
Yang Xianghua,2003; Lu Jincai et al., 2012). It is
speculated that the Hari sag did not experienced long-term
rapid subsidence after the Late Cretaceous. In addition, the
transformation dynamics, accumulation processes, and
burial history of the Yingen—Ejinaqi Basin indicate that
the basin was in a rapid subsidence phase before 100-97
Ma, after which was dominated by uplift, erosion, and
slow subsidence (Wang Xinming et al., 2004; Zuo Yinhui
et al., 2013, 2015a; Zuo et al., 2015b). According to the
above statement, the AC method is suitable for estimating
the erosion thickness at the surface of the Upper
Cretaceous.

3.5 R, estimate for erosion thickness

The R, method used to estimate erosion thickness
possesses high accuracy and wide application. A great
deal of research about the principles and improvement of
the method has shown that, due to the irreversibility of R,
itself, it cannot accurately reflect the early thermal events,
but has high reliability to estimate the erosion thickness of
the late thermal events (Hao Fang and Chen Jianyu, 1988;
Chen Zengzhi et al., 1999; Hu Shengbiao et al., 1999;
Tong Yanming et al, 2005; Tong Yanming and Zhu
Guanghui, 2006). This study used the R, method to
estimate erosion thickness after the maximum
paleotemperature was experienced.

4 Results

4.1 Homogenization temperature of inclusions

The microscopy results show that minerals parasitized
by brine inclusions are mostly quartz. Fluid inclusions in
the K;b Formation are well developed and are mainly
distributed as a string of beads in the quartz particles and
cracks. Few fluid inclusions can be observed in the K;s

Formation with only minor distributions in quartz cracks
(Fig. 3). The comprehensive observations and test results
show that the homogenization temperature of the
inclusions in the Cretaceous strata contain peak intervals
that are mainly distributed around 120-130°C, 135-145°C.
In addition, the homogenization temperature of the
inclusions in the K;s and K;b are mainly distributed
around 120-130°C and 125-150°C respectively (Fig. 4).
42 [Erosion thickness determined from the
homogenization temperature of inclusions

The seismic profile showed that no erosion occurred on
the top of the K;b Formation. It is assumed that this is
because of the K;b Formation being in unconformable
contact with the K;s Formation. The average inclusions
homogenization temperature of the Lower Cretaceous Kb
Formation is 137.28°C, which can be defined as the
paleotemperature before uplifting, erosion and cooling.
The average inclusions homogenization temperature of the
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Fig. 3. Micrographs of fluid inclusions.
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Lower Cretaceous K5 is 125.54°C which can be defined
as the paleotemperature after uplifting, erosion, and
cooling. The geothermal gradient during the process of
uplifting, erosion, and cooling is 40°C/km which is
inverted by R,. According to Equation (1), the formula for
estimating erosion thickness at the top of the Kb
Formation can be given as:

_Tp-T, _137.28-125.54

x10°m = 293.5m (2)
dp/d, 42

However, the formation of the inclusions occurred at a
later time than the first uplift period of the Kb Formation
presented by the tectono—thermal evolution and
hydrocarbon filling and accumulation history of typical
well in the Hari sag, which means that the erosion
thickness of 293.5 m at the top of the K;b Formation is not
significant. This conclusion is consistent with previous
research (Chen Jianping et al., 2001; Zuo Yinhui et al,,
2013, 2015a; Zuo et al., 2015b; Niu Zicheng, 2016), and
we suggested that K;b Formation is overlain conformably
by K;s Formation.

4.3 Erosion thickness determined from AC

The regression equation for AC versus depth under the
unconformity surface can be defined as:

H=-6.3212 At +2574.8 (X’=0.7003) ?3)

Where AC of earth’s surface is given as A=620-650 ps/m
(Chen Heli et al., 1990; Henry, 1996; Zhao et al., 2015; Cao
Zhanpeng et al., 2016; Tian Tao et al., 2016). According to
Equation (3), the total erosion thickness (AH) is 1344.34—
1533.98 m and the average value can be given as 1439 m
using the AC (Fig. 5). The erosion thickness is far greater
than the later deposition thickness which satisfied the
application conditions and verified the rationality of
estimating erosion thickness using AC in this study.

4.4 Erosion thickness determined from the R,

There is no obvious segmentation of R, versus depth
between the Kb, K;s Formations, and K,y Formation, and
the seismic profiles reflect no obvious occurrence of
erosion between the Ky and the K,w Formation (Fig. 6).
The differences caused by the early uplift events were
weakened or even eliminated by the rapid subsidence,
burial, and warming processes that occurred in the Early
Cretaceous. This would indicate that the Hari sag reached
its maximum paleotemperature in the Late Cretaceous, and
that R, can be used to estimate the erosion thickness of the
Upper Cretaceous Kow Formation. The relation between
the R, and H can be described as:

H=2149.22 In(R,) + 2237.5 (X*=0.9382) O]

Where, R, of the earth’s surface is given as R,=0.2 (Tian
Tao et al., 2016; Yang Peng et al., 2016). According to the

Equation (4) and using the R, versus depth method, the
erosion thickness of the top of Kow Formation (AH,,) is
1221.50 m (Fig. 6).

4.5 Results of erosion thickness
The Yingen—Ejinagi Basin began to shrink at the end of
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the Late Cretaceous and whole mainly occurred as uplift
and erosion. The erosion thickness of K;s (AHs) is 375m
via estimating according to comprehensive wells data
(Zuo Yinhui et al., 2013, 2015a; Zuo et al., 2015b). The R,
showed no obvious segmentation between the K;b, K;s,
and K,y Formations, and the seismic profiles reflect no
obvious erosion between the K;y and the K,w Formations.
In addition, the typical well is located in the central deep
zone of the Hari sag, and the erosion thickness of K,y
(AHy) should be small and can be given as 315 m
according to result of Chagan sag, Yingen-FEjinaqi Basin
(Zuo Yinhui et al., 2015a). It is concluded that the erosion
thickness of top of the K,w Formation is given as
AH,=1330.25 m, which can be estimated from the results
obtained by R, and AC approaches.

5 Discussions

5.1 Subsidence burial history

According to the actual measured values obtained from
the boreholes, the age of the Cenozoic stratum and each
Cretaceous stratum, which includes Kow, Ky, Kisq, Kys1,
Kb,, and K,b; Formations, can be set at c.a. 65, 95, 100,
105, 110, 128, and 135 Ma, respectively (Zuo Yinhui et
al,, 2013, 2015a; Zuo et al., 2015b). At the bases of the
estimation erosion thickness of regional unconformities
via various methods, reconstructs subsidence burial
history model of typical well in the Hari sag by BasinMod
basin modeling sofiware. The simulation results of the
tectonic subsidence curve and sedimentation rate indicated
that the tectonic subsidence evolution process of the Hari
sag can be divided into four phases: initial subsidence
phase, rapid subsidence phase, uplift and erosion phase,
and stable and slow subsidence phase (Fig. 7).

The early deposition period of the K;b Formation in the
Hari sag occurred in the Early Cretaceous is denoted by an
initial subsidence phase, where the sedimentation rate was
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Fig. 7. Tectonic subsidence and sedimentation rate of the
Hari sag in the Yingen—Ejinaqi Basin.

about 157.36 m/Ma, which then stabilized at 70.76 m/Ma
at c.a. 128.00 Ma. The sedimentation rate increased to
106.60 m/Ma and the sag entered into the rapid subsidence
phase at c.a. 110.00 Ma. The maximum sedimentation rate
of 585.47-520.11 m/Ma occurred during the depositional
period of the K;s and K;y. During the early depositional
period of the K;w Formation, the sedimentation rate was
105.07 m/Ma and corresponded to the end of the rapid
subsidence phase. A short period of rapid uplift occurred in
this stage, but the sag was still dominated by rapid
subsidence as a whole. The sag then entered into the uplift
and erosion phase and during the Late Cretaceous about
80-65 Ma, when the erosion rate of the deposited K,w
Formation was about 88.68 m/Ma. The sag entered into the
stable and slow subsidence phase at c.a. 65.00 Ma since the
Cenozoic Era with a sedimentation rate of 1.54 m/Ma.

5.2 Thermal evolution and hydrocarbon generation
history

The methods used for reconstructing the thermal
evolution and hydrocarbon generation history, include the
geotherm—meter methods and the thermodynamic
modeling methods of basin evolution. The geotherm—
meter methods, which include R,, fluid inclusion, clay
mineral conversion, and apatite and zircon fission track,
are universally used because of their high accuracy and
their ability to verify the simulation results against actual
measurement data (Gleadow, 1983; Naeser et al., 1989a;
Naeser and Mccullon, 1989b; Allen, P. A. and Allen, J.
R.,1990; Ren Zhanli, 1992, 1999; Ren Zhanli et al., 1994,
2014a, 2014b, 2015a, 2015b; Hu Shengbiao and Wang
Jiyang, 1995; Suggate, 1998; Qiu Nansheng et al., 2004,
Zhu Yanming et al., 2010; Zuo Yinhui et al., 2015a; Zuo
et al,, 2015b). Reconstructed the tectono—thermal and
hydrocarbon generation evolution history of Cretaceous
strata in the typical well which located at Hari sag
constrained with vitrinite reflectance (R,) and inclusion
homogenization temperature and based on the widely used
model EASY R,% (Sweeney and Burnham, 1990).

The simulation of the history of thermal evolution and
hydrocarbon generation shows that the paleo—geothermal
field of the Hari sag was greatly affected by the rapid
subsidence, uplift and erosion. This is reflected in the
rapid subsidence of the sag and the culmination of the
maximum palacotemperature at 180°C at the end of the
depositional period of the K,w Formation (Fig. 8). The
paleo—geothermal gradient was 39-41°C/km at the end of
the depositional period of the K;b Formation. The
geothermal gradient gradually increased to 41-43°C/km
following the depositional period of the K;s Formation,
and the maximum geothermal gradient reached about 43—
45°C/km during the depositional period of the K;s and K,y
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Fig. 8. Relationships between tectono-thermal evolution and hydrocarbon filling and accumulation phases of typical well

in the Hari sag, Yingen—Ejinaqi Basin.

Formations. The Hari sag behaved as stable and slow
subsidence with the downward trend in the geothermal
gradient following the late deposition of K,w Formation.
The present geothermal gradient is about 34—-36°C/km.
The R, maturity profile (Fig. 6) and simulation results
(Fig. 8) show that differences of thermal evolution and
hydrocarbon generation history exit among the Lower
Cretaceous strata of the Hari sag. The differences are
manifested as hydrocarbon source rocks in the Ky
Formation that is in the basically immature—early mature
hydrocarbon generation stage. The hydrocarbon source
rocks of K;s Formation reached hydrocarbon generation
threshold at c.a. 98.14 Ma and enter into the mid maturity
stage at c.a. 85.33 Ma. The hydrocarbon source rocks of
Kb Formation reached early maturity at c.a. 113.48 Ma
and entered into mid maturity stage at c.a. 105.59 Ma. The
geothermal gradient gradually increased and the maximum
geothermal temperature reached about 180°C at the end of
sedimentary period of the Kow Formation with a sustained
rapid settlement of the sag after c.a. 105.59 Ma.
Hydrocarbon source rocks of the K;» Formation reached a
later maturity and main gas generation stages at c.a.

10320 Ma and 94.27 Ma, respectively. As stated
previously, the main hydrocarbon generation period of the
Hari sag was 105.59-80.00 Ma.

5.3 Hydrocarbon accumulation phases

In synthesizing the previous statement, it can be
concluded that hydrocarbon filling and accumulation of
the sag is integrally controlled by relevant tectono—thermal
evolution and hydrocarbon generation history. The
simulation of tectono—thermal evolution and hydrocarbon
generation history, combined with the homogenization
temperature of inclusions show that two rapid
hydrocarbon filling and accumulation events occurred in
the Hari sag during the rapid subsidence phase.

The first phase of hydrocarbon accumulation occurred
around 105.59-103.50 Ma in the K;b Formation, and the
temperature domain peaked at 120.0-150.0°C. The degree
of thermal evolution of the source rocks improved along
with the increase in the geothermal gradient increased
because of the rapid subsidence of the sag after c.a. 110.0
Ma. The main reason for this accumulation period is that
the hydrocarbon source rocks of the K;b Formation
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entered into a period of peak hydrocarbon generation. The
rapid sedimentation and burial occurring during the end of
depositional period of the K;s Formation to depositional
period of the K;y Formation may have led to the poor
physical properties of the K;b reservoir, which further
restricted the hydrocarbon filling and accumulation.

The second phase of hydrocarbon accumulation mainly
occurred around 84.00-80.00 Ma in the K;s Formation,
and temperature domain peaked at 120-130°C. It is the
major accumulation period. The sag was in the rapid
subsidence phase and the main hydrocarbon generation
stage during this phase. The rapid subsidence and
temperature increasing during the depositional period of
the K;y and K,w Formations strengthen hydrocarbon
generation again, which played an important role in this
hydrocarbon filling and accumulation. However, the
sedimentation rate might be too large to be an advantage
for the hydrocarbon filling and accumulation, which is one
of the possible reasons for the short duration of the rapid
hydrocarbon filling and accumulation phase.

6 Conclusions

(1) The tectonic subsidence evolution process of the
Hari sag since the Cretaceous can be divided into four
phases: initial subsidence phase, rapid subsidence phase,
uplift and erosion phase, and stable slow subsidence
phase.

(2) The rapid subsidence phase began at c.a. 110.00 Ma,
and the maximum sedimentation rate reached 585.47-
520.11 m/Ma during the depositional period of the K;s and
K;y Formations. During this time, the geothermal
increased rapidly, the maximum geothermal gradient
reached to about 43—45°C/km, and the degree of thermal
evolution improved. The hydrocarbon source rocks of the
Kb Formation entered into a primary hydrocarbon
generation stage c.a. 105.59 Ma, when the maximum
burial depth of the sag occurred at c.a. 80.00 Ma. The
maximum geothermal temperature reached 180°C at c.a.
80.00 Ma when the Hari sag reached its maximum depth.
The sag entered into the uplift and erosion phase and
stable and slow subsidence phase in turn after 80.00 Ma.
The thermal evolution and hydrocarbon generation
degrees of source rocks decreased and weakened, after
which the geothermal gradient gradually decreased to 34—
36°C/km.

(3) Two rapid hydrocarbon filling and accumulation
events of the Hari sag occurred in the rapid subsidence
phase during the Cretaceous period. The first phase of
hydrocarbon accumulation mainly occurred around
105.59-103.50 Ma in the K;b Formation, and the
temperature domains peaked at 120-150°C. The second

phase of hydrocarbon accumulation mainly occurred
around 84.00-80.00 Ma in the K;s Formation, and the
temperature domains peaked at 120-130.0°C. The two
processes synthetically controlling hydrocarbon filling and
accumulation are the tectono—thermal evolution and
hydrocarbon generation history.
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