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The Central Asian Orogenic Belt was one of the most important sites for juvenile crustal growth

during the Phanerozoic worldwide, and Eastern Tianshan, Northwest China, located in southern

Central Asian Orogenic Belt, is one of the key areas for unravelling the accretionary processes

and continental growth. Zircon U–Pb geochronological, Hf isotopic, and whole‐rock geochemical

analyses are reported for the Upper Carboniferous Qishan Formation rhyolites from the Kalatage

area in the middle of the Harlik–Dananhu arc, Eastern Tianshan, to investigate its petrogenesis

and geodynamic setting. Zircon U–Pb ages obtained by laser‐ablation inductively coupled mass

spectrometry (LA‐ICP‐MS) indicated that zircon crystallization age of the rhyolite was

299.1 ± 2.1 Ma. The rhyolites are classified as subalkaline and high‐K calc‐alkaline series with

A/CNK values mainly lower than 1.10. The REE patterns exhibit right inclined curves with nega-

tive Eu anomalies, and the trace element spider diagrams show depletions in Nb, Ta, and Eu,

which is consistent with the geochemical characteristics of the island arc calc‐alkaline magma suf-

fered fractional crystallization. In situ zircons Hf isotopic analyses yielded positive initial εHf(t)

values ranging from 8.0 to 11.9 and the two‐stage Hf isotope crustal model ages (TDM
C) of 554

to 807 Ma. It indicated that the rhyolite was derived from remelting of juvenile crust. The geo-

chemical data for the rhyolites indicate that they were probably generated in a suprasubduction

zone setting. It is proposed that the NorthTianshan oceanic crust subducted northward beneath

the Harlik–Dananhu arc during the Late Upper Carboniferous, and the rhyolites were derived

from remelting of juvenile crust and generated in a suprasubduction zone setting.
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1 | INTRODUCTION

The Central Asian Orogenic Belt (CAOB) is the largest Phanerozoic

orogen in the world and was formed by the amalgamation of various

continental blocks, arcs, and accretionary complexes, accompanied by

considerable juvenile crustal growth (Ao, Xiao, Han, Mao, & Zhang,

2010; B. Han et al., 1997; B. F. Han, He, Wang, & Hang, 1998; Jahn,

Wu, & Chen, 2000; Q. Wang et al., 2007; S. Z. Li et al., 2016; Xiao

et al., 2006, 2008; Y. H. Wang et al., 2015) and mineralization (Deng

et al., 2016, 2017; Y. J. Chen, 1996, 2000; Y. J. Chen, Pirajno, Wu,

Qi, & Xiong, 2012; Y. S. Wu, Chen, & Zhou, 2017; Shen, Pan, Cao,

Zhong, & Li, 2017; and references therein). TheTianshan belt occupies

the southernmost part of the CAOB and extends over 2,500 km in
wileyonlinelibrary.com/journal
China, which is a key area for understanding the Palaeozoic tectonic

evolution of the CAOB (Y. Y. Zhang et al., 2017). The belt can be

geographically divided into the western and eastern segments. The

Eastern Tianshan belt occupies a critical tectonic activity position of

the southern segment of the CAOB, and it was formed by amalgam-

ation and accretion of continental margin arcs, island arcs, ophiolites,

accretionary wedges, turbidites, and overlap sequences situated

between the southern active margin of the Siberian Craton to the

north and the Tarim Craton to the south from the Ordovician to Early

Permian (Mao et al., 2006; Mao et al., 2017; Mao, Fang, Wang, Wang,

& Wang, 2010; Mao, Wang, et al., 2014; Mao, Xiao, et al., 2014).

The Kalatage area is located in the middle of the Harlik–Dananhu

arc in the EasternTianshan belt, and the Ordovician–Jurassic volcanic,
Copyright © 2018 John Wiley & Sons, Ltd./gj 1
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volcaniclastic rocks, and clastic sediments lithologies are widespread in

this district (Mao et al., 2010). From Late Ordovician to Early

Carboniferous, the North Tianshan ocean subducted northward

beneath the Harlik–Dananhu island arc (Mao et al., 2017; Y. Sun

et al., 2017). However, the Middle Permian Aerbashayi Formation of

the Kalatage area was generated in extensional and/or rift settings

(Mao, Wang, et al., 2014; Mao, Xiao, et al., 2014; Zhu et al., 2002).

The petrogenesis and tectonic setting of the Upper Carboniferous

rocks were poorly understood. Therefore, in this paper, we report

geochemical, LA‐ICP‐MS zircon U–Pb dating, and Lu–Hf isotope data

of the Upper Carboniferous Qishan Formation rhyolites from the

Kalatage area, Eastern Tianshan, to constrain their petrogenesis and

geodynamic setting.
2 | GEOLOGICAL SETTING

The Chinese Tianshan Range is geographically subdivided into the

Western Tianshan and Eastern Tianshan with a boundary along

the Urumqi–Korla road from west to east (Y. J. Chen et al., 2012).

The Eastern Tianshan is a 300‐km‐wide orogenic collage in the south-

ern Altaids (Xiao, Windley, Allen, & Han, 2013; Xiao, Zhang, Qin, Sun, &

Li, 2004) that consists of three tectonic zones: South Tianshan (STS),

Central Tianshan (CTS), and North Tianshan (NTS; Figure 1).

The South Tianshan, which is located between the Central

Tianshan Arc and the Tarim Craton, comprises various Silurian–

Carboniferous rocks, including turbidites, ophiolites (Silurian–Late

Carboniferous), cherts, volcaniclastic rocks, mélanges, and Devonian–

Early Carboniferous high‐pressure metamorphic rocks (Mao, Xiao,

et al., 2014; Xiao et al., 2004). The Central Tianshan comprises
FIGURE 1 (a) Sketch map of geologic units of theTianshan belt. (b) Schema
CTS = Central Tianshan; STS = South Tianshan. Modified after Y. J. Chen e
wileyonlinelibrary.com]
remnants of the Late Devonian to Carboniferous magmatic arcs,

formed by subduction of oceanic crust of the Mansi back‐arc basin

below the earlier arcs (J. Y. Li, 2004). The NorthTianshan is composed

of Proterozoic basement and Neoproterozoic to early Palaeozoic

magmatic arc rocks of pre‐Uralides developed on the margin of the

proto‐Eurasian continent (X. Chen, Shu, Santosh, & Zhao, 2013).

The North Tianshan tectonic zone comprises the Jueluotage Late

Palaeozoic arc, the Kangguer suture zone, and the Palaeozoic Harlik–

Dananhu arc from south to north (Xiao et al., 2004). The Ordovician–

Carboniferous Harlik–Dananhu arc is located between the Kelameili

Palaeozoic suture and the late Carboniferous Kanggur suture zone,

and it consists of calc‐alkaline mafic–felsic lavas, volcaniclastic tuffs,

and flysch sediments (Ma, Shu, & Sun, 1997; Mao, Xiao, et al., 2014;

Xiao et al., 2004). The arc‐related granitic intrusions with an age of

Ordovician to Permian, is especially abundant in the Harlik area (F.

W. Chen et al., 2005; G. H. Sun, Li, Gao, & Yang, 2005; Guo, Zhong,

& Li, 2006; H. Q. Li et al., 2004; Hou, Tang, Liu, & Wang, 2005; Mao

et al., 2010; Mao et al., 2017).

The Kalatage district is located in the middle of the Harlik–

Dananhu island arc and adjacent to the Turpan–Hami Basin

(Figure 1). It is mainly composed of slightly metamorphosed Palaeozoic

mafic to felsic volcanic, volcaniclastic, and sedimentary rocks and is

intruded by the Ordovician to Permian granitoids (Figure 2; Mao, Xiao,

et al., 2014). Outwards from the Kalatage anticlinal hinge, the rocks

are divided into five formations: (a) the Lower Devonian Dananhu

Formation consists of biogenic carbonates, clastic sediments, and

interbedded volcanic rocks; (b) the Upper Carboniferous Qishan

Formation consists of calc‐alkaline basaltic and andesitic lavas, tuffs,

and clastic sediments; (c) the mid‐Permian Aerbashayi Formation is

composed of basalts and basaltic andesites interbedded with minor
tic geological map of the EasternTianshan belt. NTS = NorthTianshan;
t al. (2012) and Xiao et al. (2004) [Colour figure can be viewed at

http://wileyonlinelibrary.com


FIGURE 2 Geological map of the Kalatage and adjacent area (modified after Deng et al., 2016, and Mao et al., 2017) [Colour figure can be viewed
at wileyonlinelibrary.com]
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rhyolites (lower sequence), and tuffs, rhyolites, and dacites (upper

sequence); (d) the Upper Permian Kula Formation consists of clastic

sediments; and (e) the Lower Jurassic Sangonghe Formation contains

black shales, shaly sandstones, sandstones, and coal beds and lies

unconformably on all older strata (Mao et al., 2017).
3 | SAMPLING AND PETROLOGY

The rhyolite samples were collected from the Upper Carboniferous

Qishan Formation (C2qs). The Qishan Formation is in unconformable
FIGURE 3 Rhyolites from the Kalatage area in the Dananhu arc, NW Ch
42°46′09″ E); (b) hand specimen of rhyolite; (c) Photomicrograph of quartz
biotite phenocryst possessing opacitic border texture [Colour figure can be
relationship with the underlying Lower–Middle Ordovician

Qiaganbulake Formation (O1‐2q) and the Lower Devonian Dananhu

Formation (D1d). And it is unconformably covered by the overlyingMid-

dle Permian Kalagang Formation (P2k). The rhyolite is discovered in the

Qishan Formation, which originally was named as dacite in the field.

The rhyolites contact with andesite exhibit porphyritic texture,

and the content of phenocryst is about 20%. The phenocryst is mainly

composed of sanidine, quartz with resorption texture, and biotite with

opacitic border texture (Figure 3). The matrix of the rhyolite devitrified

to form a few amount of crystallites.
ina. (a) Field photo of rhyolite in contact with andesite (91°39′21″ N,
phenocryst exhibiting resorption texture; (d) Photomicrograph of
viewed at wileyonlinelibrary.com]
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4 | ANALYTICAL METHODS

4.1 | Major and trace element analysis

The whole‐rock major and trace elements were determined at the

Laboratory of Mineralization and Dynamics, Chang'an University.

Major element compositions were measured using X‐ray fluorescence

spectrometry (LAB CENTER XRF‐1800) on fused glass disks with

analytical errors less than 5%. Loss of ignition (LOI) was determined

after igniting the sample powder at 1,000 °C for 1 hr. Trace elements

(including rare earth elements) analyses were carried out using a

Thermo X‐7 ICP‐MS, and analytical precision was generally better

than 10%.

4.2 | Zircon U–Pb dating

Zircons were separated from rhyolite (D6600‐1) using conventional

heavy liquid andmagnetic separation techniques. Representative zircon

grains were handpicked under a binocular microscope and then were

mounted in an epoxy resin disk and polished to about half of their

thickness for analysis. In order to reveal the morphology and internal

structure of zircons, cathodoluminescence (CL) images were obtained

by using a JSM 6510 scanning electron microscope equipped with a

Gatan Mono CL System, at Beijing Geoanalysis Co. Ltd.

Zircon U–Pb dating was conducted by using an Agilent 7700e

inductively coupled plasma mass spectrometry (ICP‐MS) coupled with

a Analyte Excite 193‐nm laser at the Laboratory of Mineralization and

Dynamics, Chang'an University. Zircon 91500 and NIST610 were used

as external calibration standards for zircon U–Pb isotope and trace

element analyses, respectively. Zircon isotope ratios and trace

elements were calculated using the program ICPMSDataCal 7.2 (Liu

et al., 2010). Concordia diagrams and weighted mean calculations were

carried out using the Isoplot 3.0 program (Ludwig, 2003).

4.3 | Zircon Hf isotope analysis

Zircon Hf isotope analyses were carried out in situ by using a Nu

Plasma HR MC‐ICP‐MS coupled with a GeoLas 2005 excimer ArF
FIGURE 4 Zircon U–Pb concordia diagram, weighted mean
206Pb/238U age and representative zircon CL image for the rhyolites
[Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 2 Major (%) and trace element (ppm) compositions of rhyolites
from the Kalatage area in the Dananhu arc, NW China

Sample
no.

D6600‐
1

D6600‐
2

D6600‐
3

D6600‐
4

D6600‐
5

D6600‐
6

SiO2 72.61 71.68 72.77 72.08 70.55 72.00

TiO2 0.29 0.28 0.28 0.26 0.34 0.30

Al2O3 14.19 13.71 13.80 13.48 13.87 13.53

TFe2O3 2.25 2.19 2.13 2.07 2.67 2.24

MnO 0.06 0.06 0.07 0.07 0.07 0.06

MgO 0.60 0.68 0.52 0.69 0.66 0.75

CaO 1.52 1.59 1.62 1.38 1.90 1.57

Na2O 3.62 3.61 3.67 3.55 3.40 3.22

K2O 3.73 3.65 3.82 3.90 3.66 3.77

P2O5 0.06 0.06 0.06 0.06 0.08 0.06

LOI 2.02 2.33 2.23 3.42 2.48 2.70

Total 100.95 99.84 100.97 100.96 99.68 100.20

A/CNK 1.11 1.07 1.05 1.07 1.07 1.11

A/NK 1.42 1.39 1.36 1.34 1.45 1.44

Li 16.93 13.99 12.22 10.99 9.45

Be 2.09 2.22 2.27 2.03 2.07

Sc 3.76 3.49 2.98 2.67 2.39

V 18.96 27.69 16.57 17.29 17.97

Cr 9.76 3.37 15.98 6.58 4.59

Co 28.86 23.55 22.58 20.71 27.03

Ni 7.84 5.78 4.88 4.51 4.52

Cu 3.08 3.20 2.63 2.91 2.58

Zn 47.03 52.46 44.82 40.63 44.11

Ga 13.79 13.65 12.91 11.94 11.86

Rb 123.66 119.84 134.00 129.28 105.02

Sr 178.63 145.29 181.27 274.07 340.36

Y 26.89 29.65 27.38 25.12 21.66

Zr 150.49 166.82 145.64 139.83 111.42

Nb 8.99 9.13 9.35 8.78 8.64

Mo 1.08 0.66 1.39 0.96 1.15

Cd 0.17 0.14 0.16 0.14 0.11

In 0.03 0.03 0.03 0.03 0.03

Cs 4.13 3.81 6.85 7.27 7.65

Ba 633.92 526.33 559.39 633.40 569.98

La 23.37 23.53 23.46 22.16 17.95

Ce 49.62 49.34 51.09 48.51 40.58

Pr 5.70 5.84 5.86 5.33 4.52

Nd 21.21 22.89 21.81 19.90 17.49

Sm 4.30 4.83 4.29 4.03 3.53

Eu 0.79 0.88 0.74 0.74 0.72

Gd 4.32 4.84 4.39 4.02 3.58

Tb 0.67 0.77 0.70 0.66 0.57

Dy 4.32 4.82 4.52 4.08 3.71

Ho 0.89 1.01 0.94 0.90 0.78

Er 2.97 3.19 3.06 2.85 2.53

Tm 0.47 0.50 0.49 0.46 0.40

Yb 3.29 3.57 3.47 3.20 2.83

Lu 0.50 0.53 0.51 0.51 0.44

Hf 4.36 4.75 4.56 4.35 3.71

(Continues)

TABLE 2 (Continued)

Sample
no.

D6600‐
1

D6600‐
2

D6600‐
3

D6600‐
4

D6600‐
5

D6600‐
6

Ta 0.74 0.73 0.79 0.79 0.75

Pb 13.30 14.79 17.24 17.12 16.50

Th 11.56 10.92 13.16 12.62 10.67

U 3.04 3.11 3.12 3.08 2.86

∑REE 122.44 126.52 125.33 117.36 99.64

Eu/Eu* 0.56 0.56 0.52 0.56 0.62

(La/Yb)N 5.09 4.72 4.85 4.97 4.56

(La/Sm)N 3.51 3.14 3.53 3.55 3.28

(Gd/Yb)N 1.09 1.12 1.05 1.04 1.05

Note. A/CNK = Al2O3/(CaO + Na2O + K2O) (molar ratios), A/NK = Al2O3/
(Na2O + K2O) (molar ratios), and Eu/Eu* = EuN/(SmN × GdN)

1/2.

SUN ET AL. 5
laser‐ablation system at the State Key Laboratory of Continental

Dynamics, Northwest University, Xi'an. The analytical procedures are

similar to those described by Yuan et al. (2008). Zircon 91500,

Monastery, and GJ‐1 were used as external standards in this analysis,

and our 176Hf/177Hf ratios for the three zircon standards are in good

agreement with recommended values.
5 | RESULTS

5.1 | Zircon U–Pb age

The LA‐ICP‐MS zircon U–Pb age of the rhyolite (D6600‐1) was listed in

Table 1. Most zircons from the sample are transparent to translucent

and occur as euhedral, stubby to prismatic crystals with a length–width

ratio of 2:1–4:1. All of the zircon grains show clear oscillatory zoning in

the CL image, and their Th/U ratios are 0.29–0.56 with an average of

0.45, demonstrating the typical features of magmatic zircons (Hoskin

& Schaltegger, 2003; Y. Wu & Zheng, 2004). Owing to the imprecise
207Pb analyses in Phanerozoic zircons, the more reliable weightedmean
206Pb/238U ages of the analysed zircons are adopted here (Compston,

Williams, Kirschvink, Zhang, & Ma, 1992). Fourteen zircon grains were

analysed for the rhyolite sample D6600‐1, and the data are all fall on

or near the U–Pb concordia curve, giving 206Pb/238U ages from 295

to 305 Ma, with a weighted mean of 299.1 ± 2.2 Ma (Figure 4).

5.2 | Whole‐rock geochemistry

The major and trace element data of the rhyolites from the Kalatage

area are presented in Table 2. Petrologic investigations have revealed

that the samples have been subjected to varying degrees of alteration,

which is also confirmed by the relatively high LOI contents, ranging

from 2.02 to 3.42 wt.%. The SiO2 contents of the six rhyolite samples

range from 71.68 to 72.08 wt.% with an average of 71.95 wt.%, and

Al2O3 contents range from 13.53 to 13.80 wt.% with an average of

13.76 wt.%; Na2O and K2O contents are in the range of

3.40–3.61 wt.% and 3.65–3.90 wt.%, respectively. All samples are

plotted within the rhyolite zone on the total alkali–silica (TAS) diagram

(Figure 5a). The A/CNK values range from 1.05 to 1.11, and the A/NK

values range from 1.34 to 1.45, demonstrating that they are

all peraluminous. All samples are classified as subalkaline (Figure 5a)

and high‐K calc‐alkaline series (Figure 5b).



FIGURE 5 Plot of SiO2 (wt.%) versus K2O + Na2O (TAS, wt.%) for the rhyolites (Le Bas, Le Maitre, Streckeisen, & Zanettin, 1986). (b) K2O–SiO2

(wt.%) classification diagram (Peccerillo & Taylor, 1976)
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In general, the rare earth elements (REE) and the high field

strength elements (HFSE) are essentially immobile during alteration

(Humphris & Thompson, 1978). Total rare earth element (ΣREE)

contents of the rhyolites range from 99.64 to 126.52 ppm. The

chondrite‐normalized REE distribution patterns exhibit as right

inclined curves (Figure 6a), demonstrating light rare earth elements

(LREE) relatively enrichment and heavy rare earth elements (HREE)

depletion, with (La/Yb)N ratios ranging from 4.56 to 5.09. The rhyolites
FIGURE 6 (a) Chondrite‐normalized REE and (b) primitive mantle‐norm
(normalizing values after S. S. Sun & McDonough, 1989). Data of island arc
and Muhetare, Nijat, and Wu (2015) [Colour figure can be viewed at wiley

TABLE 3 Hf isotopic data of zircons from rhyolite in the Kalatage area of

Sample 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ t (M

D6600‐1‐01.1 0.040435 0.001457 0.282842 0.000020 29

D6600‐1‐02.1 0.038367 0.001390 0.282832 0.000022 29

D6600‐1‐03.1 0.044556 0.001567 0.282892 0.000021 29

D6600‐1‐04.1 0.045919 0.001716 0.282821 0.000022 29

D6600‐1‐05.1 0.035319 0.001266 0.282841 0.000019 29

D6600‐1‐06.1 0.047748 0.001688 0.282845 0.000027 29

D6600‐1‐07.1 0.021666 0.000794 0.282828 0.000022 29

D6600‐1‐08.1 0.029459 0.001100 0.282929 0.000022 29

D6600‐1‐09.1 0.045298 0.001660 0.282862 0.000020 29

D6600‐1‐10.1 0.034219 0.001242 0.282869 0.000023 29

D6600‐1‐11.1 0.061176 0.002151 0.282847 0.000024 29

D6600‐1‐12.1 0.028365 0.001034 0.282834 0.000022 29

D6600‐1‐13.1 0.029467 0.001110 0.282876 0.000020 29

D6600‐1‐14.1 0.055919 0.001993 0.282877 0.000029 29

Note. εHf(t) values are calculated using present‐day (176Lu/177Hf)CHUR = 0.0332
values are calculated using present‐day (176Lu/177Hf)DM = 0.0384 and (176Hf/1

0.015 (Griffin et al., 2000). The decay constant of 176Lu is 1.867 × 10−11/a (Söd
possess significantly negative Eu anomalies (Eu/Eu* = 0.52–0.62)

and relative fractionation of LREE ((La/Sm)N = 3.14–3.55), without

significant fractionation of HREEs ((Gd/Yb)N = 1.04–1.12). The

primitive mantle‐normalized trace element patterns are characterized

by strong enrichment in large ion lithophile elements (LILE) relative

to high field strength elements (HFSE), and with pronounced

negative Nb and Ta anomalies and positive Rb and Pb anomalies

(Figure 6b).
alized trace element patterns for the rhyolites at the Kalatage area
calc‐alkaline andesite and rhyolite are from Mao, Wang, et al. (2014)

onlinelibrary.com]

the Dananhu arc, NW China

a) (176Hf/177Hf)i εHf(0) εHf(t) TDM1 (Ma) TDM
C (Ma) f(Lu/Hf)

9 0.282834 2.5 8.8 588 756 −0.96

9 0.282824 2.1 8.4 602 778 −0.96

9 0.282884 4.3 10.5 518 643 −0.95

9 0.282811 1.7 8.0 623 807 −0.95

9 0.282834 2.4 8.8 587 755 −0.96

9 0.282835 2.6 8.8 588 752 −0.95

9 0.282823 2.0 8.4 598 780 −0.98

9 0.282923 5.6 11.9 459 554 −0.97

9 0.282853 3.2 9.4 562 712 −0.95

9 0.282862 3.4 9.8 547 693 −0.96

9 0.282834 2.6 8.8 593 754 −0.94

9 0.282828 2.2 8.6 593 769 −0.97

9 0.282870 3.7 10.0 535 674 −0.97

9 0.282866 3.7 9.9 545 682 −0.94

and (176Hf/177Hf)CHUR = 0.282772 (Blichert‐Toft & Albarède, 1997). TDM
C

77Hf)DM = 0.28325. 176Hf/177Hf value for the average continental crust is
erlund, Patchett, Vervoort, & Isachsen, 2004).

http://wileyonlinelibrary.com
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5.3 | Zircon Hf isotopic compositions

Zircon Lu–Hf isotope analysis was performed for the rhyolites at 14

test points that are located in the same magmatic oscillatory zone

where the U–Pb dating was performed. We calculated the εHf(t)
FIGURE 7 Diagram of εHf(t) versus U–Pb ages of the Eastern
Tianshan igneous rocks. Data for the Donggebi granitoids (after F. F.
Zhang, Wang, Liu, & Wang, 2015), Xingshan gabbro (after C. M. Han
et al., 2010), Bogda rhyolite (after X. Chen, Shu, & Santosh, 2011),
Yandong tonalite (after Y. H.Wang et al., 2015), and Yudai quartz dioritic
porphyry (after Y. Sun et al., 2017) [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 8 Diagram of Diagram of (a) Rb/Y versus Nb/Y, (b) Th/Yb versusT
Kalatage area of the Eastern Tianshan
values and two‐stage Hf isotope model ages (TDM
C) using the weighted

zircon 206Pb/238U age for the rhyolites. The Lu–Hf isotope composi-

tions and calculation results are listed in Table 3. All the measured

zircon grains had relatively homogeneous Hf isotopic composition

(176Hf/177Hf = 0.282821–0.282929), corresponding to the two‐stage

Hf isotope crustal model ages (TDM
C) of 554–807 Ma. In the εHf(t)–

U/Pb age diagram, zircons from the Qishan Formation rhyolite showed

a spread of εHf(t) values between the chondritic uniform reservoir

(CHUR) reference line and the depleted mantle evolution line, ranging

from 8.0 to 11.9, which are different from those of the Early Permian

Bogda rhyolite from bimodal rock series generated in a postcollisional

setting (Figure 7).
6 | DISCUSSION

6.1 | Petrogenesis

Rock type of magmatic rocks is closely related with the geodynamic

process. The rhyolites from the Qishan Formation in the Kalatage

area display that the A/CNK values are lower (<1.11). And the lack

of typical peraluminous minerals (e.g., cordierite, andalusite, and

garnet) or alkaline mafic minerals (e.g., aegirine, riebeckite, and alkali

amphibole) indicates that the rhyolites belong to I‐type granitoid

series (Chappell & White, 1992; X. Chen et al., 2013). The right

inclined curve REE patterns with LREE enrichment and HREE

depletion are consistent with the geochemical characteristics of

island arc calc‐alkaline magmas (Peccerillo & Taylor, 1976;

Schmidberger & Hegner, 1999). The calc‐alkaline rhyolites are

characterized by depletion of Nb and Ta relative to Th and the

LREE (Figure 6b); these geochemical features are also characteristic

of subduction‐related magmatism (Pearce & Peate, 1995; Sajona,

Maury, Bellon, Cotten, & Defant, 1996). In the Rb/Y versus Nb/Y dia-

gram (Figure 8a), the Kalatage rhyolite samples plot close to lower

crustal compositions. Moreover, the rhyolites plot near subduction

zone compositions in the Th/Yb versus Ta/Yb diagram (Figure 8b).
a/Yb, (c) La/Sm versus La and (d) La/Yb versus La for rhyolites from the

http://wileyonlinelibrary.com
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The Qishan Formation rhyolites exhibit relatively low contents of

MgO, which is consistent with the differentiated nature of the magma

(Mao, Xiao, et al., 2014). The fractionation trends in the magmatic

rocks are also clearly indicated by the rhyolites with the striking

depletions in Ba, Sr, and Eu in the spider diagrams. For instance, the

highly negative Eu depletion requires magma to have undergone

extensive fractionation of plagioclase. In the La/Sm versus La and

La/Yb versus La diagrams, the rhyolites also mainly show a fractional
FIGURE 9 Diagram Yb versus Th/La for rhyolites from the Kalatage
area of the Eastern Tianshan (after Gorton & Schandl, 2000)

FIGURE 10 Discrimination diagrams of tectonic setting of rhyolites from th
1984). Syn‐COLG = syn‐collision granites; VAG = volcanic arc granites; WP
crystallization trend (Figure 8c,d). All these features indicate that the

rocks underwent extensive magmatic differentiation.

In general, the acid rocks with low εHf(t) values and older model

ages indicate that they were formed by palaeo‐crustal anatexis or

remelting, whereas the high εHf(t) values and younger model ages

were thought to be formed by the recycling of juvenile crust or the

invasion of slab‐derived materials in the continental crust (Allègre &

Othman, 1980; Jahn, Wu, & Hong, 2000). As for this study, the zircon

U–Pb age of 299.1 ± 2.2 Ma with the positive εHf(t) values (8.0 to

11.9) and relatively young Hf isotope crustal model ages (TDM
C) of

554–807 Ma indicates that the rhyolites were derived from remelting

of juvenile crust, and the geochemical characteristics indicate that the

melt suffered magmatic differentiation.
6.2 | Tectonic implication

The Harlik–Dananhu arc is located between the Kelameili Palaeozoic

suture and the Late Carboniferous Kanggur suture zone. Previous

studies about the Palaeozoic tectonic evolution of the Harlik–Dananhu

arc, has gotten a broad consensus that the arc accretion was from

north to south (G. H. Sun et al., 2005; H. R. Zhang, Wei, Li, Du, &

Cai, 2010; L. C. Zhang, Qin, Ying, Xia, & Xu, 2004; L. C. Zhang, Xiao,

Qin, & Zhang, 2006; W. M. Li, Ren, Yang, Li, & Chen, 2002; Xiao

et al., 2010; X. Chen et al., 2013; Y. H. Wang et al., 2015).

With regard to the Kalatage area that is located in the middle of

the Harlik–Dananhu arc in the Eastern Tianshan belt, it is mainly com-

posed of Ordovician to Permian rocks. Previous studies were focused

on revealing the tectonic evolution from Late Ordovician to Permian

in this district and followed as (a) in the Late Ordovician, the Kangguer

Ocean slab that was subducted northward beneath the Dananhu island
e Kalatage area of the EasternTianshan (after Pearce, Harris, & Tindle,
G = within‐plate granites; ORG = ocean ridge granites



FIGURE 11 The content of major and trace elements of rhyolites from different tectonic settings (after Ayalew & Ishiwatari, 2011) and rhyolite
from Bogda belt after X. Chen et al. (2011), which is of bimodal rock series generated in a postcollisional setting
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arc to form the Yudai porphyry Cu (Au, Mo) mineralization in the

Kalatage district (Y. Sun et al., 2017); (b) in the early Carboniferous

(334–322 Ma), more subducted oceanic crust melted in the North

Tianshan suprasubduction zone, generating a considerable volume of

arc‐related volcanic rocks and granitic intrusions in the Harlik–

Dananhu arc (Mao et al., 2017); (c) in the early Permian, oblique sub-

duction in the southern Altaids gave rise to strike‐slip extensional

faults, which controlled the emplacement of large volumes of mantle‐

derived melts to form the Shaerhu alkaline complex (age of 286 Ma)

in the Kalatage area, and the Early Permian Shaerhu alkaline complex

was generated in a suprasubduction zone setting (Mao, Xiao, et al.,

2014); and (d) in the Middle Permian, the bimodal (basic–acidic) volca-

nic rocks of the Aerbashayi Formation were emplaced in extensional

and/or rift settings (Zhu et al., 2002). From the above discussion, it is

showed that the Upper Carboniferous rocks were poorly understood

in the Kalatage area.

Based on the LA‐ICP‐MS zircon U–Pb dating data obtained in this

study, it indicates that the rhyolites from the Qishan Formation have

occurred around 300 Ma in the Kalatage area, Eastern Tianshan. The

obvious negative Nb and Ta anomalies and positiveTh and U anomalies,

and the enrichment of LREEs with negative Eu anomalies of the rhyo-

lites, indicate that these rhyolites were formed in a suprasubduction

zone environment. In the Th/Ta versus Yb discrimination diagram, the

rhyolites indicate an active continental margin affinity (Figure 9).

Furthermore, the samples of rhyolites all fall within the volcanic arc

field in the tectonic discrimination diagrams of Y–Nb, Yb–Ta,

(Y + Nb)–Rb, and (Y + Ta)–Rb, suggesting of a subduction setting

(Figure 10). As in Figure 11, the rhyolites showed high contents in

Al2O3 but low contents in Y, which is different from those of rhyolite

generated in a postcollisional setting of Bogda belt, whereas consistent

with the element characteristics of ocean island arc. Consequently, we

prefer to hold that it was subduction‐dominated setting related to the

northward subduction of the NorthTianshan oceanic crust rather than

a postcollisional environment during the Late Upper Carboniferous in

the Kalatage area, EasternTianshan. In summary, the Qishan Formation

rhyolites in the Kalatage area had undergone extensive magmatic

differentiation. The rocks were derived from remelting of juvenile crust

and generated in a suprasubduction zone setting.
7 | CONCLUSIONS

1. Zircon LA‐ICP‐MS U–Pb dating for the Qishan Formation

rhyolites in the Kalatage area, Eastern Tianshan of NW China,
yielded crystallization age of 299.1 ± 2.1 Ma, indicating that it

erupted during the Late Upper Carboniferous.

2. The rhyolites are high‐K calc‐alkaline rocks. The εHf(t) values of

8.0 to 11.9 and the two‐stage Hf isotope crustal model ages

(TDM
C) of 554 to 807 Ma indicate that it was derived from

remelting of juvenile crust.

3. The rhyolites of the Qishan Formation were most likely generated

in a suprasubduction zone setting, which resulted from northward

subduction of the North Tianshan oceanic crust beneath the

Harlik–Dananhu arc during the Late Upper Carboniferous.
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